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Probabilistic Modeling of Imaging,
Genetics and Diagnosis

Nematollah K. Batmanghelich*, Adrian Dalca, Gerald Quon, Mert Sabuncu, Polina Golland, and
Alzheimer’s Disease Neuroimaging Initiative

Abstract—We propose a unified Bayesian framework for de-
tecting genetic variants associated with disease by exploiting
image-based features as an intermediate phenotype. The use of
imaging data for examining genetic associations promises new
directions of analysis, but currently the most widely used methods
make sub-optimal use of the richness that these data types can
offer. Currently, image features are most commonly selected based
on their relevance to the disease phenotype. Then, in a separate
step, a set of genetic variants is identified to explain the selected
features. In contrast, our method performs these tasks simultane-
ously in order to jointly exploit information in both data types.
The analysis yields probabilistic measures of clinical relevance for
both imaging and genetic markers. We derive an efficient approx-
imate inference algorithm that handles the high dimensionality of
image and genetic data. We evaluate the algorithm on synthetic
data and demonstrate that it outperforms traditional models. We
also illustrate our method on Alzheimer’s Disease Neuroimaging
Initiative data.

Index Terms—Bayesian models, imaging genetics, probabilistic
graphical model, variational inference.

I. INTRODUCTION

I N this paper, we propose a probabilistic model to discover
genetic variants associated with a disease using image

data as an intermediate phenotype. The search for genetic
variants that increase the risk of a particular disorder is one
of the central challenges in medical research, and has been
traditionally performed via genome-wide association studies
(GWAS). In GWAS, it is common to examine the associations
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of genetic variants with disease by performing a univariate
analysis between the disease incidence and each genetic marker
independently. However, testing one variant at a time does
not fully realize the potential of GWAS because some ge-
netic variants may have a weak but cumulative effect that is
neglected by a univariate method [1], [2]. Imaging genetics in-
troduces image-based biomarkers as a promising intermediate
phenotype1 (i.e., endo-phenotype) between genetic variants
and diagnosis. Given that in some pathologies, such as the
Alzheimer's disease, imaging features have strong correlation
with the clinical diagnosis and can offer a clearer picture of the
association [5], [6], it is beneficial to exploit them to improve
the associations of weak genetic markers. Furthermore, in
contrast to a binary diagnosis, imaging data contains many
variations caused by a disease which helps to stratify the disease
population in more informative ways.
Imaging genetics presents numerous challenges in clinical

studies due to the relatively small number of subjects and
extremely high dimensionality of images (hundreds of thou-
sands of voxels) and genetic data (millions of single nucleotide
polymorphisms (SNPs)). To address the problem of high
dimensionality and small sample size, earlier methods consid-
ered only a few imaging candidates (voxels, regions, or other
biomarkers) or only a few genetic markers in the analysis [7],
[8]. The reduced joint dataset was then analyzed in a univariate
framework, where pairs of a candidate genetic variant and an
imaging biomarker were tested for association via standard
statistical tests. Examples include using activation maps of the
prefrontal cortex to find SNPs associated with schizophrenia
[8] and searching for changes in regional gray matter volumes
correlated with the genetic risk of Alzheimer's disease [7], [9].
More recently, genome-wide voxel-wise analysis has been

demonstrated using univariate methods [10]. However, massive
univariate analysis has several limitations. Due to multiple com-
parisons, a conservative corrected significance level is selected
to limit the false positive rate, but this correction dramatically
reduces the power of the test. Moreover, the univariate methods
are unlikely to identify weaker variants that jointly create an
additive effect. Multivariate techniques aim to overcome short-
comings of univariate analysis [11], [12].
A common approach is to use a multivariate regression com-

bined with a regularization to extract a sparse set of coeffi-

1The term “intermediate phenotype” or “endophenotype” is commonly used
in the literature [3], [4]. It is called intermediate phenotype because in a hypo-
thetical causal model, it falls between the genotype and disease diagnosis. The
intermediate data in our case is the image feature (e.g., average thickness of the
cortical regions or volume of the sub-cortical areas).
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cients for correlated genetic variants and image features. Var-
ious forms of relationship between imaging and genetic data
along with different regularization terms have been proposed in
the literature. For example, it is common to assume that image
and genetic data lie in a joint hidden (latent) space. This is
equivalent of enforcing different forms of low rank regulariza-
tion on data: sparse reduced rank regression (sRRR) [12], [13],
Partial Least Squares (PLS)[11] or Canonical Correlation Anal-
ysis (CCA) [11]. Unfortunately, these unsupervised methods do
not use the clinical labels (e.g., diagnosis) directly, and thus the
detected genetic markers and image features are not immedi-
ately related to the disease of interest. The image features rele-
vant to the disease are selected separately by modeling the rela-
tionship between image features and the phenotype of interest.
For example, sRRR has been demonstrated using brain regions
pre-selected for Alzheimer's disease (AD) via Linear Discrimi-
nant Analysis [13].
In contrast, we model and estimate relevant genetic variants

in the context of abnormal variations that are characterized
by imaging features. Our method is broadly applicable to
any imaging biomarker, such as anatomical regions, tissue
appearance, or functional measures. Here, we demonstrate our
method in application to Alzheimer's disease, and use thickness
of cortical regions and the volume of sub-cortical structures as
image features.
We define a probabilistic model to encode the relationship

among genetic, image and disease measures. Our model incor-
porates a common assumption made by genetic studies that only
a small set of genetic variants is associated with any particular
disease, leading to sparsity-inducing priors. The relevant subset
of genetic markers induces variation in certain image-based fea-
tures, and a subset of these measures exhibits changes that are
discriminative with respect to the disease phenotype. Therefore,
in our model if a brain region is irrelevant for the target disease,
it is ignored even if it is strongly modulated by genetics. We also
derive an efficient inference algorithm to identify relevant brain
regions and genetic loci, and demonstrate the method on syn-
thetic data and real data from the ADNI study [14]. We demon-
strate that our algorithm outperforms standard univariate and
regression analyses for genetic variant detection on synthetic
data and yields promising results in a real clinical study. This
paper extends our publication of the preliminary results [15] by
deriving a novel robust inference algorithm. It also expands the
empirical evaluation.
The remainder of this paper is organized as follows. In the

next section, we build a graphical model that captures the re-
lationship among image, genetic and diagnostic variables. In
Section III, we propose an efficient algorithm to perform infer-
ence of the model. Derivation details are discussed in the Ap-
pendix in the supplementary file. Sections IV and V report ex-
perimental results on simulated and real data, respectively. We
conclude the paper with a discussion of the results and future
directions in Section VI.

