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Abstract

Emphysema is one of the hallmarks of Chronic Obstructive Pulmonary Disease (COPD),
a devastating lung disease often caused by smoking. Emphysema appears on Computed
Tomography (CT) scans as a variety of textures that correlate with the disease sub-
types. It has been shown that the disease subtypes and the lung texture are linked to
physiological indicators and prognosis, although neither is well characterized clinically.
Most previous computational approaches to modeling emphysema imaging data have
focused on supervised classi�cation of lung textures in patches of CT scans. In this
work, we describe a generative model that jointly captures heterogeneity of disease
subtypes and of the patient population. We also derive a corresponding inference al-
gorithm that simultaneously discovers disease subtypes and population structure in an
unsupervised manner. This approach enables us to create image-based descriptors of
emphysema beyond those that can be identi�ed through manual labeling of currently
de�ned phenotypes. By applying the resulting algorithm to a large data set, we iden-
tify groups of patients and disease subtypes that correlate with distinct physiological
indicators.

Thesis Supervisor: Polina Golland
Title: Associate Professor
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Chapter 1

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung disease character-

ized by poor air�ow. One of the hallmarks of COPD is emphysema, (i.e., destruction of

structures supporting lung alveoli and permanent enlargement of airspaces) [9]. Several

subtypes of emphysema have been identi�ed by radiologists. Patients with emphysema

exhibit a mixture of disease subtypes. This aspect of emphysema di�erentiates it from

most other diseases, in which patients only exhibit a single disease subtype. These sub-

types are used for diagnosis and predicting patient prognosis [23]. The subtypes have

also been shown to correlate with genetic data and biological markers [21]. Emphy-

sema manifests on Computed Tomography (CT) scans as a variety of textures, which

are associated with clinically de�ned emphysema disease subtypes. Figure 1.1 illus-

trates normal lung tissue, along with patches of several clinically de�ned emphysema

subtypes.

There is substantial intra-reader and inter-reader variability when identifying sub-

types in CT images [27]. Computational approaches to the classi�cation of textures in

CT scans promise to identify subtle textural di�erences beyond those that are visible

Figure 1.1: Image patches showing clinically de�ned emphysema subtypes

9



10 CHAPTER 1. INTRODUCTION

to human readers. This nuanced information can be harnessed to produce well-de�ned,

reproducible disease subtypes. Beyond fully 3D texture analysis, the additional bene-

�ts of computational approaches include the possibility of providing novel insights into

the disease once the heterogeneity of the patient population is properly characterized.

Our approach departs from the majority of prior research that has focused on

supervised classi�cation of patches extracted from CT scans based on examples labelled

by clinical experts [4, 17, 18]. A notable exception is a recently demonstrated method

for joint modelling of imaging and genetic data in the same clinical population [1].

Our work models only the imaging data, but we explicitly detect and characterize

homogeneous sub-populations de�ned based on the phenotypic similarities, which opens

interesting directions for future analysis.

� 1.1 Contributions

In this thesis, we address the challenge of modelling heterogeneity in the disease sub-

types and in the patient population in the context of an unusually large medical imaging

data set consisting of 2457 thoracic CT scans.

Our primary contribution is a method that simultaneously detects distinct patient

clusters and disease subtypes. The algorithm is based on a generative model that

captures the underlying assumptions about population structure and distributions of

disease subtypes. Speci�cally, we assume that each cluster of patients is associated

with a distinct distribution of disease subtypes. We derive an inference algorithm

that is based on variational Expectation-Maximization [2]. We apply the algorithm

to our data set and observe notable associations between physiological indicators and

patient clusters and disease subtypes identi�ed by the method. Further, we examine

associations in simpli�ed models that omit either patient clusters or disease subtypes

to demonstrate the clinical advantage of the fully hierarchical model that includes both

patient clusters and disease subtypes.

We also examine the choice of an appropriate texture descriptor that is used to

di�erentiate textures in the scans that appear in our data set. We choose these texture

descriptors based on their classi�cation accuracy on a labeled portion of our data set.

These descriptors serve as the observed data in our generative model.

Figure 1.2 shows CT scans that belong to di�erent patient clusters identi�ed by

the algorithm presented in this thesis. The colors overlaying the lungs correspond to

disease subtypes identi�ed by our algorithm. Each of the lungs exhibits a mixture of

disease subtypes.
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Figure 1.2: Example CT scans from each of the eight patient clusters identi�ed by our
algorithm. Colors correspond to disease subtypes identi�ed by our algorithm.

� 1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2 we review background relevant to

the method development in this thesis, and we also place the proposed methods in the

context of previous work. In Chapter 3 we discuss our choice of texture descriptors.

In Chapter 4, we describe a generative model that we employed to identify disease

subtypes and patient clusters. In Chapter 5, we present the data and the empirical

evaluation procedure and discuss the experimental results. In the last chapter, we

summarize and examine directions for future work.
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Chapter 2

Background and Previous Work

In this section, we describe clinical background relevant to the understanding of em-

physema and COPD. We discuss the basics of CT imaging, and methods for texture

classi�cation in medical image analysis. We then place this work in the context of

previous medical imaging research that aimed to classify CT scans of patients with

COPD and related diseases. To the best of our knowledge, ours is the �rst study that

has successfully identi�ed emphysema subtypes in a fully unsupervised manner.

� 2.1 Background on Emphysema and COPD

COPD is the third leading cause of death in the United States, a�ecting approxi-

mately 15 million people each year [11]. It is a highly heterogeneous disease. The

disease's subtypes and causality are not well characterized [12]. Except for smoking,

the risk factors associated with COPD and those in�uencing its prognosis are poorly

understood [21]. A few genetic variants that correlate with COPD risk have recently

been identi�ed, along with certain environmental factors [12]. Currently, COPD is

diagnosed based on a ratio of volume of air that can be exhaled in one second and the

total amount of air that can be exhaled in one breath. If the ratio is less than 70%,

COPD diagnosis is established [19]. Biologically, COPD manifests as a combination

of chronic bronchitis and emphysema. To distinguish between and within these con-

tributions to COPD, radiological characterizations, generally based on CT scans, are

employed [15]. Emphysema presents as various patterns of physical lung tissue destruc-

tion, which can be observed as texture in CT scans. It has been shown that texture

patterns found in CT scans correlate strongly with histopathological �ndings [16].

