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Abstract. For a given cognitive task such as language processing, the
location of corresponding functional regions in the brain may vary across
subjects relative to anatomy. We present a probabilistic generative model
that accounts for such variability as observed in fMRI data. We relate
our approach to sparse coding that estimates a basis consisting of func-
tional regions in the brain. Individual fMRI data is represented as a
weighted sum of these functional regions that undergo deformations.
We demonstrate the proposed method on a language fMRI study. Our
method identified activation regions that agree with known literature on
language processing and established correspondences among activation
regions across subjects, producing more robust group-level effects than
anatomical alignment alone.

1 Introduction

Spatial variability of activation patterns in the brain poses significant challenges
to finding functional correspondences across subjects. This variability results in
misalignment of individual subjects’ activations in an anatomically-normalized
space. Consequently, the standard approach of averaging activations in such a
space for group analysis sometimes fails to identify functional regions that are
spatially variable across individuals, e.g., regions for higher-order tasks such as
language processing.

Recent work addresses this variability in different ways [5,6,9]. Thirion et
al. [6] identify contiguous regions, or parcels, of functional activation at the
subject level and then find parcel correspondences across subjects. While this
approach yields reproducible activation regions and provides spatial correspon-
dences across subjects, its bottom-up, rule-based nature does not incorporate a
notion of a group template while finding the correspondences. Instead, it builds
a group template as a post-processing step. As such, the model lacks a clear
group-level interpretation of the estimated parcels. In contrast, Xu et al. [9] use
a spatial point process in a hierarchical Bayesian model to describe functional
activation regions. Their formulation accounts for variable shape of activation
regions and has an intuitive interpretation of group-level activations. However,
since the model represents shapes using Gaussian mixture models, functional
regions of complex shape could require a large number of Gaussian components.
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Lastly, Sabuncu et al. [5] sidestep finding functional region correspondences alto-
gether by estimating voxel-wise correspondences through groupwise registration
of functional activation maps from different subjects. This approach does not
explicitly model functional regions.

We propose a novel way to characterize spatial variability of functional re-
gions that combines ideas from [5,6,9]. We model each subject’s activation map
as a weighted sum of group-level functional activation parcels that undergo a
subject-specific deformation. Our contributions are twofold. First, similar to
Xu et al. [9], we define a hierarchical generative model, but instead of using
a Gaussian mixture model to represent shapes, we represent each parcel as an
image, which allows for complex shapes. By explicitly modeling parcels, our
model yields parcel correspondences across subjects, similar to [6]. Second, we
assume that the template regions can deform to account for spatial variability
of activation regions across subjects. This involves using groupwise registration
similar to [5] that is guided by estimated group-level functional activation re-
gions. We perform inference within the proposed model using a variant of the
expectation-maximization (EM) algorithm [1] and illustrate our method on the
language system, which is known to have significant functional variability [3].

2 Model

We let I = {I1, I2, . . . , IN} be theN observed images, In ∈ R
|Ω| be the activation

map for subject n (1 ≤ n ≤ N), and Ω be the set of voxels. We assume that a
dictionary of K images D = {D1, D2, . . . , DK} generates the observed images I.
Importantly, each dictionary element corresponds to a group-level parcel. We
treat the dictionary size K as a fixed constant; various model selection methods
can be used to select K.

We assume that each observed image In is generated i.i.d. as follows. First,
we draw weight vector wn ∈ R

K where each scalar entry wnk is indepen-
dently sampled from distribution pw(·; θk). Then, we construct pre-image Jn =
∑K

k=1 wnkDk. The observed image In = Jn ◦ Φ−1
n + εn is the result of applying

invertible deformation Φn to pre-image Jn and adding white Gaussian noise εn
with variance σ2. This process defines the joint probability distribution over the
weight vector and observed image for a specific subject:

p(In, wn|Φn,D; θ, σ2)=

K∏

k=1

pw(wnk; θk)
∏

x∈Ω

N
(

In(x);

K∑

k=1

wnkDk(Φ
−1
n (x)), σ2

)