II. METHOD

A. Notations and Terminology
Throughout this paper, we use regular fonts (e.g., , ) and

bold fonts (e.g., , ) to denote scalar and vector, respectively.

TABLE I
NOTATION AND VARIABLES USED THROUGHOUT THE PAPER

Some uppercase letters are reserved for the number of elements:
e.g., is the number of subjects, is the number of image
regions, and is the number of SNPs. In such cases, their low-
ercase counterparts are used for enumeration: e.g., subject ,
image region , and SNP . Uppercase bold letters are used to
denote matrix variables (e.g., ); in such case
and denote the column and row of thematrix , respec-
tively. We use to refer to the entry in the row and column

of . Superscripts are used to denote iterations of the algo-
rithm (e.g., ) or transpose (e.g., ). and denote
expectation and density. Table I summarizes all variables used
throughout this paper.

B. Model
We are motivated by anatomical brain studies with binary

phenotypes ( or 1), but the analysis applies to any biomarker
derived from images and the constraint on the phenotype can be
easily relaxed. We assume that a study contains individuals,
each with three measurements:
• disease phenotype that indicates healthy vs.
disease;

• image measurements, , which are usually re-
ferred to as “intermediate phenotype”. In the context of
AD, image features include volume or thickness measure-
ments of brain structures.

• genetic variants at locations along the genome;
We assume that a subset of image features is modulated by ge-

netics and is closely related to the disease phenotype. Detecting
and utilizing such imaging features can improve the detection
of relevant genetic variants.
We model two types of relationships, illustrated Fig. 1: 1) the

association of a subset of brain regions with the diagnosis vari-
able , which can be quantified by the quality of the disease pre-
diction from image features; 2) a modulation of each image fea-
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Fig. 1. A schematic illustration of the relationship between genetic, imaging
and clinical measures in our model.

ture by the genotype. A common approach is to consider these
two relationships separately, selecting relevant brain structures
and then performing a statistical test (e.g., -test or sparse re-
gression) to identify the relevant genotype [13]. In contrast, we
propose a model to perform these two steps jointly, via two cou-
pled regression models:
• A sparse subset of imaging features selected by

is related to the diagnosis variable via
a logistic regression model. For each region, we model
its elements (i.e., ) using a Bernoulli distribution
(Section II-C).

• Variations in image features for region can be explained
by a sparse subset of the genotype which is selected by

. Similarly, we model its elements (i.e., )
via a Bernoulli distribution (Section II-D).

We treat the indicator variables and as latent. The
graphical model in Fig. 2 presents the relationships among
all variables in the model. One can view the model shown in
Fig. 2 as two-layers of regression that share latent variables for
the image data. Below, we first define the relationship between
image features and the disease phenotype and then specify
the generative model for the relationship between SNPs and
image features. We do not model a direct link between genetic
variants and disease label. It is captured indirectly through
image features. The general idea is illustrated in Fig. 1.

C. From Imaging Features to Disease Phenotype

To predict the binary class label from a sparse set of image
features , we use a variant of the log-odds model:

(1)

where is the element-wise product, is the la-
tent variable that selects relevant regions, and is a latent
stochastic function. In effect the operation masks out the
irrelevant features.
We assume exchangeable Bernoulli prior for . In other

words, we model selection of each region as a biased coin
flip, i.e., , where is the prior
probability of including a brain region. We use the Gaussian
Process (GP) as a prior for [16]. A Gaussian Process is
a random process where any finite sample set is distributed

Fig. 2. (a) Graphical representation of the generative model. Hollow circles
( ) denote random variables, small solid circles ( ) represent hyper-parame-
ters, and shaded circles represent observed variables. The black plates indicate
conditionally independent instantiations. More specifically, , , and
are the hyper-parameters. The dashed boxes illustrate the different parts of the
model. (b) Instead of plates, the repetition of the random variables are shown
explicitly. To avoid the visual clutter, the hyper-parameters are not shown. The
blue and the red paths show so-called v-structure dependence. It means that
those variables are conditionally dependent hence the posterior values for those
variables are related.

as a multi-dimensional Gaussian distribution. GP is com-
pletely defined by its prior mean and covariance functions, i.e.,

, where

We assume since and we do not aim
to induce a bias toward either label. The covariance function

is the crucial part of a GP. There are several well-known
choices for such as Linear , or Squared
Exponential . We use the
linear kernel in this paper, setting . The expres-
sion on the left hand side of (1) specifies the likelihood (i.e., the
link function). For example, a straightforward change from the
logistic likelihood to a Gaussian likelihood enables modeling
continuous clinical measurements (e.g., cognitive scores).

D. From Genetic Variants to Imaging Features

An imaging feature is either relevant to the disease (
) or not ( ). In modeling the relationship between ge-
netics and imaging, we treat these cases differently. If feature

is irrelevant ( ), we model the variation in the region
as a Gaussian distribution centered at zero with a fixed standard
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deviation of one: . This assumption is not lim-
iting, since we can always normalize the samples to have zero
mean and unit variance. The normal distribution can be replaced
by a different distribution if needed. One can view this assump-
tion as our null distribution. If feature is relevant for disease
prediction ( ), variations in the values of this feature are
explained by a sparse subset of the genetic variants .
We define to be a vector of latent Bernoulli
random variables that specify a subset, or mask, of relevant ge-
netic markers for region , and arrive at the second regression
component of our model:

(2)

where is the vector of regression coefficients,
is the iid residual noise in the image feature

for subject . Adopting Bayesian variable selection based on
the spike-and-slab model [17], [18], we assume a Gaussian
distribution with zero mean and variance as a prior for
the regression coefficient . This choice of parameterization
facilitates derivations explained in the Section III. Similar to
the indicator variable that selects image features, we assume
exchangeable Bernoulli distribution as a prior for :

(3)

where is the prior probability of including any SNP in the
model.
Combining, we obtain the likelihood of the image feature :

if ,
if . (4)

The first line of (4) assumes a simple normal distribution as a
null model. To handle cases where a non-disease related genetic
variants affect a relevant region (i.e., ), we assume that
the effect of the normal genetic variants along with other covari-
ates (e.g., age, gender, etc.) are already subtracted from the data
and (4) models the normalized residual. More explicitly, we fit a
regressionmodel on allmeasured nuisance variables in a normal
population. represents the residual of the regression which
presumably regresses out all of the nuisance variables.