Three common emphysema subtypes have been established in the medical prac-

tice: centrilobular, panlobular, and paraseptal emphysema. Further, radiologists may

utilize a variety of terminology including �honeycombing� and �ground-glass texture�

to describe patterns of lung destruction seen in emphysema. A patient may exhibit a

13



14 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

combination of these subtypes and textures to varying degrees, along with healthy lung

tissue [9]. Emphysema subtypes have been shown to strongly correlate with clinical

prognosis [23]. However, there are no uniform clinical, pathological, or texture-based

standards for identifying these subtypes or textures. This also leads to high degrees of

intra-reader and inter-reader variability when interpreting CT scans [27]. Additionally

the emphysema textures are inherently three-dimensional, so humans cannot fully vi-

sualize them. Improved understanding of emphysema subtypes would not only improve

the biological understanding of the disease, but also enable better tailored treatments

and more accurate prognosis. Moreover, it promises to help classify the subtypes of

the disease as linked to genetic components or environmental factors.

� 2.2 CT Imaging

CT imaging is used for diagnosis and imaging of structural changes in organs including

the brain, lungs, heart, extremities, and abdomen [5]. It has been an important diagnos-

tic tool for emphysema and COPD for two decades [16]. CT imaging is a non-invasive

imaging technique that uses X-rays to produce virtual slices, or tomographs of a given

scanned object. These are processed to produce a three-dimensional representation of

the scanned area [17].

Texture is observed in CT scans as spatial intensity variation in the image, created

when X-rays are scattered by tissues with varying physical properties [17]. Although

the texture is created by di�erent underlying physical structures, in this work we will

not attempt to reconstruct the underlying physical properties of the tissue. Instead, we

will analyze the texture features that are extracted from CT scans, and employ these

as markers to di�erentiate the underlying tissues.

� 2.3 Texture Definition

There is no single de�nition of texture. It is generally understood as the spatial distri-

bution of voxel or pixel intensity in an area of interest. Three dimensional textures exist

in �lled objects and are generated by volumetric data acquisition devices. Three dimen-

sional textures cannot be characterized in terms of re�ectivity and surface properties,

but instead represent volumetric properties of the materials or tissues. Additionally,

three-dimensional textures cannot be fully visualized by humans, so it is inherently

only possible to model them algorithmically [5].
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� 2.4 Texture Descriptors

Here we survey texture descriptors that have been used to model lung textures and

which we will employ in the proposed work. Each of these descriptors is de�ned for

a patch centered around a particular voxel. Several important properties di�erentiate

among these texture descriptors, including sensitivity to the underlying parameters and

rotational invariance [5]. In this work, we utilize the �rst three texture descriptors.

� 2.4.1 Histograms

Histograms describe the discretized distribution of intensities within a patch. Men-

doza et al. [14] employed histogram texture descriptors along with kernel density es-

timation to perform supervised classi�cation of emphysema subtypes, demonstrating

superior performance to that of many commonly used complex descriptors. Histograms

are rotationally invariant but are sensitive to the patch and bin size [5]. It is necessary

to empirically determine the values of the bin size.

� 2.4.2 Grey Level Co-Occurrence Matrices

Grey Level Co-Occurrence Matrices (GLCMs) represent the joint probability distribu-

tion of intensity values of pixel pairs in a given patch [18]. To construct this descriptor,

the image is discretized into a given number of grey levels, often eight or 16. Pixel

pairs are examined at a given o�set. Generally, the distance is set to be fairly small

(between one and three voxels). The value of the entry at position (i, j) in the GLCM

captures the proportion of pixel pairs at the o�set where one voxel has intensity i, and

the other has an intensity j. This descriptor e�ectively extends histograms to pairwise

marginal distributions.

A common approach to obtain a degree of rotational invariance is to average the

GLCMs over some number of uniformly distributed directions in three dimensions.

The feature vector corresponding to a given voxel is a collection of features that can

be extracted from GLCMs - including the entropy, maximal probability, homogeneity,

and others [10]. This descriptor is sensitive to patch size, number of levels, and o�set

used to compute the histogram.

� 2.4.3 Fourier Analysis and Discrete Cosine Transformation

Fourier transforms are equivalent to convolution of the patch with sine and cosine

functions. They are de�ned over functions with in�nite support. To obtain a local

texture representation, the basis functions are typically bounded to a given region of
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interest, and the boundary conditions are speci�ed. The discrete cosine transform uses

only the real coe�cients. The feature vector is generally constructed from the largest

coe�cients. These descriptors can be modi�ed to be rotationally invariant [5].

� 2.4.4 Difference of Gaussians and Gabor Filters

Let Gσ be the Gaussian kernel with standard deviation σ. Radially symmetric receptive

�elds correspond to the di�erence of Gaussians and are modeled by Frad = Gσ1 −Gσ2 .
These are rotationally invariant. The two-dimensional Gabor �lter bank can be ex-

tended to three dimensions, and maintain rotational invariance. These �lter banks are

constructed across various octaves to cover the scale space of the scan or patch, and so

are generally not highly sensitive to underlying parameters. The feature vector of the

voxel can be de�ned as the convolution of the patch with the �lter bank at a the voxel

of interest [13]. Alternatively, the feature vector can be a histogram de�ned over the

convolution of the �lter bank with the patch [17].

� 2.4.5 Riesz Features and Wavelets

Riesz features were speci�cally proposed by Depeursinge et al. [4] for lung texture

classi�cation. They are wavelets, which are �lter banks that cover the entire spatial

spectrum of the image. The descriptor was originally de�ned for two dimensions, but

can be extended to 3D. The Riesz transform maps a function to its harmonic conjugate,

and can be thought of as a generalization of the Hilbert transform for Euclidean spaces

of dimension greater than one. Riesz transforms are convolved with the Laplacian of

a Gaussian at various scales to obtain rotationally-covariant basis functions. These

convolutions create a steerable �lter bank, which makes it possible to analytically

obtain the �lter coe�cients at any orientation as a linear combination of basis �lters.

This allows for the orientation of the �lters at each voxel in such a way that they

produce a maximal response [22]. The feature vector for a voxel can be de�ned as

the convolution of the patch with the �lter bank at a voxel, or as the energy of this

convolution [17].

� 2.5 Previous Work on CT Classification

Here, we survey previous research that aimed to classify CT scans of patients with

COPD and related diseases.

Comparing classi�cations across prior methods is challenging for a number of rea-

sons. Most previous work employed distinct clinical patient cohorts, largely due to the



Sec. 2.5. Previous Work on CT Classification 17

fact that few public sets of COPD scans are available. These cohorts have contained

from 18 [25] to 342 CT scans [14]. Additionally, a large part of the related work is

based on patient cohorts a�ected by diseases related to but not COPD. Most previous

work has also employed the results from a single scanner or scanning protocol, which

limits transfer to new clinical cohorts as textures may manifest di�erently with varying

scanners and protocols. There has been some recent work [14] on newly available multi-

site patient cohorts [21, 23]. In previous work, 2D and 3D neighborhoods of varying

sizes were used for feature extraction to train classi�ers. Typically, these were square

or cubic patches of a �xed size [14]; however, manually annotated regions of variable

shape have also been employed [17]. Additionally di�erent types of class labels have

been investigated across di�erent studies. Some studies focused solely on identifying

emphysema subtypes [6, 14, 24], while others treated emphysema as a single texture

class among other textures [4, 17, 18]. Additionally, the emphysema subtypes and other

textures present in images were not de�ned consistently across di�erent studies [17].