,

(1)
where θ = {θ1, θ2, . . . , θK}. We aim to infer dictionary D and each deformation
Φn so that for future experiments performed on the same subjects, we can treat
the dictionary and subject-specific deformations as fixed and just estimate the
contribution of each dictionary element. By introducing group-level parcels as
dictionary elements, the model implicitly contains parcel correspondences since it
suffices to look at where a particular dictionary element appears in each subject.
Furthermore, each subject need not have all dictionary elements present.
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Model Parameters. We treat each deformation Φn as a random parameter
with prior distribution pΦ(·), which can also be viewed as regularizing each
deformation to prevent overfitting. Choice of the deformation prior allows us
to leverage existing image registration algorithms. To prevent spatial drift of the
dictionary elements, we constrain the average of the subject-specific deforma-
tions, defined as Φ1 ◦ Φ2 ◦ · · · ◦ ΦN , to be identity:

p(Φ) =

N∏

n=1

pΦ(Φn) · 1{Φ1 ◦ · · · ◦ ΦN = Id} , (2)

where Φ = {Φ1, . . . , ΦN} and 1{·} is the indicator function that equals 1 when
its argument is true and equals 0 otherwise.

We also treat each dictionary element Dk as a random parameter. To resolve
an inherent degeneracy where scaling the intensity of dictionary element Dk by
constant c and scaling wnk by 1/c for all n results in the same observed images I,
we choose to constrain each dictionary element Dk to have bounded �2 norm:
‖Dk‖2 ≤ 1. To encourage sparsity and smoothness, we introduce �1 and MRF
penalties. To constrain each dictionary element to be a parcel, we require each
Dk to be a contiguous, unimodal image. Formally,

p(Dk;λ, γ) ∝ exp

⎧
⎨

⎩
−λ

∑

x∈Ω

|Dk(x)| − γ

2

∑

x∈Ω

∑

y∈N (x)

(Dk(y)−Dk(x))
2

⎫
⎬

⎭

· 1{Dk is a contiguous, unimodal image} , (3)

where hyperparameters λ and γ are positive constants, and N (x) denotes the
neighborhood of voxel x.

Other model parameters are treated as non-random: θ parameterizes distri-
bution pw(·; θk) for each k, and σ2 is the variance of the Gaussian noise. We
use MAP estimation for D and Φ and ML estimation for θ and σ2 whereas
hyperparameters λ and γ are currently hand-tuned.

For our experiments, we place independent exponential priors on each com-
ponent of weight vector wn and use diffeomorphic Demons registration [8] to
estimate deformations Φ. In particular, we choose pw(wnk; θk) = θke

−θkwnk ,
where wnk ≥ 0 and θk > 0. Moreover, we define pΦ(Φn) ∝ exp{−Reg(Φn)},
where Reg(·) is the Demons registration regularization function [8]. Combining
these distributions over weights w = {w1, . . . , wN} and deformations Φ with
equations (1), (2), and (3), we obtain the full joint distribution:

p(I,w,Φ,D; θ, σ2)

∝
N∏

n=1

{

exp{−Reg(Φn)}
K∏

k=1

e−θkwnk

∏

x∈Ω

N
(

In(x);

K∑

k=1

wnkDk(Φ
−1
n (x)), σ2

)}

·
K∏

k=1

exp

⎧
⎨

⎩
−λ

∑

x∈Ω

|Dk(x)| − γ

2

∑

x∈Ω

∑

y∈N (x)

(Dk(y)−Dk(x))
2

⎫
⎬

⎭
, (4)
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where weights wnk’s are non-negative, average deformation Φ1 ◦ · · · ◦ΦN is iden-
tity, and each Dk is contiguous and unimodal with ‖Dk‖2 ≤ 1.

Relation to Sparse Coding. With a heavy-tailed prior pw concentrated at
0 and no deformations (i.e., deformations are identity), our model becomes
equivalent to sparse coding [4]. We extend sparse coding by allowing dictionary
elements to undergo subject-specific deformations. In contrast to previous dic-
tionary learning approaches that assume perfect spatial correspondences (e.g.,
Varoquaux et al. [7]), we estimate jointly a set of deformations Φ and the dis-
tribution for weight vectors w in addition to learning the dictionary elements.
Effectively, we recover dictionary elements invariant to “small” deformations,
where the “size” of a deformation is governed by the deformation prior.

