
 1

 

Volumetric Reconstruction of Tissue Structure from Two-
Dimensional Microscopy Images 

 
by 
  

Francisco Cruz 

Submitted to the 
Department of Electrical Engineering and Computer Science 

May 30, 2006 

In Partial Fulfillment of the Requirements for the Degree of 
Master of Engineering in Electrical Engineering and Computer Science 

ABSTRACT 
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analysis to 2D. Existing approaches do not provide essential three-dimensional 
information such as cell volume, shape and structural orientation of cells within the tissue. 
This thesis investigates a method to extract three dimensional data using two-dimensional 
microscopy. We demonstrate that three dimensional cell structure can be acquired using 
two dimensional fluorescence microscopy and two-photon microscopy and explore the 
application of the analysis to studies of cardiac tissue. 
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Chapter 1     Introduction 
 
This thesis investigates methods and procedures to construct and study three dimensional 

cell structures of large tissue samples such as an entire heart.  Currently there is no 

standard method for analysis of three dimensional tissue data at subcellular resolution. 

Standard microscopes or image acquisition instruments in biological research create two 

dimensional images. Although images acquired are two dimensional, methods can be 

created to properly use such planar images to extract volumetric representation of cells 

and visualize them in 3D. 

Methods to acquire images for 3D analysis include MRI and PET scans.  Unfortunately, 

these methods produce macro level information and are not suitable for imaging the 

structure at the cellular level. However, we use the existing methods for registration and 

segmentation of the MRI images as a basis for developing analysis techniques applicable 

to microscopy images. Our approach considers separate layers of the 3D object acquired 

in a series of planar images and reconstructs the original volumetric shape from such a 

collection of slices.  

The experiments in this thesis employ a fluorescent microscope and a two-photon 

microscope to acquire 2D images and to reconstruct cellular structure of tissues. The 

specific application that motivated this work is the analysis of heart tissue. The resolution 

of the microscopy images allowed us to extract cells and visualize them in 3D. To 

accomplish this, we have developed alignment, segmentation and interpolation 

algorithms that use a systematic approach to the 3D reconstruction of the cells. In 

addition to visualizing the cells, the analysis yielded important measurements, such as 

volume, surface area and orientation of each cell. 
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1.2 Thesis Organization 

The following chapters provide a detailed description of the methods and protocols used 

to develop the reconstruction of the 3D tissue. Chapter 2 provides an overview of the 

background on biology, histology and instrumentation used to acquire images. Chapter 3 

explains the image processing techniques we developed for cell reconstruction, including 

image registration, image segmentation, image intensity normalization, reconstruction of 

3D data such as calculating volume and surface area. It also discusses the visualization of 

the extracted cell structure. Chapter 4 discusses Matlab implementation of the proposed 

methods. Chapter 5 demonstrates the application of the techniques in real biological 

studies. Chapter 6 discusses possible extensions to other tissue types and presents future 

plans and further development of the techniques for automation of 3D cell segmentation. 
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Chapter 2     Background 

In this chapter, we review the background on tissue staining and image acquisition 

techniques. The algorithms presented in the next chapter rely on the acquisition methods 

described here to generate high contrast images of the cellular structure.  

 

2.1 Fluorescence Labels 

Fluorescence labeling is a common technique in biology used to identify certain aspects 

of tissue and cells. Today there is widespread availability of high-quality fluorescence 

probes; many labeling protocols have been developed, making fluorescence labeling easy 

to apply. 

Fluorescence is a process in which molecules give off light. Fluorescent molecules or 

fluorophores are excited by light and consequently emit it during relaxation at a different 

wavelength [1]. There is a wide variety of fluorophores that are used for specific labeling. 

The molecules are often antibodies with conjugated chemical fluorophores or proteins 

that are intrinsically fluorescent such as green fluorescent proteins (GFP). Other 

fluorophores directly stain cells and tissue. Dyes such as Texas-red maleimide can be 

used to stain the extracellular matrix of tissue by nucleophilic attack of sulfhydryl groups 

in the extracellular matrix. For example, Texas Red emits red fluorescence, and DAPI 

stains are used to stain nuclei and emit blue fluorescence. Figure 1 illustrates tissue 

staining and how it affects the appearance of the cell. 
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Figure 1. Example of a tissue sample labeled with multiple stains. The extracellular 
matrix is stained with maleimide-Texas Red (red), the capillaries are stained with 
isolectin-fluorescein (green) and nuclei are stained with DAPI (blue). 

 
 

 

Figure 2. Images stained with maleimide, which targets extra-cellular matrix. The image 
to the left is of the heart outer wall; the image to the right is of the edge of a ventricle. 

 
 

2.2 Staining of the Tissue  

Preparing the tissue samples correctly for imaging is a crucial step. In order to be able to 

see cells or other structures within the heart, such as nuclei, the heart must be stained with 

fluorescence dyes.  These dyes, such as maleimide-Texas Red, are used to outline cells or 

directly stain nuclei. Figure 2 shows a cross-section of a heart stained with Texas red 

maleimide. A red filter is used to acquire the images. The dye shows up as white in 

grayscale images. 
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Figure 3. Serial slices of the heart are cut along the direction of the yellow outline. 

 

 
To obtain these cross-sectional images, mouse hearts were labeled using a Texas Red-

maleimide (Molecular Probes, Inc) tail-vein injection, followed by removing the heart, 

fixing with 4% paraformaldehyde and embedding the heart in paraffin.  

Once the staining is complete, the tissue is cut into slices as shown in Figure 3. The z-

axis runs from the base to the apex of the heart, and is perpendicular to the serial slices. 

The slice thickness is 5µm. The length of a heart cell ranges from 70 to130 µm. Thus 

using 5-10 µm slices are sufficient to obtain accurate volumetric data. The slices are then 

fixed onto slides for imaging. 