The majority of previous work focused on supervised learning for identifying clin-

ically de�ned emphysema subtypes, generally by classifying image patches. A broad

variety of modeling approaches have been employed, including Random Forests [17],

SVMs [3], and K-Nearest Neighbors [14]. Additionally, classi�cation of lung disease

subtypes has been demonstrated for content-based image retrieval, which seeks to re-

trieve earlier images similar to the input example [20].

A similar approach to ours was proposed by Dy et al. [6]. This work introduces a

partially supervised approach for lung texture classi�cation, within the framework of

content-based retrieval. The authors used a collection of thoracic CT scans of patients

su�ering from a variety of diseases related to and including emphysema. However, they

employed only two-dimensional regions for characterizing lung texture. Additionally,

they used supervised approaches to distinguish between emphysema subtypes, and then

perform unsupervised classi�cation within these subtypes, which prevents discovery of

truly novel subtypes.

The most similar work to ours was proposed by Batmanghelich et al. [1]. This work

constructed a generative model that discovered disease subtypes based on imaging and

genetic data. In contrast, we discover emphysema subtypes in a strictly unsupervised

manner, by modelling both the heterogeneity of our patient population and the dis-

tribution of emphysema subtypes within groups of patients, based only on imaging

data.
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Chapter 3

Choice of Texture Descriptors

In this section we discuss our data set and choice of texture descriptors. A variety of

texture descriptors are described in the previous chapter, some of which we analyze in

this section. As discussed in Section 2.5, COPD data sets di�er greatly across their size

and choice of regions in which to classify and identify textures. Thus we must identify

the speci�c texture descriptors that are suitable to our cohort and problem. We employ

a supervised approach for feature selection, but not for training the generative model

discussed later in this thesis.

� 3.1 Data

We will investigate the proposed methods in the context of an imaging study that

includes CT scans of 2457 patients' lungs. COPDGene is a multicenter study that

acquired CT scans, genetic data, and physiological indicators such as spirometry mea-

sures, six-minute walking distance, height, weight, and blood pressure in COPD pa-

tients who are smokers [21]. The study's goal is to understand COPD subtypes,

pathology, and genetics. The data was collected by 21 sites across the United States,

using di�erent CT scanners. The volumetric CT scans were obtained at full inhalation

and at relaxed exhalation. Image reconstruction produces sub-millimeter slice thick-

ness, and employs edge and smoothness enhancing �ltering [21]. The images are then

resampled to obtain 1.5mm slice thickness. In addition, we have 1525 patches from

the CT scans of 267 patients from this cohort which were manually labeled by a clin-

ical expert [14]. The data was made available to us by our collaborators at Brigham

and Women's Hospital. This is an unusually large patient cohort, which promises to

provide new, powerful insights into the e�ects of emphysema and COPD on lungs.

19
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� 3.2 Identifying Texture Descriptors

For each voxel in the image we seek to construct a feature vector whose entries cor-

respond to values of texture features extracted from a volumetric patch around the

voxel. Emphysema has been described at the level of the secondary pulmonary lob-

ule [14], therefore we selected patches large enough to encapsulate an entire secondary

lobule, but not too large as to blur the boundaries between regions. We chose to utilize

11x11x11 patches around each voxel. On our CT scans, these correspond to patches

of size approximately 24 × 24 × 24mm3, which is the approximate size of secondary

pulmonary lobules.

We choose the appropriate texture descriptors by examining their accuracy in clas-

sifying patches that have been labeled by clinicians. Although a big motivator for

our unsupervised algorithm is that we wish to discover structure beyond that which is

available from clinician's labels, they still contain a degree of information that can be

harnessed to select the proper texture descriptors. For the feature selection, we used

the 1525 labeled patches from the CT scans of 267 patients. Each of these patches

was identi�ed by one of four labels: centrilobular emphysema, panlobular emphysema,

paraseptal emphysema, and normal lung tissue.

To evaluate the classi�cation accuracy, we performed repeated random

sub-sampling [2] 100 times on a balanced portion of the data set which was split in

half each time between testing and training data. We then trained a Support Vector

Machine (SVM) classi�er on the training set and evaluated its accuracy on the testing

set within each split.

We examined three types of texture descriptors: histograms, the discrete cosine

transform, and GLCMs, which are described in Section 2.4. Additionally, after a

primary exploration of the data we found that the vertical distance from the top of

the lung (normalized by lung size) correlates with the emphysema subtype, so we also

experimented with appending this value to the feature vector.

Initially, we examined the optimal number of bins for classi�cation with histograms.

As shown in Figure 3.1, feature vectors consisting of 10 bins lead to as high a clas-

si�cation accuracy as those with higher bin counts. These feature vectors produce a

classi�cation accuracy of 0.657.

We then applied the discrete cosine transform to the image patches and repeated the

classi�cation experiment. As shown in Figure 3.1, we obtain a maximal classi�cation

accuracy of 0.675 when using the �rst 11 Fourier coe�cients in each direction. However,

this leads to an 113, or 1331-dimensional feature vector. Further, we only obtain
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(a) Accuracy with Histograms (b) Accuracy with the Discrete
Cosine Transform

(c) Accuracy with GLCMs

Figure 3.1: Comparison of classi�cation accuracies for di�erent feature descriptors.

GLCM Feature Formula

Energy
∑

i

∑
jM

2
ij

Contrast
∑

i

∑
j(i− j)2Mij

Correlation 1
σxσy

∑
i

∑
j ij ·Mij − µxµy

Maximal Probability max{Mij}
Dissimilarity

∑
i

∑
j |i− j|Mij

Local Homogeneity
∑

i

∑
j

1
1+(i)Mij

Entropy −
∑

i

∑
jMij log(Mij)

Cluster Shade
∑

i

∑
j(i+ j − µx − µy)3 ·Mij

Cluster Prominence
∑

i

∑
j(i+ j − µx − µy)4 ·Mij

Table 3.1: Table describing features that we extracted from GLCMs.

accuracy comparable to that of the histogram feature vectors when using the �rst 8

Fourier coe�cients, which corresponds to a 512-dimensional feature vector.

We then repeated the classi�cation experiment with feature vectors that consist

of features extracted from GLCMs. To construct the GLCMs, we �rst discretized the

patches into eight image intensity levels. We examined rotationally invariant features,

since lung texture features do not appear to exhibit a direction. These were produced

by summing the GLCMs over uniformly distributed directions in three dimensions and

extracting features from this new matrix. We examined o�sets of distance one and

three and used nine common feature descriptors. These are listed in Table 3.1. In this

table, Mij corresponds to the entry in row i and column j in the GLCM. Additionally,

µx =
∑

i i
∑

jMij and µy =
∑

j j
∑

iMij . Similarly σ2
x =

∑
i(i − µx)2

∑
jMij and

σ2
y =

∑
j(j − µj)2

∑
iMij .