E. Complete Model

We define to be the set
of latent variables, to be the set of data variables
that wemodel, and to be the set of hyper-pa-
rameters. We use to denote the set of all clin-
ical phenotypes (class labels) and and
are respectively image and genetic data of all subjects where
each row is a subject and each column represents a measure-
ment from one brain region (for ) or genotype from all loci (for
). Since the hyper-priors are treated slightly differently during

inference, in this section we focus on the structure of the con-
ditional probability given the hyper-parameters:
(see the Appendix in the supplementary file). Combining the

elements of the model in (1)–(4), we construct the joint distri-
bution of the hidden variables and modeled variables :

(5)

In the next section, we focus on specifying hyper-priors .

F. Hyper-Priors

For clarity of presentation, Fig. 2 presents the model but does
not specify the priors for , , , and . Here we define the
prior distributions for each parameter of the model.
1) Prior Over Inclusion of SNPs : We assume the conju-

gate prior for , namely a distribution. The shape
parameters of the distribution are chosen to ensure an al-
most flat distribution over the entire interval as illustrated
in the experimental section.
2) Prior Over Variance of Residual : It is common to as-

sume an uninformative prior distribution2 for the variance of
residuals [19]. An uninformative prior for is proportional
to , which can be achieved via an inverse Gamma distri-
bution as the scale and shape priors approach zero [20], i.e.,

.
3) Prior Over : Instead of directly imposing prior on ,

we follow the approach of assuming a flat prior for Proportion
of Variance Explained (PVE) in the response that consequently
induces a prior on the parameter [17], [21]. The underlying
logic is that there might be a large number of SNPs with small
PVE's or small number of SNPs with large PVE's; hence we
assume a flat prior over PVE. Assuming that the columns of
the genetic data matrix are centered, the PVE of the genetic
variants for image feature is defined as follows:

A rough estimate of the expectation of (i.e., integrating
out) can be represented to be:

(6)

where is the sum of the sample
variances of the genetic data at all loci. We assume a uniform
prior over [17]. This prior aids interpretation as it applies
stronger shrinkage in models with more non-zero regression co-
efficients [21].
We leave the prior for selecting image features as a non-

random hyper-parameter whose effect on the final results will
be studied empirically in the experimental section.

2An uninformative prior is a prior that is not subjectively defined and can
express objective information such as “the variable is positive.”
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G. Joint Modeling Image and Genetics vs. Two-Step Inference
Our method jointly models imaging and genetic variations.

To clarify the concept, we first explain the so-called “two-steps”
method in the context of our algorithm. A two step approach
(e.g., [13]) first selects a subset of brain regions (columns of ).
This can be done using a univariate or multivariate approach. A
univariate approach seeks a Maximum a Posterior (MAP) esti-
mate to the following formulation accounting for each column
separately:

(7)

where is an indicator variable with 1 indicating relevance,
and 0 not; and is the column of , corresponding to the
features from brain region . Assuming uniform prior, most
univariate methods find the most likely region by testing the
likelihood term for or , i.e.,

.
Unlike univariate approaches, a multivariate method con-

siders all variables at the same time to find MAP or posterior
probability of this form:

(8)

where is a -dimensional binary hidden vector that denotes
the relevance of the image regions together.
Although the posterior value depends on all brain regions

(simultaneously), such model does not account for the genetic
variations. Our model specifically addresses this problem. The
graphical model in Fig. 2(a) implies that the posterior proba-
bility of the brain regions takes the following form:

(9)

(10)
where the values of the posterior distribution are in-
fluenced by both diagnosis and genetic data

) simultaneously.
Another way to understand the simultaneous aspect of the

model is to study the dependency structure of random variables
by following the dependency paths in the graphical model. For
the sake of better visualization, we have expanded the graphical
model of Fig. 2(a) to (b) by removing the plates and explic-
itly visualizing the random variables. The so-called v-structure
dependency (see [22]) between indicator variables of the brain
regions ( 's) means that given the diagnosis variable , rel-
evance values of different brain regions are conditionally de-

pendent. This dependency is encoded in the posterior proba-
bility. Also there is v-structure dependency between indicator
of a brain region and indicator variables of the genetic loci
( ).

III. INFERENCE
Our goal is to compute the posterior probability distribution

of the latent variables that summarize genetic
and imaging influences in our model. Because of coupling of
variables in the joint model, computing the posterior distribu-
tion is intractable, necessitating approximations via sampling or
variational methods. Due to the amount of data and its dimen-
sionality, we use the computationally more efficient approach
of variational inference [23]. Three important quantities of the
model require further explanation. These three quantities will
be used later in the inference section:
1) Diagnosis Likelihood : Assuming that is

observed, this value is themarginal conditional likelihood of the
diagnosis model. We use the term marginal conditional since
it is conditioned on and the is marginalized out. For lo-
gistic likelihood (1), this value does not have a closed-form so-
lution but can be approximated efficiently. To approximate this
quantity, one can use Gaussian process classification with linear
kernel and approximate the marginal likelihood. We use the ex-
pectation propagation to approximate it ([16, Section 3.6]).
2) Imaging Likelihood : A straightforward

manipulation of (4) leads to:

(11)
where the first line corresponds to the null model, and

is the marginal conditional likeli-
hood of the imaging features given genetics where the latent
variables and are marginalized out. In general, the
marginal likelihood does not have a closed-form but there are
several methods to approximate it using Markov Chain Monte
Carlo, variational approximation, and Annealed Importance
Sampling (AIS) [24]. We adopt the method proposed in [17]
specifically for large-scale regression with a spike-and-slab
prior. The algorithm combines variational approximation with
importance sampling as derived in the Supplementary Material.
3) Posterior Probability : This function quan-

tifies the posterior probability of the relevance of the brain re-
gions given the data. is a function that assigns
the posterior probability to all possibilities of the indicator
vector for brain regions. Estimating is the
key component to approximating the posterior distribution of
the entiremodel. Two quantities mentioned earlier are combined
in this term:

(12)
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Computing the normalization constant entails a sum over all
possible subsets of which is computation-
ally infeasible. We resort to a variational approximation to com-
pute the posterior distribution.