 



 10

2.3 Imaging Equipment: Fluorescence Microscopy and Multi-photon 

Technology 

 

Fluorescence microscopes acquire images in which constructs are labeled with 

fluorophores. There are three elements to a microscope filter that allow for visualization 

of the desired fluorophores: the excitation filter, the beam splitter and the emission filter 

[1]. The excitation filter is essentially a bandpass filter that regulates the wavelengths that 

reach the specific fluorophore. The emission filter is a highpass filter that allows 

wavelengths above a certain threshold to be emitted. The beam splitter regulates the light 

exciting the fluorophores and the light emitted back to the viewer or the camera [1]. The 

resulting two-dimensional images a do not provide any volumetric information.   

Instrumentation has been a large factor in deriving methods to create 3D models. Three-

dimensional microscopy approaches are enabled by confocal microscopy and two photon 

microscopy. Confocal microscopy uses fluorescence illumination and then filters out-of-

plane signals in order to create a scan at a certain depth [2]. Two-photon microscopy 

typically uses a red-to-infrared laser to generate an excitation volume in order to acquire 

an image. Because of the long wavelength of infrared lasers, greater penetration depth is 

achievable with two-photon microscopy than with confocal microscopy [3]. A two-

photon microscope is more thoroughly explained below.  

Two-photon microscopy enables volumetric scanning. Red-to-infrared (> 700 nm 

wavelengths) generates an excitation volume confined to the area of maximal focus after  
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Figure 4 Two photons hitting a sample.  The photons must impact the specimen with in 
1.5 nm of each other within 1.5 ns.  
 

the objective [4].  Excitation relies on two photons exciting the same molecule nearly 

simultaneously. Therefore, only the focal region has sufficient photon density to generate 

a fluorescence signal.  Figure 5 demonstrates the steps for two-photon scanning.  

Two-photon microscopy has two main advantages. First, restricting the excitation to a 

small volume result in less photobleaching and in reduction in out-of-plane noise. Second, 

the use of long wavelengths which have greater penetration depth into tissues results in 

scanning of optically favorable tissues of up to several hundred microns.  Disadvantages 

of two-photon microscopy include heat damage of the specimen, expense of the laser and 

the microscope maintenance, and in some cases, difficulty in locating the feature of 

interest due to the scanning nature of the majority of two-photon microscopes [4].  Two-

photon microscopy is well-suited for three-dimensional cell and tissue scanning, in part 

because of its penetration depth [5]. 
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Figure 5. This diagram shows an overview of the two-photon scanning. Within the 
confined excitation volume two photons target the specimen, which then excite the field 
and project light back into the computer through the mirror.  
 
 
Algorithms presented in this thesis were developed for images acquired by both 

fluorescence microscopy and two-photon microscopy. Two-photon microscopy allows 

for faster image acquisition and thus more tissue can be imaged in a manageable time 

frame.  
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2.4 Image Acquisition 

 

Two methods are used to image the heart in our experiments. The florescence microscope 

was used to acquire images manually. In addition, a motorized stage using a multi-photon 

microscope was used in some experiments. 

 Images are taken by a person using a fluorescence microscope along with a 10x 

objective which has a resolution of 1.5536 pixel/µm. Multiple overlapping images are 

obtained per slide. Figure 2 shows an example image acquired using this method.  We 

can easily see the outlines of cells and also the perimeter of the heart as shown on the left 

and a ventricle as shown on the right half.   

The second method to acquire images after the staining procedure uses a multi-photon 

microscope instead of a normal fluorescence microscope. The multi-photon microscope 

has 3D scanning capabilities since it can focus on different layers in the z axis up to 45 

µm without having to cut or create serial slices. The distance between the layers is 1.5 µm. 

Thirty layers are combined to create a volumetric scan. In order to scan more than 45 µm 

in depth, the microscope stage has a mill that, in real time, removes 20 µm of tissue. The 

system then continues to image the remaining sample. Figure 6 shows a graphical flow 

chart of the scanning and cutting procedure. 
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Figure 6. Imaging with motorized microscope. The top left most image shows the 
motorized stage, mill, sample and objective. Step 1 is to scan 45 µm of the tissue at 1.5 
µm between slices. The sample is then moved to the mill where 20 µm of tissue is 
removed. The sample is then returned to the objective where another 45 µm are scanned. 
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Figure 7.  Sample of an output image from multi-photon microscope. The grid-like 
structure is due to the power distribution of the multi-photon microscope.  
 

An example image from one slice is shown in Figure 7. The grid pattern occurs due to the 

power distribution of the microscope laser. The multi-photon microscope uses a 6x6 lens 

array to split the laser so that 36 smaller images can be taken at the same time. This 

substantially reduces the imaging time. The majority of the laser power is concentrated in 

the middle of the imaged area. We can see the brighter field where the power is greater.  

 



 16

Chapter 3      Image Analysis 

Once the acquisition of the data is complete, the entire image set can be analyzed with the 

goal of extracting, quantifying and visualizing the 3D structure of the cells. The sections 

in this chapter explain the analysis steps in detail. 

 

3.1 Registration 

Image registration is the process of transforming acquired images into a unified 

coordinate system through alignment that minimizes the error of the fit. Image 

registration methods can be grouped into two different classes: area based methods and 

feature based methods. Both types of methods start with one reference image used as the 

reference coordinate system which all other target images will be transformed to. Area-

based image registration looks at the overall structure of the images and uses correlation 

methods, Fourier properties and other structural analysis to complete the image 

alignments. Feature based registration uses image features to perform its mapping using 

for example lines, curves, points or boundaries.  