We found that we obtained a classi�cation accuracy of 0.721 when using an o�set

distance of 1, and an accuracy 0.719 with an o�set distance of 3, as shown in Figure 3.1.
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Figure 3.2: Comparison of classi�cation accuracies of GLCMs with a variable number
of histogram bins appended.

These three types of texture descriptors - histogram, the discrete cosine transform,

and GLCMs capture di�erent aspects of texture within the patch. Histograms capture

the intensity distribution, while Fourier components capture the strengths of various

frequencies within a patch. GLCMs capture patterns of intensity variation between

the voxels.

It is slightly surprising that texture descriptors as simple as histograms prove so

accurate at di�erentiating the emphysema subtypes. Previous work [14] has demon-

strated that histograms are more accurate than several more complex approaches at

predicting emphysema subtypes. A possible explanation for the good performance

of histograms is that image intensities account for a large fraction of di�erences in

emphysema subtypes.

We then experimented with combining GLCMs and histograms to produce texture

descriptors. The motivation behind this is that both feature descriptors produce low-

dimensional representations and each captures di�erent aspects of the texture. The

feature vectors were constructed by appending various numbers of histogram bins to

a feature vector consisting of GLCM descriptors. The classi�cation accuracy is shown

in Figure 3.2. As can be seen in the Figure, there is very little improvement from

appending more than 2 histogram bins. With such feature vectors, we achieve a clas-

si�cation accuracy of 0.792. We also appended the distance from the top of the lung

to our feature vector, but the classi�cation results remained virtually identical.

Thus our feature vectors are 11-dimensional, where the �rst nine values correspond

to GLCM features, and the next two values correspond to histogram bins from the

patch around the voxel. This combination of descriptors captures di�erent aspects of

texture, which creates powerful feature vectors.



Chapter 4

Generative Model

In this chapter, we present a probabilistic generative model that captures assumptions

about the population structure of our cohort. We then derive a corresponding inference

algorithm. The generative model assumes that each underlying patient cluster shares

a common distribution of disease subtypes. This is an assumption supported by the

clinical understanding that di�erent disease subtypes and combinations of subtypes

correlate with distinct clinical prognoses [23]. The evaluation of the identi�ed patient

clusters and disease subtypes will be described in Chapter 5.

� 4.1 Formulation

Our generative model relies on the assumption that there are K underlying patient

clusters, each characterized by a di�erent distribution of disease subtypes. We use N

to denote the total number of CT scans in the study. When processed, each scan is

represented by R non-overlapping patches. Let Snr be the patch around voxel r in

patient n. Patches are entirely contained within a lung. We apply a chosen feature

extraction method to Snr to construct a feature vector Fnr ∈ Rd. The feature vectors

{Fnr} serve as the input into our algorithm. The images are not spatially aligned, as it

is challenging to �nd spatial correspondences between lungs of di�erent individuals [15].

In the experiments presented in the next chapter of this thesis, we use a combination

of Grey Level Co-Occurrence Matrix (GLCM) [18] features and intensity histograms as

feature descriptors; the modeling approach readily accepts a broad range of descriptors.

The full generative model and a summary table of the parameters and variables is

shown in Figure 4.1.

The distribution of cluster assignments for any patient in the study is parameterized

by π and is represented by a vector Cn for patient n. Cnk = 1 if patient n belongs to

cluster k; Cnk = 0 otherwise. For all patients in cluster k the distribution of disease

subtypes is parameterized by αk and is represented by Lnr for patch r in patient

23
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Parameter/Variable Description

N Number of patients

S Number of subtypes

R Number of regions in each patient

K Number of patient clusters

π Frequency of each patient cluster

αk Frequencies of emphysema subtypes in cluster k

µs Mean of subtype s

Σs Variance of subtype s

Cn Cluster label of patient n

Lnr Subtype of patch r in patient n

Fnr Feature vector of patch r in patient n

Figure 4.1: Graphical representation and summary of variables and parameters of the
generative model.
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n. Each patch belongs to one of S disease subtypes. Lnrs = 1 if the patch belongs to

subtype s; Lnrs = 0 otherwise. We use a Gaussian distribution N (·;µ,Σ) with mean µs

and covariance Σs to model feature vectors in the disease subtype s.

The generative model can be summarized as follows:

Cn ∼
K∏
k=1

πCnk
k , (4.1)

Ln|Cn ∼
K∏
k=1

R∏
r=1

S∏
s=1

(αks)
LnrsCnk , (4.2)

Fn|Ln ∼
R∏
s=1

S∏
r=1

N (Fnr;µs,Σs)
Lnrs . (4.3)

Each subject is viewed as an independent and identically distributed sample from this

distribution, giving rise to the full likelihood model:

p(F,C, L;α, π, µ,Σ) =
N∏
n=1

K∏
k=1

R∏
r=1

S∏
s=1

(
πkαks

Lnrs
)Cnk N (Fnr;µs,Σs)

Lnrs . (4.4)

We set the number of patient clustersK and the number of disease subtypes S. The

observed data consists of feature vectors {Fnr} of N patients for whom we extracted

features from R patches each. We aim to infer the most likely subtype Lnr for each

patch r in patient n and the most likely cluster Cn for each patient n. Additionally, we

estimate the parameters: the mixing proportions of the patient clusters π, the mixing

proportions of the disease subtypes {αk} for each patient cluster, and the means and

variances {µs,Σs} of the image features for each disease subtype.

� 4.2 Inference with the Expectation-Maximization Algorithm

We perform inference on the model via an algorithm based on the variational

Expectation-Maximization (EM) algorithm [2], which approximates the exact EM al-

gorithm. In the exact EM algorithm, we seek to maximize the marginal log-likelihood

ln p(F ;α, π, µ,Σ) over the observed variables by iterative coordinate ascent [2]. To de-

scribe the exact EM algorithm, we re-write the marginal log-likelihood ln p(F ;α, π, µ,Σ)

by choosing an arbitrary distribution q over the latent variables C and L. We then ob-

tain:
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ln p(F ;α, π, µ,Σ)

= Eq [ln p(F,C, L;α, π, µ,Σ)]− Eq [ln p(C,L|F ;α, π, µ,Σ)]

= Eq

[
ln
p(F,C, L;α, π, µ,Σ)

q(C,L)

]
− Eq

[
ln
p(C,L|F ;α, π, µ,Σ)

q(C,L)

]
= Lq(F,C, L;α, π, µ,Σ) + KL(q(C,L)‖p(C,L|F ;α, π, µ,Σ)), (4.5)

where

Lq(F,C, L;α, π, µ,Σ) = Eq

[
ln
p(F,C, L;α, π, µ,Σ)

q(C,L)