A. Fixed-Form Variational Learning

A variational method approximates the posterior distribution
of the latent variables in the model. It seeks a specified form
of the approximating distribution that minimizes negative of
the so-called variational free energy. This quantity lower bounds
logarithm of the so-called evidence (i.e., ), hence called ev-
idence lower bound (ELBO). It can be shown that the objective
is the Kullback Leibler divergence between an approximating
distribution and the joint distribution of the model. We ap-
proximate with a function of the following form:

(13)

where is the parameters vector of the approximate posterior
distribution. To learn , we adopt the stochastic approxima-
tion algorithm proposed by Salimans and Knowles [25]. An
important property of the framework is that it enables approxi-
mating of the posterior as long as there are efficient algorithms
to sample from the assumed-form of the approximating distri-
bution and to evaluate the joint likelihood. These properties
can be helpful for approximating distributions that are not fully
factorizable. In our case, the form of the approximate posterior
is fully factorizable but the framework allows for further exten-
sions in the future. We first review this general framework.
In structured or fixed-form variational Bayes [26], the approx-

imating distribution is chosen to be a specific member of an ex-
ponential family, namely

where is the sufficient statistics, is the log par-
tition function, is the base measure and are the natural
parameters. To represent (13) in this form, we set

Note that is the transformed version of parameter , introduced
for notational convenience.
Variational methods find the optimal parameters by mini-

mizing the divergence:

(14)

For notational convenience, we define
where and . If , then
is the normalized posterior, otherwise it is an unnormalized

version [25]. Taking the gradient of the objective with respect
to , we obtain:

By setting the equation above to zero, Salimans and Knowles
[25] linked linear regression and the variational Bayes method.

Namely, the optimal solution should satisfy the linear system
of equations:

are estimated by weighted Monte Carlo sampling. More specifi-
cally, in iteration of the algorithm, we sample from the current
estimate of the posterior distribution, parameterized by ,
and replace and with an empirical estimate. Salimans et al.
[25] suggested to sample one instance from the and update
and as follows:

(15)

where is the step size and and are the empirical
estimates of and using the sample :

With minimal assumptions on the objective function, Ne-
mirovski [27] showed that with a constant step size
along with averaging parameters of the last iterations, this
procedure leads to asymptotic efficiency of the optimal learning
sequence .
For the pseudo-code of the inference algorithm and detail of

derivation, please see the Supplementary Material.

IV. SIMULATION

We evaluate ourmodel on synthetic data using univariate tests
and the sRRRmethod [12] as baseline algorithms.We also illus-
trate our method on the ADNI dataset, where we recover several
top SNPs associated with the risk of Alzheimer's Disease.
We generate synthetic data to match a realistic scenario as

much as possible. Specifically, we generate a disease case-con-
trol cohort with images and genetic variants for each subject.
We refer to the minor allele frequency (MAF) as the frequency
of the less common allele in the population at a particular ge-
netic location. A genetic marker (or SNP) is represented
by the count of minor alleles at location in subject , i.e.,

. We employ the widely used population ge-
netics software package PLINK [28] to simulate 1,020 SNPs
with a minor allele frequency uniformly sampled from an in-
terval for 400 healthy subjects and 400 patients. For
SNPs relevant to the disease, the heterozygote odds ratio is de-
fined as the ratio of patients to controls with , normal-
ized by the same ratio for . Similarly, one can define the
homozygote odds ratio. These ratios control the disease risk in
the patient population.
The simulated SNPs are split into three sets:
• Set includes 20 disease causative SNPs that affect se-
lected areas of the simulated images. We use an odds ratio
of 1.125 for heterozygote SNPs, with a multiplicative ho-
mozygote risk.

• Set includes 20 SNPs that are irrelevant for the disease
(i.e., odds ratio is 1) but affect other areas in simulated
images.
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Fig. 3. Summary of the simulation setup. For both healthy subjects and diag-
nosed patients we split the genome into three regions, and the image into six
regions of four types.

• Set includes 980 null SNPs that are independent of both
the disease label and the images.

Based on the class labels and the genetic variants, we generate
image voxels, organized in several sets:
• Voxels in set are affected by the causative SNPs ( ),
and thus are indirectly associated with the disease. These
voxels are separated into three regions. Voxel intensity in
this set is correlated with genetics:

(16)

where is the intensity value of voxel in region
for subject . The region weights are drawn from a
normal distribution , and is Gaussian noise.
Our experiments explore a range of values for the noise
variance .

• Voxels in set are determined by non-causative SNPs ,
and thus are irrelevant for disease. We dedicate one region
to this category:

(17)

• Voxels in set are related to the disease but are not re-
lated to genetic markers, and are therefore not helpful in
causative SNP detection. In fact, such features confuse the
detector as they get selected as relevant to disease at the
cost of features in . We generate these voxels as follows:

if ,
if .

• Voxels in set are not relevant for either the disease
label or genetic markers. These voxels are sampled from

.
A summary of the simulation setup is shown in Fig. 3.
We use the synthetic data to evaluate detection of causative

SNPs with our method. As a first baseline method, we per-
form the univariate Bonferroni corrected -test directly between
SNPs and disease labels, omitting images. As a second baseline,
which we refer to as supervised sRRR , we perform univariate
voxel filtering using disease label, followed by the sRRR multi-
variate regression between the surviving voxels and the genetic

Fig. 4. Summary of the results on simulated data. (a) Detection rates for our
algorithm (blue), the supervised sRRR (green), CCA (orange), and genetic -test
(red) as a function of image noise for causative SNPs in at a false positive
rate of 1%. (b,c) ROC curves for low ( ) and high ( )
noise levels respectively, up to the selected false positive threshold of 1%. The
green shows the results of sRRR where any variant that has non-zero weight is
considered a hit, and we vary the sparsity parameters. (d) ROC curve for the
detection of relevant imaging regions for low ( ) noise level.