 

3.1.1 Slice Mosaic Image – Area Based Registration 

The first step in the 3D reconstruction pipeline is to create a large image for each layer 

that was acquired by either method described in the previous chapter. We developed an 

image registration program to mosaic individual slices. The registration method has two 

input parameters: overlap percentage, namely the area fraction by which the images 

overlap, and a position matrix. If we have images heart1.tiff, heart2.tiff through  
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Figure 8. Cross-sectional images of a mouse heart. Shown above are two images which 
need to be registered and consequently put into a larger mosaic. 
 

 

heart9.tiff, and they are arranged in a square array, the user would input a matrix of how 

they will be laid out as shown below: 

987
654
321

       or     
963
852
741

 

This preconditioner is used by the algorithm to restrict the registration to images that 

actually overlap. For example, image 1 and 6 are never compared directly. The 

registration algorithm employs the normalized cross-correlation between two images to 

estimate (x,y) offset of the best fit between a pair of images. These offsets are used to 

place the images appropriately relative to one another. Let I1 be the reference image and 

I2 be the image that needs to be aligned. Normalized cross-correlation [6] is defined as 

follows:  

γ(u,v) = 
∑ ∑

∑
−−−−

−−−−

2/12
22

2
11

,
2211

}]),([]),(),([{

]),(][),(),([
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 (a)  .  

 

(b)   

Figure 9. Original images which were imaged at 20x magnification (a) combined into a 
single mosaic (b). 
 
 
The user input overlap percentage is used to reduce the area of the images that will be 

compared leading to faster runtime and lower memory requirements.  
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Figure 10. Pick points where vessels and features occur in two consecutive images.  

 

The mosaic image in Figure 9b was created by manual scanning using a fluorescence 

microscope and then registering the 6 original images, shown in Figure 6a, together.  

The initial overlap specified by the user was 30%.  The size of the images is 1320x1024. 

 

3.1.2 Slice Alignment in 3D – Feature Based Registration 

Slide preparation results in rotational misalignment of images in the z-direction.  To 

correct for this misalignment, we register the slice images by optimizing the (x,y) offset  
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Figure 11. Results of applying linear conformal registration with rotational and 
translational shifts calculated from the selected features in consecutive slices.  
 

and the angle of rotation. Unlike the problem of creating a large mosaic of smaller images 

of the same area, the alignment in the depth direction requires registration of images that 

are not of the same region. Consequently, the area based registration algorithms are not 

suitable for this application. To best solve this problem, we choose to use a feature based 

registration algorithm. In this step the user manually picks features on images that occur 

in consecutive slices.  
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After selecting these points, we calculate the rigid transformation that aligns the selected 

features to obtain the rotational and translational shifts [7].  Figure 10 illustrates the 

feature selection step. Figure 11 shows slices aligned after performing a rigid 

transformation. 

 

3.1.3  Image Registration for Multi-Photon Microscopy 

When using the two photon microscope, the registration problem is simplified 

tremendously compared to the registration needed for manual imaging. The layout of the 

microscope and its motorized stage provides specific offsets for the motion of the  

 

 

Figure 12. (X ,Y) reconstruction of two-photon microscope captured data 

 

microscope when taking adjacent images. Registration is used only to correct for the error 

of the instrumentation. 
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Figure 12 shows a registered image of the images taken from the two-photon microscope. 

Since the two-photon microscope has a pre-determined method of how the images will be 

taken and ordered determining offsets of adjacent images is minimal 

 

 

Figure 13. Example image before and after intensity normalization.  
 

3.2 Intensity Normalization  

Intensity normalization is needed when the multi-photon microscope is used, due to the 

varying power distribution of the microscope laser. The grid-like structure in the resulting 

images is the direct consequence of the-nonuniform power distribution. The laser of the 

microscope is split into 36 different sections. To smooth the image relative to all the 

others, an averaged intensity matrix is created which has size 6x6. The values of the 

matrix range from 0 to 255. 

Each sub-block of the image is multiplied by ratio of the average pixel intensity of the 

entire image and the average intensity for that sub block.   
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To get a global representation of the average intensity matrix, we average a large sample 

of images from the entire data set to normalize the data set. The result of normalization is 

illustrated in Figure 13.  

 

 

3.3 Cell Segmentation 

Image segmentation is the partitioning of an image into multiple regions of interest. The 

easiest method to segment images is through manual classification, when one edits the 

image to delineate areas of interest. In our case the areas of interest correspond to cross-

sections of cells. Image segmentation is an extensively explored problem in computer 

vision. Many algorithms and methods have been developed in the past years, which 

include watershed segmentation and edge detection. We have adapted the methods to cell 

image segmentation as described in the remainder of this section.  

The combination of watershed and edge detection algorithms produced good results in 

segmenting heart cells from cross-sectional slices. The principle behind watershed 

detection is to treat the image as a set of basins or wells. Black regions are considered the 

bottom of the wells called basins and the white the bright areas are treated as tops of the 

wells called watershed lines [8]. Figure 14 shows a one dimensional example of how an 

image is treated in watershed segmentation.  

One problem with watershed methods is that applying them to noisy images results in 

over segmentation. To prevent over segmentation, one can impose minima to 

predetermine where the basins are located [8].  This information provides more control of 

the segmentation for images that might have large variability in their intensity values.  
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As we can see in Figure 15a, the staining has already provided a division between each 

cell. But the division is not consistent. Some borders are dimmer than others and using  

 

Figure 14. One dimensional example of watershed representation. The watershed lines 
divide regions based on minima and maxima, minima are basins while maxima are 
watershed lines.  
 

simple threshholding methods will fail, since some of the borders have the same intensity 

as some of the cells. Applying watershed and edge detection algorithms directly does not 

yield desirable results either, as demonstrated in Figure 15. 