Parameter Estimation. We use a variant1 of the EM algorithm [1] to esti-
mate model parameters Φ,D, θ, σ2. Derivations have been omitted due to space
constraints. To make computation tractable, a key ingredient of the E-step is
to approximate posterior distribution p(w|I,Φ,D; θ, σ2) with a fully-factored
distribution

q(w;μ,ν) =

N∏

n=1

K∏

k=1

N+(wnk;μnk, νnk), (5)

where N+(·;μnk, νnk) is the probability density of the positive normal distribu-
tion (the normal distribution with mean μnk and variance νnk conditioned to

have non-negative support). We let (Φ̂, D̂, θ̂, σ̂2, μ̂, ν̂) be current estimates for

(Φ,D, θ, σ2,μ,ν). Denoting 〈ŵnk〉 � Eq[wnk|I, Φ̂, D̂; θ̂, σ̂2, μ̂, ν̂] and 〈ŵ2
nk〉 �

Eq[w
2
nk|I, Φ̂, D̂; θ̂, σ̂2, μ̂, ν̂], our EM algorithm variant proceeds as follows:

E-Step. Update parameter estimates for the approximating distribution q:

μ̂nk ←
〈
In −

∑
� �=k〈ŵn�〉(D̂� ◦ Φ̂−1

n ), D̂k ◦ Φ̂−1
n

〉
− σ̂2θ̂k

‖D̂k ◦ Φ̂−1
n ‖22

, (6)

ν̂nk ← σ̂2

‖D̂k ◦ Φ̂−1
n ‖22

, (7)

where 〈·, ·〉 denotes the standard dot product.
Then update 〈ŵnk〉 and 〈ŵ2

nk〉 for all n and k:

〈ŵnk〉 = μ̂nk +

√
ν̂nk exp(−μ̂2

nk/(2ν̂nk))√
2πQ(−μ̂nk/

√
ν̂nk)

, (8)

〈ŵ2
nk〉 = ν̂nk + μ̂2

nk +
μ̂nk

√
ν̂nk exp(−μ̂2

nk/(2ν̂nk))√
2πQ(−μ̂nk/

√
ν̂nk)

, (9)

1 Because of approximations we make, the algorithm is strictly speaking not EM or
even generalized EM.



72 G.H. Chen et al.

where Q(x) �
∫∞
x

1√
2π

e−t2/2dt is the tail probability of the standard normal

distribution.

M-Step. Compute an intermediate deformation estimate Φ̃n by registering ob-
served image In to expected pre-image

∑K
k=1〈ŵnk〉D̂k using diffeomorphic

Demons registration. This step can be computed in parallel across subjects.
After performing all N registrations, enforce that the average deformation

is identity. To do this, let Φ̃n = exp(Ṽn), where Ṽn is the velocity field of in-

termediate deformation estimate Φ̃n. Then update Φ̂n for all n by computing

Φ̂n ← exp

(

Ṽn − 1

N

N∑

m=1

Ṽm
)

. (10)

Next, update parameter estimates for θ and σ2:

θ̂k ← 1
1
N

∑N
n=1〈ŵnk〉

, (11)

σ̂2 ← 1

N |Ω|
N∑

n=1

⎡

⎣

∥
∥
∥
∥
∥
In −

K∑

k=1

〈ŵnk〉(D̂k ◦ Φ̂−1
n )

∥
∥
∥
∥
∥

2

2

+
K∑

k=1

(〈ŵ2
nk〉 − 〈ŵnk〉2)‖D̂k ◦ Φ̂−1

n ‖22

⎤

⎦ . (12)

Finally, update each dictionary element estimate D̂k while holding the other
dictionary elements and parameters constant by numerically minimizing the fol-
lowing energy using projected subgradient descent:

E(Dk) =
1

2σ̂2

N∑

n=1

∑

x∈Ω

|∇Φ̂n(x)|
⎡

⎣

(

In(Φ̂n(x)) −
K∑

�=1

〈ŵn�〉D�(x)

)2

+ (〈ŵ2
nk〉 − 〈ŵnk〉2)D2

k(x)

⎤

⎦

+ λ
∑

x∈Ω

|Dk(x)|+ γ

2

∑

x∈Ω

∑

y∈N (x)

(Dk(y)−Dk(x))
2, (13)

where |∇Φ̂(x)| is the determinant of the Jacobian of Φ̂with respect to spatial coor-
dinates evaluated at voxel x, andDk is contiguous and unimodal with ‖Dk‖2 ≤ 1.
At each step of projected subgradient descent, we need to project an input image
onto the space of contiguous, unimodal images residing on the �2 disc. This pro-
jection is done by performing a watershed segmentation of a 6mm-FWHM-blurred
version of the input image. From the watershed segmentation, we can find voxels
corresponding to the largest mode, which we use to mask out the largest mode in
the (not blurred) input image. Then we check the �2 norm of this masked input
image and if it’s greater than 1, we scale the image to have unit �2 norm.
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Without blurring for the watershed segmentation, two peaks separated by a
few voxels that probably correspond to the same parcel would be identified as
two separate segments; blurring mitigates the effect of this phenomenon. Impor-
tantly, we return to working with the original (not blurred) input image to be
projected after we’ve determined the largest mode. We acknowledge that this is
a heuristic method for enforcing contiguity and unimodality and are currently
exploring avenues for replacing this heuristic with a more principled prior to
force each dictionary element to represent a parcel.