variants to recover relevant SNPs [12].We compare themethods
in different image noise regimes by varying the variance
in (16)– (17), and run 20 different independent simulations for
each noise regime. We have also applied CCA, which can be
viewed as sRRR but without sparsity regularization.
Fig. 4 reports the performance of all four methods for an

odds ratio of 1.125. To illustrate the behavior of the methods
for different false positive rates, we report the receiver operating
characteristic at two different noise levels. In supervised sRRR,
we observe that using a standard univariate filtering -value
cutoff of 5% eliminates too many image regions and does not
successfully allow for detection of genetic variants, leading to
poor performance. We increased the success rate of sRRR by
keeping the top 40% of regions sorted by their -values. We
found that sRRR results were robust when varying this param-
eter in a range around this larger percentage of regions to be
included in the method. To set the detection thresholds, we fix
the false positive rate to 1%. We observe similar behavior for a
broad range of low false positive rates (not shown). We focus
our experiments on low false positive rates because at higher
rates false detections become comparable with, and ultimately
overwhelm true detections, since there are so few relevant vari-
ants. We find that for a given false positive rate, our algorithm
detects significantly more disease causative SNPs in than the
baseline algorithms, and has lower standard deviation than the
supervised sRRR pipeline. The results of the CCA is consis-
tently inferior with respect to sRRR. Given that sRRR can be
viewed as CCA with sparsity constraints, this results empha-
sizes the importance of the sparsity regularization. The direct
univariate -tests only detect SNPs that have a very strong inde-
pendent association with the disease label.
As more noise is added to the image, a two-step method starts

to miss relevant regions across the image, which consequently
degrades its detection rate on the genetic side. Our approach
exploits other sources of information to compute the posterior
probability of relevance. Namely, the has two terms.
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The second term in (10) summarizes the contribution of the ge-
netic data which helps to compensate for the “image noise”. In
addition, genetics-to-image part of our model employs a pow-
erful approach based on spike-and-slab prior. One can view
spike-and-slab prior as a mixture of and regularization.
This experiment shows that such regularization tends to perform
better than used in the sRRR approach. Better regularization
and richer model explain the increased robustness of our ap-
proach compared to the “two-step” method.

V. ALZHEIMER’S DISEASE DATA

A. Data and Preliminary Evidence

Before applying our method to real data, we familiarize the
reader with the data by demonstrating evidence of the associa-
tion between the clinical diagnosis , image data , and geno-
type using a baseline approach.
We used clinical data from the ADNI study without focusing

on a specific sub-group. ADNI is a large-scale study; the details
on the study participants can be found elsewhere. The cohort in-
cludes 179 Alzheimer's patients (AD) and 198 healthy subjects
(healthy) to the total of 377 subjects. We employed FreeSurfer
image analysis suite3 to process the MRI scans and produce seg-
mentations and volume measurements for an array of regions
(cortical and sub-cortical) that cover the entire brain. For details
of these regions, please refer to Cortical ROIs4, Desikan ROIs5
in the FreeSurfer documentation. The technical details of these
procedures are described in [29]–[32], and [33].
To extract genetic variants, the standard quality control was

applied to remove rare genetic variants or variants violating the
Hardy-Weinberg Principle [28]. To reduce the number of SNPs
considered by the algorithm, we removed SNPs that are unlikely
to be associated with AD. We first imputed our genotype data to
the 1000 Genomes panel usingMaCH [34], then kept only SNPs
whose -value (as measured by a large-scale meta-analysis of
AD [35]) was below a liberal threshold ( ), yielding 15,788
SNPs.
Fig. 5 reports histograms of image features in four represen-

tative brain regions for the two cohorts of healthy and AD sub-
jects. Two of these regions are highly relevant to the disease
(entorhinal cortex and hippocampus [36]) while the other two
have been less reported (putamen [37] and caudate) in the con-
text of Alzheimer's disease. While the distribution of the cor-
tical thickness in the left entorhinal cortex is strongly segregated
across two cohorts, the right putamen and the left caudate vol-
umes show weak or almost no statistical difference between the
two populations. The entorhinal cortex is an important brain re-
gion responsible for declarative memories and memory consol-
idation and is implicated in early Alzheimer's disease [38].
To experiment with a classical baseline Genome-Wide As-

sociation (GWAS) methods, we fit several Generalized Linear
Models (GLM) using the genotype as the design matrix. In
Fig. 6, we used the image features from the four brain regions
in Fig. 5 as the response variable to the GLM. The Manhattan

3http://surfer.nmr.mgh.harvard.edu/
4https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
5http://freesurfer.net/fswiki/FsTutorial/AnatomicalROI

Fig. 5. Distribution of the imaging features for four different regions of the
brain are shown. None or very weak differences can be seen between the groups
for caudate and putamen while there are very strong differences in the volume
of the left hippocampus and the average thickness of the entorhinal cortex.

plot in Fig. 6 shows -value for the genetic loci tested;
the different shades of gray indicate different chromosomes.
Despite the strong separation between healthy and AD in the
left entorhinal cortex, no SNP passes the Bonferroni-corrected
significance threshold. Nevertheless there is an indication for
APOE variants. APOE is the only SNP that passes the signif-
icance level after the Bonferroni correction when the volume
of the left hippocampus (Fig. 6(d)) or clinical diagnosis (not
shown) are used as the response variables. Fig. 6 therefore illus-
trates the limitation of classical GWAS.

B. Posterior Relevance of Brain Regions and SNPs

We applied our inference algorithm on the subset of the ADNI
dataset described above. The algorithm shown integrates out the
hyper-parameters through importance sampling. Only a range
of hyper-parameters should be provided to the outer loop of al-
gorithm, which translates to a weakly informative prior for the
hyper-parameters. We choose the range for the hyper-parame-
ters as follows:

is the variance of the residual noise for the imaging fea-
tures after they are explained by a subset of the genotype. For
, we searched over . Since the imaging features are

normalized to have unit variance, the variance of the residual is
upper bounded by 1. We also do not expect the genetic variant
to explain all the variance in the imaging feature, hence we ex-
pect a residual variance. It is common to impose a non-informa-
tive prior over by assuming the inverse-gamma distribution
for and setting its shape parameter to a small quantity (here
0.05, see Fig. 1(c) in the Supplementary Materials).
For the variance of effect of individual SNPs , we searched

over . We do not expect a large contribution by a



BATMANGHELICH et al.: PROBABILISTIC MODELING OF IMAGING, GENETICS AND DIAGNOSIS 1773

Fig. 6. Manhattan plots using different response variables in the GLM (a) volume of the left caudate (b) the volume of the right putamen (c) average cortical
thickness of the left entorhinal cortex, and (d) volume of the left hippocampus. The -axis lists the SNPs and the shades indicate different chromosomes. The -axis
reports the negative of the -value. The vertical line denotes the statistical significance level (0.05) after Bonferroni correction. Only APOE variants pass
significance level, but only for the volume of the left hippocampus. In spite of a clear distinction between distributions of healthy and AD for the left entorhinal
cortex (Fig. 5), no SNP passes the significance level when using the average thickness of the left entorhinal cortex as a response variable.