Our modified algorithm starts by treating a grayscale image as a collection of wells as 

described above. First we calculate the minima of regions, and then impose those minima 

as markers so that watershed can create a pre-segmentation of the image. The minima are 

used as region markers to prevent over segmentation. 



 25

 

 

(a)   (b)  

       (c)  

Figure 15. Example of cells which will be segmented (a). Direct implementation of 
typical watershed (b).  Direct implementation of an edge detection algorithm using 

Prewitt methods with a threshold of .1 (c). 
 

 

A watershed algorithm is then performed on the image using the minima found as basins. 

Figure 16 (a) demonstrates the minima imposed on the image before performing a 

watershed segmentation. The contrast of the image is adjusted to facilitate the watershed 

propagation. The resulting image is shown in Figure 16 (b). The watershed lines are 

superimposed on the adjusted contrast image so that edge detection is forced to use the 

watershed lines. Using a gradient based edge detection algorithm we can obtain the image 

in figure 17 (a). 
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 (a)   (b)  

Figure 16.  Imposed minima to control over segmentation of watershed algorithms (a) 
and watershed lines and increased contrast of the image (b). 

 
 

 

(a)  (b)  

Figure 17. Edge detection results (a). Segmented image (b). White objects correspond to 
cells. We can now easily extract cell shapes along with other parameters such as 
centroids and areas.   
 

Vertical and horizontal dilation of two pixels is performed to obtain solid boundary lines. 

Dilation forces smaller objects such as capillaries in the images to be considered as 

borders. This is advantageous if one is interested in finding the number of cells in a given 
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cross-section, causing the cells to be the counted and smaller objects to be ignored in the 

count. The final edge detection results are illustrated in Figure 17 (b).  

 

 

Figure 18. Interpolated cross-section of the yz plane. 

 
3.4 Multi-plane interpolation 
 
 
Interpolation enables display of different cross-sections of the imaged volume. Because 

we only cut the tissue sample perpendicular to one direction, imaging cross-sections of 

different planes is impossible. Using interpolation allows us not only to see different 

cross-sections but also to ensure the validity of registration results along the z-direction. 

 Multi-photon images allow for higher resolution of 1.5µm between slices and for 

minimal distortion in the z registration. These two features enable us to interpolate cross-

sectional slices in other planes much more accurately and with higher resolution. We can 

use k-nearest neighbor interpolation algorithms to find cross-sections with the image 
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stacks acquired. Interpolation of any plane can be accomplished as illustrated in Figure 

18. 

 

3.5  Whole Cell Reconstruction 

After registration and segmentation steps are completed, it is possible to reconstruct the 

volumetric structure of the cells. Using our larger registered images we now pick a region 

and track cells from layer to layer. The tracking is done by finding the cell continuation 

from a previous layer. As cells are tracked, the segmentation program is used to obtain 

the shape, the centroid and the area measurements. The centroid is used to later identify 

where the cell is located and to also find the cell orientation. Once we have three or more 

centroids from different layers of the same cell, a linear regression is used to fit a vector 

through those points. Characterizing cell orientation throughout the heart tells us how the 

cells are oriented in the tissue. Using the cross-sectional areas of the tracked cell,  

 

 

Figure 19. Cell selection after segmentation. Red colored cells are saved in a different file. 
These files are then imported into software such as Amira for visualization.  
 

we apply a disk integration to obtain the volume which equals ∑
=

∆×
n

i
i zArea

1
 where ∆ z is 

the thickness or distance between layers (in the two photon case it is 1.5 µm). Cell 
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surface area is calculated by measuring the perimeters of each cross-section and 

multiplying by the distances between the slices. During cell tracking, the cell in question 

is colored in, after the segmentation all cells have a pointer to them and are treated as 

objects. Cells are selected and colored in as in Figure 19; a new image is then created 

with black background and the cell as all white. This image is used later for visualization 

of the cell structure in 3D.  

 

 

3.6 Visualization 

To visualize a cell, we use the cell segmentation images. These images have the shape 

and the location of the cell. They also contain a cross-sections stack of one cell. Using 

software such as Amira or Matlab we can create a visual 3D model. Figure 20 shows us 

the interpolation in the z-direction used in Amira to construct the cell model. The regular  

 

 

 

 

 

 

 

 

 

Figure 20. Final visual model. This model was created using manual imaging. The 
rendering was created through a program called Amira.  
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Figure 21. Images imported into Amira allow us to see where cells marked with 
fluorescence are located relative to the section of the heart.  
 
 
fluorescent microscope was used to obtain the images used for the models in 20. As one 

can see, because of the errors in image collection, images from layer to layer are shifted 

slightly and the cells do not look as smooth as we would expect from the biology of the 

tissue.  

Amira is a three-dimensional visualization program created by Mercury Computer 

Microsystems. Amira is a dynamic software package that is able to take a variety of 

different large data sets and construct 3D models such as the one in Figure 21. Another 

similar available program includes 3D Slicer which is free through www.slicer.org. 
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Chapter 4     System Implementation 

The algorithms described in the previous chapter were implemented in Matlab. Although 

any of these algorithms and image processing techniques can be implemented in any 

programming language, Matlab’s rich function libraries allow fast prototyping and 

experiments. The Matlab programs are attached as Appendix A.  

 

4.1 Registration 

Appendix A.1 provides the algorithms used for image registration. In particular the most 

important function for region based registration is normxcorr2. This function performs 

the normalized cross correlation evaluation of two matrices. Using this function and its 

results, offsets can be calculated and image registration can be implemented as a simple 

loop. 

For the feature based registration of images misaligned in the z-direction, the cpt2form 

function creates a rotation and shift matrix from the input points in two images. The 

matrix represents the rigid transformation to be applied to an image.  