]
=

N∑
n=1

K∑
k=1

lnπkEq[Cnk|F, α, π, µ,Σ] +
N∑
n=1

K∑
k=1

R∑
r=1

S∑
s=1

lnαksEq[LnrsCnk|F, α, π, µ,Σ]

+
N∑
n=1

R∑
r=1

S∑
s=1

Eq[Lnrs|F, α, π, µ,Σ] · lnN (Fnr;µs,Σs) +H(q(C,L)), (4.6)

where H(q(C,L)) is the entropy of q(C,L), and

KL(q(C,L‖p(C,L|F ;α, π, µ,Σ)) = Eq

[
ln
p(C,L|F ;α, π, µ,Σ)

q(C,L)

]
(4.7)

is the Kullback-Liebler (KL) divergence between q(C,L) and p(C,L|F ;α, π, µ,Σ). Since

the KL-divergence is non-negative, Lq(F,C, L;α, π, µ,Σ) is a lower bound for

ln p(F ;α, π, µ,Σ).

The exact EM algorithm then iteratively maximizes ln p(F ;α, π, µ,Σ) by maximiz-

ing the lower bound Lq(F,C, L;α, π, µ,Σ). In this algorithm, we randomly initialize

the parameters α, π, µ, and Σ. Then the algorithm iterates between two steps un-

til convergence criteria are met: the expectation step (E-step), and the maximization

step (M-step).

In the E-step, we hold the model parameters �xed and �nd the parameters of the

approximating distribution, q, that maximize Lq(F,C, L;α, π, µ,Σ). We then compute

the values of expectations seen in equation 4.6 for the current estimates.

The KL-divergence is non-negative, so we can see by inspecting equation 4.5 that
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Lq(F,C, L;α, π, µ,Σ) will be maximized when

KL(q(C,L)‖p(C,L|F ;α, π, µ,Σ) = 0. (4.8)

For this to hold, we must set

q(C,L) = p(L,C|F, α, π, µ,Σ), (4.9)

the full posterior distribution. At the end of the E-step,

Lq(F,C, L, α, π, µ,Σ) = ln p(F, α, π, µ,Σ). (4.10)

In the M-step, we hold the parameters of q(C,L) �xed and maximize

Lq(F,C, L;α, π, µ,Σ) with respect to model parameters α, π, µ, and Σ in

Lq(F,C, L;α, π, µ,Σ). The values of the expectations evaluated in the E-step are nec-

essary to perform these calculations. Maximizing the lower bound in the M-step causes

the marginal log-likelihood of the data to increase at every step.

� 4.3 Variational Expectation Maximization

In the exact EM algorithm presented above we must compute the expectations in

equation 4.6 with respect to the full posterior distribution in the E-step. This is

intractable due to coupling between the latent variables C and L. Thus, we employ

a variational EM algorithm [2]. The di�erence from the exact EM algorithm is that

we constrain the distribution q(C,L) in a way that will simplify our derivations in the

E-step [2]. We choose q(C,L) to approximate the full posterior distribution with a

product of two categorical distributions:

q(C,L;ψ, θ) = qC(C;ψ) · qL(L; θ) =
N∏
n=1

K∏
k=1

ψCnk
nk

R∏
r=1

S∏
s=1

θLnrs
nrs , (4.11)

where ψ and θ are variational parameters. In this case the expectations in the E-step

become:

Eq(C,L;ψ,θ)[LnrsCnk|F, α, π, µ,Σ]] = ψnk · θnrs,

Eq(C,L;ψ,θ)[Cnk|F, α, π, µ,Σ] = ψnk,

Eq(C,L;ψ,θ)[Lnrs|F, α, π, µ,Σ] = θnrs. (4.12)
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This enables us to re-write the lower bound Lq(F,C, L;α, π, µ,Σ) in equation 4.6

as follows:

Lq(F,C, L;α, π, µ,Σ)

=
N∑
n=1

K∑
k=1

lnπkEq(C)[Cnk] +
N∑
n=1

K∑
k=1

R∑
r=1

S∑
s=1

lnαksEq(L)[Lnrs] · Eq(C)[Cnk]

+
N∑
n=1

R∑
r=1

S∑
s=1

Eq(L)[Lnrs] · lnN (Fnr;µs,Σs) +H(qC(C;ψ)) +H(qL(L; θ))

=
N∑
n=1

K∑
k=1

ln(πk)ψnk +
N∑
n=1

K∑
k=1

R∑
r=1

S∑
s=1

lnαksψnk · θnrs

−
N∑
n=1

R∑
r=1

S∑
s=1

θnrs
2
·
(
d · ln(2π) + ln |Σs|+ (Fnr − µs)TΣ−1

s (Fnr − µs)T
)

−
N∑
n=1

K∑
k=1

ψnk lnψnk −
N∑
n=1

R∑
r=1

S∑
s=1

θnrs ln θnrs

= Lvar(C,L;ψ,θ)(q(F,C, L;α, π, µ,Σ)). (4.13)

In the variational algorithm, we iteratively optimize this variational lower bound

for ln p(F ;α, π, µ,Σ) with respect to the parameters {πk, αks, µs,Σs, ψnk, θnrs}. We

randomly initialize the parameters and then iterate between the E-step and M-step

until convergence.

In the E-step, we hold the model parameters π, α, µ, and Σ �xed and estimate the

variational parameters ψ and θ to maximize the lower bound in equation 4.13. Unlike

the exact EM algorithm, we can no longer �nd q(C,L) such that

KL(q(C,L; θ, ψ)‖p(C,L|F ;α, π, µ,Σ)) = 0, so the lower bound is no longer equal to

the marginal log-likelihood at the end of the E-step. The M-step proceeds as in the

exact EM-case.

Once the parameter estimation process is complete, we determine the cluster la-

bels Cn and the disease subtype labels Lnr by maximizing the approximate posterior

distributions qC(Cn;ψn) and qL(Lnr; θnr) respectively.

This algorithm is highly similar to the EM algorithm described in the previous

section. However, in the variational algorithm, we are maximizing the lower bound

Lvarq(C,L;ψ,θ)(F,C, L;α, π, µ,Σ) in equation (4.13), instead of the general lower bound

Lq(F,C, L;α, π, µ,Σ). At the end of every E-step in the exact EM algorithm the

lower bound equals ln p(F, α, π, µ,Σ), which is not true in the variational algorithm,
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Algorithm 1: Variational EM Algorithm for Patch and Patient Classi�cation

1. Select R patches from each of N patients to obtain {Snr}.

2. Extract features from each patch, Fnr = F (Snr).

3. Randomly initialize parameters α, π, µ and Σ.

4. E-Step: Determine θ∗, ψ∗ = argmaxθ,ψ{Lvarq(θ,ψ)(F,C, L;α, π, µ,Σ)}:

ψnk ∝
S∏
s=1

R∏
r=1

αθnrs
ks , s.t.