Fig. 7. Posterior relevance of the SNPs with respect to (a) volume of the left caudate, (b) right putamen, (c) average thickness of the left entorhinal cortex, and
(d) volume of the left hippocampus, respectively. Compared to Fig. 6. The horizontal line indicates .

single SNP, but small contributions by several SNPs are pos-
sible. For this reason, the interval spans a small range. Notice
that the variance of the residual, , is at most 1. In Section II-F,
we explained that the proportion of variance explained (PVE)
can be used to impose a prior over as suggested in [17] (see
Fig. 1(b) in Supplementary Material).
To investigate the prior probability of any SNP to be rele-

vant, the range of is set to . For 15,788 SNPs,
this is equivalent of selecting 0.1 to 16 SNPs as relevant to the
endophenotype a priori. Two positive shape parameters of the
beta distribution are set to 1.02 and 1 respectively which im-
poses almost uniform prior for the selected range of (Fig. 1(a)
in the Supplementary Materials).

The posterior probability of the relevant SNPs (i.e., )
is reported in Fig. 7 for the brain regions examined in Figs. 5 and
6. The results of both approaches, i.e., the proposed model and
the classical approach of univariate tests, are relatively con-
sistent. The least informative regions such as the caudate and
putamen are assigned no SNPs by either methods. The hip-
pocampus, which is known to be correlated with AD, is as-
sociated with a variant in APOE , a genetic marker known to
be associated with Alzheimer's disease. For areas such as the
entorhinal cortex, which is affected by AD [38], the classical
method shows suggestive association for a variant in APOE,
while for our method, APOE as well as a few others, pass the
significance level.
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Fig. 8. The barplot of the posterior relevance for all 94 brain regions ( -axis). The regions are ordered according to the ranking produced by the two sample -test
with respect to : We conducted a -test to examine the difference between cases and controls for each one of these measurements and ranked them based on the
-test result.

Fig. 9. Posterior probability of the relevant regions (i.e., ) for (a) left
and (b) right hemispheres of the brain. Left and right figures in each row repre-
sent lateral and medial views respectively. The color indicates the value of the
posterior probability, the hotter color, the higher the posterior. (a) Left. (b) Right.

Interestingly, by computing the posterior relevance of brain
regions , we can go beyond the known regions of
the brain affected by AD. Fig. 9 reports the posterior probability
of brain regions being relevant jointly for the genotype and the
diagnosis. Fig. 9(a) and (b) show two hemispheres of the brain
on medial and lateral views; the color indicates the posterior
probability. Fig. 8 represents the same results via a bar-plot.
The -axis is . We sorted the regions according to
the ranking produced by a classical correlation criterion (with
respect to ). We observe that the classical statistical method
and the results based on our model are largely consistent but our
method assigns high posterior relevance to some regions that are
viewed less important according to the classical test.
We emphasize that our method does not pool the genetic risk

across ROIs. One can get a single set of posterior probability for

Fig. 10. Averaging regional posterior values across the selected brain regions.
Only APOE is significant which means APOE is the one marker that many re-
gions are consistently affected by.

all SNPs by summarizing overall association (see the Fig. 10).
This can be simply done by multiplying the posterior proba-
bility of the regions by the posterior probability of SNPs and
summing over all brain regions that pass the 1/2 threshold. In-
terestingly, the results are consistent with pair-wise association
between genotype and diagnosis and only APOE passes the de-
tection threshold. However, this does not mean that APOE is
the only significant marker but it says that APOE is the one that
almost all regions agree on due to its large effect. There is no
reason to believe that genetic variants affect all regions equally.
In fact, variations across locations is an interesting and worthy
topic for further study.
In Fig. 11, we investigate if regions with high posterior rel-

evance are related to AD, by examinining the importance of
the features for prediction of the diagnosis. The -axis is the
number of features incrementally included in a linear classi-
fier and -axis is the cross-validation accuracy of the predic-
tion of the diagnosis. Different curves denote rankings of the
features according to the posterior values, correlation with di-
agnosis , or random permutations (two instances). As we add
more features, the accuracy of prediction increases. Our method
closely follows the correlation ranking which indicates that the
regions with high posterior values are closely related to the dis-
ease while the random rankings (i.e., permutations) lag behind
and need to include many features to finally match the accu-
racy of the informed methods. It is worth noting that correlation
with diagnosis only accounts for the diagnosis while the pos-
terior values incorporate both genetic indicators and diagnosis
simultaneously.
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Fig. 11. Accuracy of the prediction of the disease for different number of
input features ranked by correlation with disease diagnosis (blue), posterior
produced by our method (red), and random ordering (orange and green). While
our method and the correlation method jump quickly, it takes many more
features for random ordering to match the accuracy of the informed methods.

Fig. 12. (a) The number of selected image regions for different values of the
prior (i.e., ). (b) The total number of selected SNPs
(i.e., ).

C. Sensitivity Analysis
In Section II-F, we described the prior probabilities over vari-

ables , , and . The hyper-parameters of those variables are
integrated out using importance sampling by gridding the hyper-
parameters over the their corresponding intervals (see Supple-
mentary Material). In Section V-B, we explained how to choose
these intervals depending on the meaning of the random vari-
ables and the data. In this section, we explore the sensitivity of
the results with respect to the only remaining parameter that
specifies a prior number of relevant image regions. We change
from 1/94 to 94/94. For each value of , we run the inference

algorithm 20 times. Fig. 12 reports the results.
We examine the number of brain regions with posterior prob-

ability higher than 0.5 computed as . Al-

Fig. 13. The -axis shows the number of SNPs included into the model, -axis
shows the number of selected SNPs when the volume of left hippocampus is
used as the response variable in a Spike-and-Slab model.

though this quantity increases with , the model never chooses
all regions, suggesting that some regions are not relevant regard-
less of the prior.
We also report the total number of selected SNPs

( ) for different values of . The curve
plateaus at 80 quickly, suggesting that SNP selection is not
very sensitive to the value of the prior. We can choose in a
reasonable range (depending on the application) with the least
variance in Fig. 12(b). In all experiments of Section V-B, we
set which lies in the plateaus region in Fig. 12 and
has low variance.
To study the behavior of the method empirically, we applied

the model to the volume of left hippocampus as an intermediate
phenotype (Fig. 13). It shows that the number of detected SNP
saturates as we include more SNPs in the model.
For SNPs our algorithm takes about 24 hours to run.