 

4.2 Segmentation 

The two key functions for segmentation are the watershed and the edge functions. Pre-

processing the images as mentioned in section 3.3 is crucial to implementing the 

watershed algorithm effectively. Appendix A.2 provides the functions that calculate and 

impose minima on the image of interest before the watershed algorithm is applied. 
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Matlab also has some options for edge detection such as Prewit or Canny methods to 

edge detection. Whichever method one chooses should be tested on the type of images 

used in the experiments. Dilation of images can be performed using the dilate function. 

The user can specify how large the dilation in the x and y directions should be and the 

shape of the dilation kernel 

To obtain cross-sectional area and perimeter measurements, Matlab’s regionprops 

function classifies different objects by their connectivity. It then stores properties of those 

objects such as area, perimeter length and centroids. For more detail, we refer the readers 

to the Appendix.  
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Chapter 5      Experimental Validation 

This chapter discusses results of the applications of cellular level 3D reconstruction.  

 

5.1 Hypertrophy in Cardiomyocytes 

In a recent study it was shown that overexpression of heparin-binding epidermal growth 

factor (HB-EGF) causes cardiac hypertrophy on cells and its immediate neighbors in vivo 

[9]. Hypertrophy is an increase in the size of a tissue or organ due to the enlargement of 

existing cells. Cardiac hypertrophy is a physiological response that enables the heart to 

adapt to an initial stress. However these increases in sizes can lead to deterioration in 

cardiac function and an increase in cardiac arrhythmias. In this study we aimed to answer 

the following question: If a cell produces signals that lead to hypertrophy, how are the 

neighboring cells affected? 

Two dimensional cross-sectional area data showed that cells that produce signals which 

cause hypertrophy do indeed have larger cross-sectional area and so did their neighboring 

cells compared to remote cells. Although cross-sectional area increased, it is also 

important to consider the overall volume of the cells since it is possible that cells became 

wider but also shorter. Applying 3D visual and quantitative reconstruction proved indeed 

that the overall volumes of infected cells and their neighbors increased significantly. It 

also determined that the average volume of cardiac myocytes is about 20,000 cubic 

micrometers. Figure 22 illustrates results of the study, previously published in [9]. It 

illustrates that cardiomyocytes almost doubled in volumetric size when infected by HB-

EGF, and neighboring cells increased on average by 50 percent.  
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Figure 22.  Effects of gene transfer of HB-EGF on cardiomyocyte hypertrophy in vivo. 
(A) Two-dimensional cross-sectional area of myocytes measured from left ventricle cross 
sections. Virus infected cells expressing GFP were analyzed, as well as cells adjacent to 
the GFP expressing cells, and cells remote to the GFP expressing cell in each of the Ad-
HB-EGF and Ad-GFP injected hearts. Ad-HB-EGF caused a significant increase in size 
(41% increase compared to Ad-GFP-infected cells, **P<0.01) and non-infected adjacent 
cells to Ad-HB-EGF (33% increase of Ad-GFP-adjacent cells, §P<0.01) compared to 
remote cells. In Ad-GFP injected hearts (n infected=102 cells, n adjacent=92 cells, n 
remote=97 cells from 5 mice), and in Ad-HB-EGF injected hearts (n infected=119 cells, 
n adjacent=97 cells, n remote=109 cells from 7 mice). (B) Three-dimensional myocyte 
volume measured from left ventricle cross-sections registered in the z direction. Virus 
infected cells expressing GFP were analyzed, as well as cells adjacent to the GFP 
expressing cells, and cells remote to the GFP expressing cell in each of the Ad-HB-EGF 
and Ad-GFP injected hearts. Ad-HBEGF induced hypertrophy in the infected cell and its 
adjacent cell only. Ad-HB-EGF cell volumes were significantly greater than Ad-GFP 
infected cells (**P<0.01) and remote cells in the Ad-HB-EGF injected heart (†P<0.01). 
Additionally, cells adjacent to the Ad-HB-EGF cells were significantly larger than remote 
cells in the Ad-HB-EGF (*P<0.05) injected heart. In Ad-GFP injected hearts  n 
infected=12 cells, n adjacent=10 cells, n remote=9 cells) and in Ad-HB-EGF injected 
hearts (n infected=19 cells, n adjacent=11 cells, n remote=13 cells). (C) Sample image of 
extracted myocytes in three dimensions. [9] 
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5.2 Gene Mutated Mice Exhibit Abnormal Cardiac Cell Growth.  

In this study, we examined the structure of cells in mutant mice. Preliminary data using 

3D cellular reconstruction have been gathered. In this study (Seidman Lab, Harvard 

Medical School) mice with specific gene mutations were compared to wild-type mice. 

The study showed that the cardiomyocyte volume in the mutated mice on average was 

three times greater than in wild-type mice. The cells also exhibited abnormal shape 

compared to myocytes from wild-type mice. Figure 23 shows in blue a cell which was 

reconstructed using our methods. We note that it is not a normal log-shaped myocyte. 

Figure 24 shows the difference between calculated volumes of cells in mutated and non 

mutated mice.  

 

 

Figure 23. Block of a registered section. On the right only the maleimide is show, the 
blue is a cell which was tracked over the tissue block. 
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Figure 24. Volumetric data. 4574 mouse had a gene mutation while the 4573 mouse was 
a wild-type. The samples are 10 heart cells each.  
 