K∑
k=1

ψnk = 1,

θnrs ∝
K∏
k=1

αψnk
ks , s.t.

S∑
s=1

θnrs = 1.

5. M-step: Determine
α∗, π∗, µ∗,Σ∗ = argmaxα,π,µ,Σ{Lvarq(C,L;θ,ψ)(F,C, L;α, π, µ,Σ)}:

πk =
1

N

N∑
n=1

ψnk,

αks ∝
N∑
n=1

ψnk

R∑
r=1

θnrs, s.t.
S∑
s=1

αks = 1,

µs =
1

Ns

N∑
n=1

R∑
r=1

θnrs · Fnr, where Ns =
N∑
n=1

R∑
r=1

θnrs,

Σs =
1

Ns

N∑
n=1

R∑
r=1

θnrs · (Fnr − µs) · (Fnr − µs)T .

6. Repeat steps 2 or 3 until convergence criteria are met.

7. For each (n, k), set Cnk =

{
1 if ψnk = maxk{qC(Cnk;ψk)}
0 otherwise

8. For each (n, r, s), set Lnrs =

{
1 if θnrs = maxs{qL(Lnrs; θnr)}
0 otherwise
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so the variational algorithm is not guaranteed to maximize the log-likelihood at every

step. However, the variational approximation enables us to implement our algorithm.

In practice, these types of variational algorithms are highly e�ective and converge to

good results.

� 4.4 Deriving the E-Step

In the E-step, we keep the parameters of the full likelihood model �xed and seek to

calculate the parameters of q that maximize Lvarq(C,L;ψ,θ)(F,C, L;α, π, µ,Σ):

We �nd

θ∗, ψ∗ = argmaxθ,ψ{Lvarq(C,L;ψ,θ)(F,C, L;α, π, µ,Σ)}. (4.14)

Equation 4.14 remains challenging to optimize simultaneously with respect to both θ

and ψ, since for a given value of n, ψnk and θnrs are coupled. Instead, we iteratively

optimize Lvarq(C,L;ψ,θ)(F,C, L;α, π, µ,Σ) with respect to the ψ and the θ parameters

separately. Once we hold the θ parameters �xed, the ψ parameters are decoupled, so

we maximize each value of ψnk and θnrs independently.

With respect to a given ψnk, the expectation is convex. We can �nd the maximum

by taking the derivative of Lvarq(C,L;ψ,θ)(F,C, L;α, π, µ,Σ) with respect to ψnk and setting

it to 0. We have that for all n,
∑K

k=1 ψnk = 1, so we add a Lagrange multiplier before

taking the derivative. The terms of (4.13) that contain a given ψnk, along with the

Lagrange multiplier, are

ψnk

R∑
r=1

S∑
s=1

lnαksθnrs − ψnk lnψnk + αn(

K∑
k=1

ψnk − 1). (4.15)

By taking the derivative with respect to ψnk and setting it to 0, we obtain

R∑
r=1

S∑
s=1

lnαksθnrs − lnψnk − 1 + αn = 0. (4.16)

With a bit of algebra, and setting βn = exp (1− αn). we obtain:

1

βn

R∏
r=1

S∏
s=1

αθnrs
ks = ψnk. (4.17)
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By summing over all k, we obtain:

K∑
k=1

ψnk = 1 =
1

βn
·
K∑
k=1

R∏
r=1

S∏
s=1

αθnrs
ks . (4.18)

Hence we have the update rule for ψnk:

ψ∗
nk =

1

βn
·
R∏
r=1

S∏
s=1

αθnrs
ks , where βn=

∑K
k=1

∏R
r=1

∏S
s=1 α

θnrs
ks . (4.19)

Similarly, we can derive the update rules for θnrs:

θ∗nrs =
1

γnr

K∏
k=1

αψnk
ks , where γnr=

∑S
s=1

∏K
k=1 α

ψnk
ks . (4.20)

� 4.5 Deriving the M-Step

In the M-step, we determine the values of the parameters of the full likelihood model

that maximize Lvarq(C,L;ψ,θ)(F,C, L;α, π, µ,Σ) while keeping the parameters of q �xed.

In other words, we �nd:

α∗, π∗, µ∗,Σ∗ = argmaxα,π,µ,Σ{Lvarq(C,L;ψ,θ)(F,C, L;α, π, µ,Σ)}. (4.21)

� 4.5.1 Deriving the update rule for π

We derive the update rule for π as in the case of the standard EM algorithm. We have

that
∑
πk = 1. So we add a Lagrange multiplier to the terms of (4.13) that contain

πk:

N∑
n=1

K∑
k=1

lnπkψnk + η

(
K∑
k=1

πk − 1

)
. (4.22)

Taking the partial derivative with respect to πj produces

1

πj

N∑
n=1

ψnj − η. (4.23)
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We set this to 0 to �nd the optimal setting of πj . Thus
∑N

n=1 ψnj = η · πj . Summing

over all such k, we derive

N∑
n=1

K∑
k=1

ψnk = η

K∑
k=1

πk = η, (4.24)

based on the constraint that
∑K

k=1 πk = 1. Thus

η =

N∑
n=1

K∑
k=1

ψnk = N. (4.25)

Hence, we have that

π∗j =
1

N

N∑
n=1

ψnj . (4.26)

� 4.5.2 Deriving the update rule for α

We have that for all k,
∑S

s=1 αks = 1. Hence for all k, we add a Lagrange multiplier

to the terms of (4.13) that contain α to obtain:

N∑
n=1

R∑
r=1

S∑
s=1

lnαksθnrsψnk + νk(

S∑
s=1

αks − 1). (4.27)

Taking the derivative with respect to a given αkj , we calculate:

N∑
n=1

R∑
r=1

θnrsψnk − νk · αij = 0. (4.28)

By summing over all s and re-arranging, we have that:

νk =

N∑
n=1

ψnk

R∑
r=1

S∑
s=1

θnrs = R ·
N∑
n=1

ψnk. (4.29)

Thus, we obtain:

α∗
kj =

1

νk

N∑
n=1

R∑
r=1

ψnkθnjr, where νk = R ·
N∑
n=1

ψnk. (4.30)
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� 4.5.3 Deriving the update rules for µ and Σ

The terms of Lvarq(C,L;ψ,θ)(F,C, L;α, π, µ,Σ) that contain µs are

− 1

2

N∑
n=1

R∑
r=1

θnrs · (Fnrs − µt)TΣ−1
s (Fnrs − µs). (4.31)

Taking the derivative with respect to µs and setting it to 0, we obtain:

N∑
n=1

R∑
r=1

θnrs
(
Σ−1
s Ins − Σ−1

s µs
)

= 0. (4.32)

It follows that:

µ∗s =
1

Ns
·
N∑
n=1

R∑
r=1

θnrs · Inr, where Ns =

N∑
n=1

R∑
r=1

θnrs. (4.33)

We similarly �nd the update rule for Σs, which is

Σ∗
s =

1

Ns

N∑
n=1

R∑
r=1

θnrs · (Fnr − µs) · (Fnr − µs)T . (4.34)



34 CHAPTER 4. GENERATIVE MODEL



Chapter 5

Analysis of the Generative Model

and Discussion of Results

In this chapter, we discuss the implementation and performance of the algorithm de-

scribed in the previous chapter. We present the methods used determine the number of

patient clusters and the number of disease subtypes and examine parameters estimated

by our model. To ensure that our algorithm's results are meaningful, we analyze the

spatial contiguity of the disease subtypes and the model's stability. We conclude by

discussing the clinical relevance of our results.