Initialization.We initialize deformation estimates Φ̂ using groupwise functional
registration similar to [5] with intensity-equalized diffeomorphic Demons regis-
tration [2]. We then apply watershed segmentation with 8mm-FWHM blurring
(similar to the unimodal projection) on the resulting functional registration group

template to initialize dictionary elements D̂ and retain the largest K segments.
Rather than initialize μ̂ and ν̂, we directly compute guesses for each 〈ŵnk〉

by solving a least-squares regression problem for each subject:

min
〈ŵn1〉,〈ŵn2〉,...,〈ŵnK〉

∥
∥
∥
∥
∥
In −

K∑

k=1

〈ŵnk〉(D̂k ◦ Φ̂−1
n )

∥
∥
∥
∥
∥
2

, (14)

where we set 〈ŵnk〉 to 0 if its least-squares solution is negative.
Lastly, we compute initial estimates for θ and σ2. We use update equation (11)

to get an initial estimate for θ. As for σ2, we use the initial estimate of

σ̂2 =
1

N |Ω|
N∑

n=1

∥
∥
∥
∥
∥
In −

K∑

k=1

〈ŵnk〉(D̂k ◦ Φ̂−1
n )

∥
∥
∥
∥
∥

2

2

. (15)

3 Experimental Results

We train our model on an fMRI study of 33 subjects reading sentences and
pronounceable non-words [3]. First, we apply the standard fMRI general linear
model for the sentences vs. non-words contrast. Observed image In is defined
to be the t-statistic map of subject n thresholded at p-value=0.001. Each image
In is pre-aligned using an anatomical MRI scan of the same subject. We set
hyperparameters λ = 2 · 104 and γ = 107.

During initialization, watershed segmentation yielded K = 12 segments that
contain at least a pre-specified threshold of 70 voxels each. Fig. 1a shows the
spatial support of the final learned dictionary elements on three slices. Fig. 1b
illustrates some of the dictionary elements extracted by the algorithm. The dic-
tionary elements correspond to portions of the temporal lobes, the right cere-
bellum, and the left frontal lobe, regions in the brain previously reported as
indicative of lexical and structural language processing [3].

To validate the estimated deformations, we apply the deformation learned by
the model to left-out time course data for each subject and perform the standard
weighted random effects analysis. We then look at significance values within the
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(a)

(b)

Fig. 1. Estimated dictionary. (a) Three slices of a map showing the spatial support
of the extracted dictionary elements. Different colors correspond to distinct dictionary
elements where there is some overlap between dictionary elements. From left to right:
left frontal lobe and temporal regions, right cerebellum, right temporal lobe. Dictionary
element indices correspond to those in Fig. 2. (b) A single slice from three different
estimated dictionary volumes. From left to right: left posterior temporal lobe, left
anterior temporal lobe, left inferior frontal gyrus.

support of each dictionary element. Importantly, for drawing conclusions on the
group-level parcels defined by the estimated dictionary elements, within each
parcel, it is the peak and regions around the peak that are of interest rather
than the full support of the dictionary element. Thus, to quantify the advantage
of our method, within each dictionary element, we compare the top 25% highest
significance values for our method versus those of anatomical alignment (Fig. 2).
We observe that accounting for functional variability via deformations results in
substantially higher peak significance values within the estimated group-level
parcels, suggesting better overlap of these functional activation regions across
subjects. On average, our method improves the significance of group analysis by
roughly 2 orders of magnitude when looking at the top 25% significance values.

Fig. 2. Box plots of top 25% weighted random effects analysis significance values within
dictionary element supports. For each dictionary element, “A” refers to anatomical
alignment, and “F” refers to alignment via deformations learned by our model.
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Even if we look at the top 50% of significance values in each dictionary element,
the results remain similar to those in Fig. 2.

4 Conclusions

We developed a model that accounts for spatial variability of functional regions
in the brain via deformations of weighted dictionary elements. Learning model
parameters and estimating deformations yields correspondences of functional
units in the brain across subjects. We demonstrate our model in a language fMRI
study, which contains substantial variability. We plan to validate the detected
parcels using data from different fMRI language experiments.
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