 
 
To summarize, the results in this chapter demonstrate that the methods developed in this 
thesis offer benefits in quantitative analysis of cell structure and its visualization. The 
software is actively used by the Lee Lab to characterize the cardiac cell structure. 
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Chapter 6     Discussion and Conclusions 

Three dimensional image reconstruction of tissue can only be performed if proper 

labeling of the tissue is applied.  Maleimide staining of the mouse heart through a tail 

vein injection demonstrated that high quality images can be taken of heart tissue. This 

staining method was used on the entire heart instead of specific target regions. Using a 

tail-vein injection for mice avoids tissue damage that occurs if stains are directly injected 

through a syringe. This is important if the goal is to quantify the shape and any 3D data 

of healthy cells. 

The natural structure of the heart allowed for specific segmentation algorithms to be used. 

Taking advantage of the spatial structure of the cells allows us to utilize existing 

segmentation algorithms instead of developing tissue specific methods. Watershed 

segmentation worked well on cross-sectional slices of heart cells and the use of edge 

detection algorithms enabled refined classification of cells.  

The use of the multi-photon microscope to image tissue has many advantages. The 

automated setup enables fast scanning. A 1mm x 1mm x 1 mm can be imaged in 6 hours 

with 1.5 µm sparing between the slices. In addition, since two photon microscopy only 

excites fluorophores in the regions where the image is taken, photobleaching is not as 

great a concern. In typical fluorescence microscopy because one exposes more of the 

tissue than is imaged, excitation photobleaching can cause delays in exposure time to 

obtain adequate images. Manual imaging is also tedious and the depth resolution is 

limited to the resolution of the microtome used to create the samples on slides.  
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Post-processing of registration of images is greatly reduced when images are taken with 

the multi-photon microscope. Because of the motorized stage, registration is constrained 

by the fixed offset the stepper motors provide. Only minor correction is needed for 

registration in the xy plane. In contrast with the manual methods the real time cutting and 

imaging avoids rotational distortion, making tracking of cells faster. The higher 

resolution in the z-direction helps in determining where cells begin and end more 

accurately. In general the multi-photon system enabled faster image acquisition of larger 

volumes, less registration processes, and easier cell tracking.  

Future work should focus on further automation of the three dimensional segmentation of 

cells using multi-photon images. To achieve this goal, an accurate and efficient method 

must be created to identify the end points of cells. This in itself is a challenging problem 

and is worthy of a separate thesis topic. Automating this process will allow for fast 

calculations of volumes, surface area and cell orientation. Currently the process is tedious, 

as cells are tracked from image to image by a person. The person has to make a decision 

on where those cells should end, using the knowledge of the average cell length and 

taking into account changes to the surroundings of the cell, such as other cells appearing 

and disappearing. To help with these decisions, nuclear stains could be used to provide 

extra decision parameters. Using these criteria, among others, automated decision rules or 

classifiers can be created.  

To conclude, the methods developed in this work analyze planar images and recover 3D 

cell structure from the collection of slices. The algorithms for cell extraction and 

visualization have been successfully demonstrated in real biological studies of the heart 

tissue. The experimental validation proved the utility of the methods and highlighted 
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directions for future research. The analysis and visualization techniques described in this 

thesis represent the first step toward fully automatic volumetric analysis of cell structure.  
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Appendix 
 
A.1 Registration Code 
 
function [xoffset,yoffset,width1]=RLreg(file1,file2,percent) 
%Program registers two images together file1 and file2 which have 
%horizontal overlap. It outputs the xoffset and yoffset of the second 
image 
%to the first and the width it starts from. file1 is the image to the 
left 
%and file2 is the image to the right. This function is used in the 
%Plane_register program. 
f1=file1; 
f2=file2; 
f1size=size(f1);  %obtain the size of the image 
f2size=size(f2); 
xmin1=ceil(f1size(2)*(1-percent)); %overlay dimensions 
ymin=1; 
width1=f1size(2)-xmin1; 
width2=f2size(2)-ceil(f2size(2)*(1-percent)); 
height=f1size(1); 
rect_f1=[xmin1 ymin width1 height];      %crop box for f1 
rect_f2=[1 ymin width2 height];         %crop box for f2 
sub_f1 = imcrop(f1,rect_f1);            %crop images 
sub_f2 = imcrop(f2,rect_f2); 
sub_f1 = im2bw(sub_f1,.5);  %turn image to black and white images 0 or 
1 for faster computation 
sub_f2 = im2bw(sub_f2,.5); 
c=normxcorr2(sub_f1(:,:,1),sub_f2(:,:,1));  %calculate normalized cross 
correlation 
[max_c,imax]=max(c); 
xpeak=find(max_c==max(max_c)); %find the maximum value for the x-
coordinate 
ypeak=imax(xpeak); %find where the y-coordinate of the max value 
occures 
corr_offset = [(xpeak-size(sub_f1,2)),(ypeak-size(sub_f1,1))]; %find 
the offsets 
% total offset 
offset = corr_offset; 
xoffset = offset(1); 
yoffset = offset(2); 
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function [xoffset,yoffset,height1]=TBreg(file1,file2,percent) 
%registers two images along the top row and gives the overlap of file1 
to 
%file2 in an x, file1 is the bottom file, percent is the percent 
overlap 
%you want to check 
%created by Francisco Cruz 
f1=file1; 
f2=file2; 
f1s=size(f1);  %gives [y x] 
f2s=size(f2); 
xmin= 1;%overlay dimensions 
ymin2=ceil(f1s(1)*(1-percent)); 
width=f1s(2); 
height1=f1s(1)-ceil(f2s(1)*(1-percent)); 
height2=f2s(1)-ceil(f2s(1)*(1-percent)); 
rect_f1=[xmin 1 width height1];      %crop box for f1 
rect_f2=[xmin ymin2 width height2];         %crop box for f2 
sub_f1 = imcrop(f1,rect_f1);            %crop images 
sub_f2 = imcrop(f2,rect_f2); 
sub_f1 = im2bw(sub_f1,.5); 
sub_f2 = im2bw(sub_f2,.5); 
c=normxcorr2(sub_f1(:,:,1),sub_f2(:,:,1)); %find the best correlation! 
%find the total offset by correlation 
[max_c,imax]=max(c); 
xpeak=find(max_c==max(max_c)); 
ypeak=imax(xpeak); 
corr_offset = [(xpeak-size(sub_f1,2)),(ypeak-size(sub_f1,1))]; 
% total offset 
offset = corr_offset; 
xoffset = offset(1); 
yoffset = offset(2); 
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clear; 
%This program registers a set of images inputed by the user.  
%This program calls on the functions TBreg and RLreg in order to 
register 
%images. The user inputs a matrix in which the images are laid out. The 
%user then inputs a percentage which the images are overlapping. This 
%percent is the max overlap that any two images overlay on each other.  
 