� 5.1 Parameter Selection

The algorithm was run on 2457 patients with 1000 non-overlapping patches randomly

chosen from each patient. The patches are 11 × 11 × 11 and the feature vectors are

11-dimensional where the �rst 9 values consist of GLCM features, and the last two

consist of histogram bins, as described in Chapter 3.

The algorithm was run on a range of the number of patient clusters K and disease

subtypes S. We chose to examine the model with eight patient clusters and six disease

subtypes, as this was the largest number of disease subtypes and patient clusters for

which each patient cluster and disease subtype received at least �ve percent probability.

The rest of this chapter proceeds with a discussion of the algorithm's performance with

eight patient clusters and six disease subtypes.

� 5.2 Disease Subtypes

Patches belonging to each of our disease subtypes are shown in Figure 5.1. Subtype 1

is the one that most closely corresponds to normal lung tissue.

We compared the disease subtypes identi�ed by our model to clinically identi�ed

35
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Figure 5.1: Patches showing di�erent disease subtypes identi�ed by our model.

Clinical Label ST 1 ST 2 ST 3 ST 4 ST 5 ST 6

Normal Lung Tissue 339 0 1 103 7 61

Panlobular Emph. 1 146 9 0 0 0

Paraseptal Emph. 16 53 100 48 20 6

Mild Centrilobular Emph. 96 3 11 68 3 30

Moderate Centrilobular Emph. 69 74 112 28 4 2

Severe Centrilobular Emph. 8 57 49 0 0 0

Table 5.1: Confusion matrix between clinically de�ned subtypes and automatically
detected subtypes. The values in the table correspond to the number of patches with
the corresponding clinical label and detected subtype.

ones. To this end, we used the labelled patches described in Chapter 3, though we

employ di�erent clinical labels from the one used in Chapter 3 for feature selection.

Here, we have six clinical labels for our patches: normal lung tissue, panlobular emphy-

sema, and paraseptal emphysema, along with mild, moderate, and severe centrilobular

emphysema.

A confusion matrix between the disease subtypes and the clinical labels is shown in
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Patient Cluster 1 2 3 4 5 6 7 8

Proportion of Patients (π) 0.258 0.219 0.146 0.123 0.092 0.059 0.053 0.051

Table 5.2: Settings for π: mixing proportions of the patient clusters

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6 (g) Cluster 7 (h) Cluster 8

Figure 5.2: Expected distribution of subtypes in each patient cluster. The graph for
cluster k corresponds to the values of αk.

Table 5.1. Subtype 1 most closely corresponds to normal lung tissue. On the labelled

portion of our data set, we found that 67% of patches that were labelled as clinically

normal were placed in the same disease subtype by our algorithm, and clinically normal

patches represent 64% of all labelled patches within this disease subtype. Panlobular

and paraseptal emphysema correspond to disease subtype 2 and subtype 3 respectively.

Our results suggest that centrilobular emphysema is a mixture of identi�ed disease

subtypes 1, 2, 3 and 4.

� 5.3 Patient Clusters

The values for π, i.e. the proportion of patients in each cluster is reported in Table 5.2.

The values of the expected proportion of subtypes α in each patient category is dis-

played in Figure 5.2. In this �gure, the plot for cluster k corresponds to the values
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of αk - the proportion of subtypes in cluster k. We observe that the distributions

of the subtypes is quite di�erent for each patient cluster, which shows that we have

successfully identi�ed distinct patient clusters.

Figure 5.3 shows labelled lungs of patients in di�erent patient clusters. In these

images, each color corresponds to an emphysema subtype or normal tissue, which is

closest to the blue label.

� 5.4 Spatial Contiguity

Emphysema clusters spatially in the lungs, as do the disease subtypes our algorithm

identi�es, as can be seen in Figure 5.3. We evaluated spatial contiguity by permutation

testing [8]. For each voxel labelled by our algorithm we compute the proportion of

neighboring voxels that belong to the same disease subtype. We then average this

value over the entire lung to obtain a spatial contiguity score. To obtain a distribution

of the score under the null hypothesis we assigned voxels within the lungs to random

disease subtypes 1000 times for each scan while maintaining the proportion of disease

subtypes for each lung that was identi�ed by our algorithm. We found that across all

CT scans, the spatial contiguity scores produced by our algorithm are greater than the

maximal values in the corresponding null distribution. This corresponds to rejecting

the null hypothesis with p < 0.001. Spatial contiguity is an important result, as we

have not imposed this constraint on our model, and instead it organically arose out of

the data.

� 5.5 Model Stability

We analyze the model's stability, using a method motivated by Levine, et al. [7]. We

ran our algorithm on a randomly selected half of the scans and labelled the remaining

scans based on the estimated model parameters. In particular, we assigned each patient

to the most likely cluster, and we assigned each voxel to the most likely subtype. We

repeated this process 10 times. Hence, we obtain 10 assignments of patients to clusters,

and 10 assignment of voxels to subtypes. We only compare the assignments of voxels

to subtypes in 100 patients, since it would be too cost-intensive to compute for all

of the patients. We calculate the adjusted mutual information between each pair of

assignment of patients to clusters, and average these values. Similarly, we calculate the

adjusted mutual information between each pair of assignment of voxels to subtypes,

and average these scores.

This adjusted mutual information score between two cluster assignments X and Y
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Figure 5.3: Slices from example CT scans from each of the eight patient clusters iden-
ti�ed by our algorithm. Colors correspond to disease subtypes identi�ed by our algo-
rithm. Blue most closely corresponds to normal lung tissue.
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is de�ned as
I(X,Y )− E[I(X,Y )]

max(H(X), H(Y ))− E[I(X,Y )]
. (5.1)

The score takes on values between 0, when the mutual information between two cluster

assignments equals its expected value, and 1, when two cluster assignments are identical

[26]. Here, E[I(X,Y )] is the expected mutual information in the case that X and Y

have the same proportion of elements in each cluster, but the two cluster assignments

are independent. I(X,Y ) is bounded by max(H(X), H(Y )), so max(H(X), H(Y )) −
E[I(X,Y )] ≥ I(X,Y ) − E[I(X,Y )]. This will be equal precisely when I(X,Y ) is

maximized, that is when X and Y are identical, producing a score of 1. When X

and Y are independent, I(X,Y ) = E[I(X,Y )], so the score is 0.