Other than computational cost, the problem with large number
of SNPs is that the method starts missing APOE as the most im-
portant variant. We hypothesize it is due to small sample size
and highly non-convex landscape of the objective function. Im-
proving the stability of the method is an interesting direction of
future research.

D. Biological Pathway Analysis

To investigate the molecular mechanisms through which
these SNPs may be impacting brain morphology and AD
phenotype, we mapped the 83 SNPs that were likely to target
at least one brain region to the nearest genes on the genome
through the following procedure. We systematically filtered
the 83 SNPs for dbSNP IDs and pruned the 83 SNPs based
on linkage disequilibrium down to 77 SNPs. The pruning
algorithm looks at all possible pairs of the 83 SNPs (for which
their Pearson correlation is at least 0.2 from the 1000 Genomes
Phase One European data [39]) and marks the SNP with lower
rank for removal from the list. To determine SNP ranks, the
algorithm first orders all SNPs by the number of brain regions
in which their posterior is at least 0.5, then breaks ties based
on the maximum posterior achieved in any brain region. We
then mapped all SNPs to their nearest up and downstream pro-
tein-coding gene based on GENCODE version 10 annotations
[40]. From the resulting list of 154 genes, we used Fisher's
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exact test to measure enrichment of our AD SNPs against 1024
known human pathways (whose size ranged from 5 to 300
genes inclusive) from the June 2011 release of the Pathway
Commons database [41] (See Table II in the Supplementary
File for the list of SNPs and genes).
We found those nearest genes are significantly enriched

in two biological pathways ( , Benjamini-Hochberg
FDR), the Netrin signaling and the integrin pathways.
Four genes proximal to our SNPs were direct interactors of
the Netrin-1 protein complex (PITPNA, TRIO, MAP1B and
DAPK1) within the Netrin signaling pathway. Netrin is a highly
conserved protein involved in axon development, and is asso-
ciated with negative regulation of amyloid- production in the
brains of Alzheimer's mice models [42], [43]. The amyloid-
peptide is the main component of amyloid plaques that is the
hallmark of Alzheimer's Disease.
Four additional genes either formed direct complexes with,

or directly interacted with, integrin, as part of the
integrin signaling pathway. mediates permeation of blood
barrier by leukocyte immune cells [44] and plays an important
role both biologically and as a drug target in immune related dis-
eases such as multiple sclerosis [45]. is not reported to be
related to the Alzheimer's disease but it is consistent with recent
work that suggests genetic variants associated with Alzheimer's
disease target regulatory elements in leukocytes and other im-
mune cells rather than brain cells [46], [47].
We also applied a separate regression and computed the

residual to remove the effect of covariates (age, handedness,
gender, and education). Then, we applied the algorithm on
the residual and noticed that the enrichment is not statistically
significant. This suggests that the enrichment signal is weak
and to correct for the effect of the covariates, they should be
incorporated into (2).

VI. DISCUSSION

In this paper, we propose a Bayesian method to identify in-
direct genetic associations with a diagnosis using image phe-
notype. Our model integrates two components: 1) selection of
intermediate imaging phenotypes influenced by genetic markers
and relevant to the disease and, 2) quantification of genetic asso-
ciations with the disease mediated by the imaging variables. A
classical strategy is to perform these two steps separately. First,
an association analysis between imaging variables and disease
phenotype is carried out. This step identifies imaging variables
relevant to the disease status. Then, the associations between
the relevant imaging markers and genotype data are probed. By
performing these two tasks jointly, we avoid choosing an arbi-
trary threshold for feature selection.
We note that the model does not pool the genetic risk across

ROIs. SNPs associated with complex diseases tend to act on
cell type specific regulatory elements [48], suggesting that indi-
vidual SNPs may be targeting specific cell types, and therefore
brain regions. Furthermore, brain regions exhibit unique gene
expression signatures [49] and epigenetic/regulatory signatures
(Roadmap Epigenomics Consortium [50]), and therefore would
be expected to use different sets of pathways to perform normal
function.

Indeed, one can get a single set of posterior probabilities for
all SNPs summarizing overall association (Fig. 10). This can be
simply achieved by multiplying the posterior probability of the
regions by the posterior probability of SNPs and summing over
all brain regions that pass a threshold of 0.5. Interestingly, the re-
sult is consistent with pair-wise associations between the geno-
type and diagnosis and only APOE passes the 0.5 threshold.
However, this does not mean that only APOE is the significant
marker but rather that APOE is the marker that almost all re-
gions are consistently affected by.
In this paper, we assumed that genetic variants related to the

disease encode variations measurable by imaging data. This as-
sumption has some limitations. For example, if the genetic vari-
ants related to the disease do not manifest themselves on the
imaging data, our method cannot detect it. Another limitations
is for the genetic variants that have both normal and disease-re-
lated effects; such case is not identifiable by our model but to the
best of our knowledge it is not identifiable by other approaches
as well. These challenges provide fruitful directions for future
work.
In this paper, we assume that genetic variants have indi-

rect associations to the disease label . In other words, we as-
sume that all relevant genetic associations are already captured
by the image features. It is conceivable that some of the variants
have a direct association, i.e., their impact is not captured by the
imaging features. It is possible to extend the graphical model to
incorporate such effects by introducing a direct connection from

to . Such a change in the graphical model renders the infer-
ence procedure more complex.
Our model ranks brain regions based on the amount of

variance of imaging features explained by the genotype. The
ranking of the regions gets updated according to the relevance
of the brain regions to the diagnosis. The proposed procedure
approximates two posterior probabilities, and ,
denoting the relevance of image regions for the disease and of
the genotype related to those regions, respectively.
There are two major reasons for using region-based image

features: statistical and computational. Statistically, aggregate
measures such as region-based image features provide more ro-
bust estimators at the expense of a coarser resolution on delin-
eating affected brain regions. From the computational point of
view, reducing the number of brain regions (fewer ) reduces
the computational cost of Algorithm 1 (see supplementary file).
Every iteration of Algorithm 1 entails solving a linear system
with ( is the number of brain regions) variables.
We use the language of directed graphical models to for-