%Enter the matrix positions and percent overlap 
layout_string=inputdlg('Overlay pattern','overlay pattern'); 
layout=str2num(layout_string{1}); 
percentage=inputdlg('Percent of Overlap','Percent Overlap of Images'); 
percent=str2num(percentage{1})/100; 
number_of_images=layout(1)*layout(2); 
reference=[1:number_of_images]; 
reference=reshape(reference,layout(1),layout(2)) 
%Get and read the images 
for k=1:number_of_images 
    [filename, pathname]=uigetfile('*.*',['select image' int2str(k)]) 
    cd(pathname); 
    F(:,:,k)=imread(filename); 
end 
%Create a layout for the images 
Fsize=size(F); 
dimensions_of_final=[layout(1)*Fsize(1)+200 layout(2)*Fsize(2)+200]; 
final_image=uint8(zeros(dimensions_of_final)); 
xrlshift=[0];xrlshiftN=[0]; 
yrlshift=[0];yrlshiftN=[0]; 
xtbshift=0;ytbshift=0; 
xtb=[0];ytb=[0];xl=[0];yrl=[0]; 
XShift=[0]; YShift=[0]; 
%Perform registration on images which overlap vertically 
if layout(1)>1 
    for j=1 
        for i=1:layout(1)-1 
            
[xtb(i),ytb(i),h(i)]=TBreg(F(:,:,reference(i+1,j)),F(:,:,reference(i,j)
),percent); 
            XShift(i+1,j)=XShift(i)+xtb(i); 
            YShift(i+1,j)=YShift(i)+Fsize(1)+ytb(i)-h(i); 
        end 
    end 
else 
end 
%Perform registration on images which overlap horizontally 
if layout(2)>1 
    for j=2:layout(2) 
        for i=1:layout(1) 
            reference(i,j) 
            [xrl(i,j-1),yrl(i,j-1),w(i,j-1)]=RLreg(F(:,:,reference(i,j-
1)),F(:,:,reference(i,j)),percent); 
            XShift(i,j)=XShift(i,j-1)+Fsize(2)-xrl(i,j-1)-w(i,j-1); 
            YShift(i,j)=YShift(i,j-1)-yrl(i,j-1); 
        end 
    end 
else 
end 
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XShift 
YShift 
%Construct the final image 
for j=1:layout(2) 
    for i=1:layout(1) 
        
final_image(201+YShift(i,j):200+Fsize(1)+YShift(i,j),201+XShift(i,j):20
0+Fsize(2)+XShift(i,j))=F(:,:,reference(i,j)); 
    end 
end 
figure(33) 
imshow(final_image) 
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Rotate_Image.m 

[filename, pathname]=uigetfile('*.*',['select image' int2str(k)]) 
cd(pathname); 
untransformed = imread(filename); 
Rotation_Shift_Matrix = cp2tform(input_points,base_points, 'linear 
conformal'); 
m=Rotation_Shift_Matrix.tdata.T; 
scale=sqrt(m(1,1)^2+m(1,2)^2); 
replace=[m(1:2,1:3)/scale; m(3,1:3)]; 
New_Matrix= maketform('projective',replace); 
transformed = imtransform(untransformed, New_Matrix); 
imshow(transformed) 
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A.2 Segmentation Code 