The averaged score across assignments to patient clusters is 0.60 - which shows

some stability in these labelings. The averaged score across assignments of voxels to

disease subtypes is 0.79. This suggests that the identities of the disease subtypes are

more stable than the identities of the patient clusters, though both are consistent across

running the algorithm on di�erent subsets of the data. This is likely due to the fact

that the disease subtypes are more directly linked to the data, while the patient clusters

are linked to the data only through the disease subtypes.

� 5.6 Associations with Physiological Indicators

To evaluate the clinical relevance of our model, we quantify the associations between the

structure detected by our method and the physiological indicators relevant to COPD:

six minute walking distance, body mass index (BMI), forced vital capacity (FVC),

forced expiratory volume (FEV), change in FVC value from treatment, and the ratio

between the FEV and FVC values. We ran our algorithm on a randomly selected half of

the scans and labelled the remaining scans based on the estimated model parameters.

In particular, we assigned each patient to the most likely cluster and constructed an

empirical distribution of disease subtypes for the patient based on the image patches.

We repeated this procedure 100 times to estimate variability in the results.

We constructed three baseline models by eliminating patient clusters (K = 1) or

disease subtypes (S = 1) or both (K = 1, S = 1). In the last case, we extract feature

vectors from patches in each patient, and then average and normalize the feature vectors

in each patient to produce a single patient-speci�c feature vector.
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� 5.6.1 Methods for Quantifying Association

The association between patient clusters and physiological indicators is quanti�ed via

the normalized mutual information score [26].The normalized mutual information score

of two random variables X and Y is de�ned as

I(X,Y )√
H(X) ·H(Y )

(5.2)

where I(X,Y ) is the mutual information between X and Y , and H(X) is the entropy

ofX. This score takes on values between 0 (no association), and 1 (perfect dependency).

To quantify the associations between distributions of disease subtypes or the aver-

aged normalized feature vector for a patient and a physiological indicator we perform

linear regression. We have a physiological indicator c, and ai is the proportion of sub-

type i in a given patient or the i-th entry in a feature vector. The linear regression

�nds the optimal settings for {β}ti=1 to best approximate c =
∑t

i=1 βiai across all

patients. We can quantify the strength of this correlation with the R2 score, which is

the percentage of the variance in c that is explained by the linear regression. The R2

score is de�ned as

R2 , 1−
∑N

j=1(cj − fj)2∑N
j=1(cj − c̄)2

(5.3)

where fj =
∑6

i=1 βiaij , and c̄ = 1
N

∑N
j=1 cj . R

2 takes on values between 0 (no linear

correlation), and 1 (perfect linear correlation).

Di�erent metrics are used to quantify the associations between patient clusters and

proportions of disease subtypes or feature vectors, since the former is a discrete label

while the last two are continuous quantities.

� 5.6.2 Discussion of Identified Associations

Fig. 5.4 reports the associations for all models. These results demonstrate the advan-

tage of modelling both patient clusters and disease subtypes. We observe that there is

a stronger association between physiological indicators and patient clusters in the full

model than in the model with only clusters. For all physiological indicators, there is

a higher association with the distributions of disease subtypes in the full model than

in the model with only disease subtypes. This demonstrates that modelling patient

clusters produces more clinically relevant distributions of disease subtypes in each pa-

tient. The model without patient clusters or disease subtypes exhibits even weaker
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Figure 5.4: Left: R2 value between the distributions of disease subtypes or feature
vectors and physiological indicators. Right: Normalized Mutual Information between
patient clusters and physiological indicators.

associations than a model with only disease subtypes.

� 5.7 Discussion

We have shown that our method produces spatially contiguous clusters - which is an

important veri�cation of our results since emphysema patterns tend to cluster spatially.

We have also shown that our method is stable across runs on di�erent subsets of the

data.

The clinical relevance of our model is demonstrated by the associations between

both patient clusters and distributions of subtypes and a variety of physiological indi-

cators. Additionally, there are certain physiological indicators that correlate strongly

with patient clusters but not with distributions of disease subtypes, showing the im-

portance of the patient clusters. It appears that some clinical information is present in

the distribution of subtypes but not in the patient clusters, suggesting that the patient

clusters may not capture all of the necessary clinical information. We have shown that

our model has small but signi�cant advantages over a model in which only subtypes or

clusters are modeled, and even larger advantages over a model with neither subtypes

nor clusters.
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Conclusions and Future Work

The work presented in this thesis enables us to model population structure across a

large cohort of patients and to di�erentiate groups of patients that exhibit the same

distributions of emphysema disease subtypes and consequently may have the same

clinical prognoses and manifestations of the disease. Additionally, our method enables

us to distinguish three-dimensional textures in CT scans of lungs a�ected by COPD,

which correspond to distinct disease subtypes.

� 6.1 Contributions

In this thesis, we presented an unsupervised framework for the discovery of both pa-

tient clusters and of disease subtypes. Speci�cally, we construct a generative model

that parameterizes the assignment of voxels in CT scans to subtypes and the assign-

ment of patients to clusters. The observed data for our algorithm consists of texture

descriptors of patches extracted from CT scans of patients with COPD. Our model

performs inference using a variational expectation-maximization approach.

Our model enables us to harness the information available in our data set of 2457

CT scans and identify disease subtypes in the context of population structure. We

examine the performance of our model and demonstrate that the patient clusters and

disease subtypes that our model produces are clinically relevant.

� 6.2 Extensions and Future Work

Our work could be extended by incorporating several clinical markers into the genera-

tive model. In this work, we compare our clusters to these markers but do not model

them directly. Many clinical markers correspond to patient prognosis, so their inclu-

sion could cause patients with similar disease prognosis and disease phenotype to be

assigned to the same cluster.

43
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Another extension is to incorporate clinically de�ned subtype labels in a semi-

supervised manner. In this framework, our algorithm would generally proceed in an

unsupervised manner, but it would attempt to group regions of the lung that clinicians

assign the same label to into the same subtype. This model would likely produce

di�erent results than the model that we describe in this thesis. It would then be

possible to explore how clinician's labelings of emphysema subtypes change the patient

clusters.

Further, the patient clusters that our model produces merit further exploration. It

would be worthwhile to examine their correlation to genetic markers. An additional ex-

tension is to directly examine whether di�erent patient clusters exhibit distinct clinical

prognoses or respond to di�erent clinical interventions.
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