malize our assumptions. We use Gaussian Process (GP) to
model the diagnosis. The GP framework is flexible, enabling
a range of functions (i.e., in the graphical model) to be
used by simply changing the kernel function. To extend the
method to regression (i.e., continuous ), one needs to modify
the likelihood function in (1) and to modify a noise model.
Interestingly, for the regression case with the Gaussian noise,
the marginal likelihood has a closed-form solution
and one does not need to resort to Expectation Propagation (EP)
for approximation. Many noise models were investigated in
[16], deriving efficient algorithms to approximate the marginal
likelihood for many members of the exponential family.
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The image-to-disease phenotype part of the model can be ex-
tended such that the diagnosis variable encodes finer levels of
diagnosis. For example, we can replace the logistic regression
likelihood with the ordinal logistic likelihood [51] to encode
discrete and ordered observations about the disease (Healthy

):

(18)

where and the are the parameters of the or-
dinal logistic regression and encodes the ordinal stage of the
Alzheimer's disease.
We model the null distribution of the image regions with a

Gaussian distribution. This assumption can be easily modified
by replacing the Gaussian distribution with any other distri-
bution depending on the application. The noise model for the
alternative hypothesis (i.e., ) can also be modified.
The challenge is to compute the marginal likelihood efficiently
(i.e., ). We approximate this value by the
lower bound provided by the variational approximation. Our
current implementation supports the Gaussian noise assump-
tion for imaging features . We leave the relaxation of this
assumption to future work. We believe, at least for the most
common members of the exponential family, slight modifica-
tion to the variational algorithm should be possible.
The hidden random variable encodes the relevant regions.

Therefore, the kernel depends on . For example the linear
kernel between two samples and should be defined as

Note that appears in the definition of the kernel. We chose
the linear kernel because of its simplicity. Although it is pos-
sible to use a complex kernel together with a regularization, we
avoided it because of two reasons. First, this would introduce
extra parameter (e.g., kernel width in case of Radial Basis Func-
tion). Second, the value of such parameter would depend on an
unknown parameter . In the case of RBF, kernel width should
scale with the dimensionality of the input vector. In our case,
the input vector consists of the relevant regions selected by the
indicator variable . Note that this is not the case in the classical
kernel-based approaches where the prediction is the only goal
but not features selection. Previously demonstrated methods for
feature selection using kernel machines [52] lack a probabilistic
model required by our approach. Further extension of our model
to those cases is possible but beyond the scope of this paper.
In addition to minor modifications to the structure of the

graphical model compared to our previous work [15], there
are several major innovations introduced in this paper. First,
in the image-to-phenotype part of the model, we employed
the Gaussian process to model the prediction function. This
modification enables us to model the complex relationship
between image and clinical phenotypes. In this paper, we
focused on the linear kernel to avoid over-fitting but in the
presence of more samples a more sophisticated prediction
function can be reliably learned. The second major contribution
is in the inference algorithm. It is more stable and scalable
than our earlier inference method in [15]. The flexibility of
the inference algorithm enabled us to go beyond conditionally

independent intermediate phenotypes. For example, we are
currently pursuing the case where intermediate phenotypes are
highly correlated. In this case, two intermediate phenotypes
(e.g., two brain regions) which are highly correlated should be
viewed as approximately one phenotype. One can account for
this phenomenon by modifying the prior probability of of
the selector variable . As long as we can sample efficiently
from , the inference algorithm is computationally tractable.
Two key quantities that determine the computational com-

plexity of the inference algorithm are the marginal likelihoods
and . If no value is missing from

the intermediate phenotypes, can be com-
puted in parallel and stored. needs to be computed for
every draw of . We use expectation propagation (EP), which
is very fast, particularly for the small sample size prevalent in
imaging genetic applications (cf. [16, Section 3.6]).
As suggested in [17], fast computation of the variational

lower bound enables us to perform importance sampling and to
integrate out all hyper-parameters other than the image feature
selection prior . Since we have few hyper-parameters, we only
need to specify a reasonable range for each hyper-parameter.
This approach also enables us to define a weakly-informed
prior over the hyper-parameters. Depending on the meaning of
each hyper-parameter, we defined a range that is reasonable for
the application. We provide an example in Section V-B on how
to choose the intervals. In Section V-C, we show that the total
number of SNPs detected by the inference is not very sensitive
to the specific value of .
In Section V-B, we compared the associated SNPs to the rel-

evant brain regions using the -values and the posterior prob-
abilities. Although the -value and the posterior probability do
not have the same meaning, their suggestions about the data are
relatively consistent.We showed in Figs. 6 and 7 that the less im-
portant regions such as the putamen and the caudate do not ex-
hibit associations in either method. Both techniques agree on the
SNPs associated with left hippocampus. For the left entorhinal
cortex, our method detects a few more SNPs in addition to the
APOE variants. Furthermore, our method suggests areas to in-
vestigate further. Fig. 8 showed that posterior relevance values
are mostly consistent with a classical ranking results but the pro-
posed method does not require pre-selection and considers all
available data.
The results reported for the univariate approach used Bonfer-

roni correction which is a common practice in genetic associ-
ation. Bonferroni correction is a conservative multiple hypoth-
esis correction approach in comparison to controlling false dis-
covery. In fact, one can further analyze the results reported by
our approach and apply the hypothesis testing using the image
features of the detected brain regions as a response variable of
a GLM and correct the results with a method of choice. Our
focus has been on how to incorporate information from dif-
ferent sources, here diagnosis, imaging and genetics data, into
one model, and not on addressing multiple hypothesis correc-
tion approaches.

VII. CONCLUSION
We proposed and demonstrated a unified framework for iden-

tifying genetic variants and image-based features associated
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with the disease. We captured the associations between imaging
and disease phenotype simultaneously with the correlation from
genetic variants and image features in a probabilistic model.
Our model also produces spatial distribution of the genetic as-
sociations. We derive an efficient and scalable algorithm based
on variational inference. We did not assume any interaction
between intermediate phenotypes (i.e., imaging features) but
our method can be extended easily to handle such interactions.
We demonstrated the benefit of simultaneously performing
these two tasks (i.e., finding relevant genetic and brain regions)
in simulations and in a context of a real clinical study of the
Alzheimer's disease.
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