function output = bwcfind(bwimage) 
%this function is used in preparation to the watershed program, this 
finds 
%the centroids of the objects in the image and imposes a minima on them 
l = bwlabel(bwimage); 
props = regionprops(l, 'Centroid'); 
Max= size(props, 1); 
n=0; 
output = zeros(size(bwimage)); 
while n < Max 
    n= n+1; 
    x= floor(props(n).Centroid(1)); 
    y = floor(props(n).Centroid(2)); 
    if x > (size(bwimage,2)-2) |  y > (size(bwimage,1)-2) 
        output(y, x) = 1; 
    else  
        output(y:y+2, x:x+2) = 1; 
    end 
end 
ouput = uint8(output); 
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function masked_image = image_mask(image, mask, mask_value, value) 
%this program creates a mask for the images before performing watershed 
%this imposes the minima from bwcfind 
masked_image = image; 
if ndims(image) > 2    
    logical_matrix(:,:,1)= ismember(double(mask), mask_value); 
    logical_matrix(:,:,2)= logical_matrix(:,:,1); 
    logical_matrix(:,:,3)= logical_matrix(:,:,1); 
    masked_image(logical_matrix) = value; 
else 
    logical_matrix = ismember(double(mask), mask_value); 
    masked_image(logical_matrix) = value; 
end 
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clear; 
%this program allows the user to select features from an image, such as 
%cells, and other objects which are round and are light in color. 
[file, pathname]=uigetfile('*.*','Select Image'); 
cd(pathname) 
threshold_value=inputdlg('Threshold value','Threshold value',1,{'25'}); 
thresh=str2num(threshold_value{1}); 
slice=imread(file); 
figure(1), imshow(slice), title('original'); 
% % % % % % % % % % % % % % % % % % % % % % % % % %  
[Asmall,Rsmall]=imcrop(slice); % Crop the area of interest 
% % % % % % % % % % % % % % % % % % % % % % % % % %  
Main=Asmall(:,:,1); 
Main_a = imadjust(Main,[.2 .9],[]); % If needed adjust the values, 
these change the contrast of the images between the black and white 
features 
% % % % % % % % % % % % % % % % % % % % % % % % % %  
Seed_BW = imextendedmin(Main,thresh); 
Seeded_BW = bwcfind(Seed_BW); 
% Prepare the image for watershed segmentation 
Wat_BW = imimposemin(Main, Seeded_BW); 
Wat_BW_final = watershed(Wat_BW); 
Img_Wat = image_mask(Main_a, Wat_BW_final, 0, ... 
       max(Main_a(:))); 
% % % % % % % % % % % % % % % % % % % % % % % % % %     
%figure(89), imshow(Img_Wat) 
BWms=edge(Img_Wat, 'prewitt', .1); %Change the value if the threshold 
is too low or high, this calls on edge detection algorithm 
se90 = strel('line', 2, 90); 
se0 = strel('line', 2, 0); 
BWmsdil = ~imdilate(BWms, [se90 se0]); %This connects the edges and 
makes whole objects and also inverts the images so the objects are now 
white instead of black 
BWmdfill = imfill(BWmsdil, 'holes'); %Fill in the holes in the objects 
BWmnobord = imclearborder(BWmdfill, 4); %Get rid of objects touching 
the borders, so only whole cells are counted 
BWmfinal = BWmnobord; 
BWgoutline = bwperim(BWmfinal); %Create the outline for the cells 
BWmlabel=bwlabel(BWmfinal); 
stats=regionprops(BWmlabel); 
% % % % % % % % % % % % % % % % % % % % % % % % % % %  
h=fspecial('disk',2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
BWgoutline=bwperim(BWmlabel); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%The following produces the code in order to pick out cells from the 
figure 
figure(1), imshow(BWmdfill),title('water') 
Overlap(:,:,1)=Asmall; 
Overlap(:,:,2)=Asmall; 
Overlap(:,:,3)=Asmall; 
segsize=size(Overlap); 
figure(4) 
imshow(Overlap) 
WantedCell=zeros([segsize(1) segsize(2)]); 
button=0; 
N=0; 
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while button~=2 
    [x,y,button]=ginput(1); 
    Object=BWmlabel(round(y), round(x)) 
    if Object>0 && button==1 
        N=N+1; 
        idx2=find(BWmlabel==Object); 
        WantedCell(idx2)=BWmfinal(idx2); 
        Overlap(:,:,1)=uint8(double(150*WantedCell)/2+double(Asmall)); 
        imshow(Overlap) 
        centroid_of_cell=stats(Object).Centroid; 
        area_of_cell=stats(Object).Area; 
        centroids(N,:)=[[Rsmall(1) Rsmall(2)] + centroid_of_cell]; 
        Areas(N,:)=area_of_cell; 
    end 
end 
Areas 
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A.3  Image Normalization for Multi-photon microscope 
 
function [S,Mean_S]=ave_192(M) 
for i=0:5 
    for j=0:5 
        Square=M(i*32+1:i*32+32,j*32+1:j*32+32); 
        Mean_S(i+1,j+1)=mean(mean(Square)); 
    end 
     
end 
Mean_S; 
mean_of_mean=mean(mean(Mean_S(2:5,2:5))); 
S=M; 
for i=[0 5] 
    for j=0:5 
       
S(i*32+1:i*32+32,j*32+1:j*32+32)=M(i*32+1:i*32+32,j*32+1:j*32+32).*(mea
n_of_mean/Mean_S(i+1,j+1)); 
    end 
end 
  
for i=[1:4] 
    for j=[0 5] 
       
S(i*32+1:i*32+32,j*32+1:j*32+32)=M(i*32+1:i*32+32,j*32+1:j*32+32).*(mea
n_of_mean/Mean_S(i+1,j+1)); 
    end 
end 
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A.4 Multi-plane interpolation 
 
% program will take a line that the user specifies and plot it across 
all 
% frames of a broken movie to see reconstruct what a z-frame would look 
% like. 
% select first image, then the image (slightly noise reduced) will 
display. 
%  Draw a line that you wish to get the z-info from and then hit enter 
%  (must click at both beginning and end of the line before hitting 
enter. 
%  The program will process and display (the transpose) of the 
extracted 
%  z-sections. 
clear; 
[filename, pathname]=uigetfile('*.*','Select first frame'); 
if filename 
    imagepath=pathname; 
    cd(pathname) 
    file=fullfile(pathname,filename); 
    [path,fname,ext]=fileparts(filename); 
    maxN=CountFrames(filename,pathname); 
    disp(['analyzing the files: ', fname, ext]) 
    disp(['  detected ', num2str(maxN), ' frames']) 
    nfile=file; 
% display first image and let the user select a line 
    nimg=imread(file); 
  %  nimg=rgb2gray(nimg); 
    [na,nb]=size(nimg); 
    % some image processing for reducing noise 
    %mim=mean2(nimg); 
    for i=1:na 
        for j=1:nb 
            ntemp=double(nimg(i,j))/255; 
            ntemp=uint8(255*ntemp*ntemp); 
            nimg(i,j)=ntemp; 
%           if nimg(i,j)<mim 
%               nimg(i,j)=0; 
%           end 
        end 
    end 
     
    im2an=imshow(nimg); 
% let the user draw a line 
    [cx,cy,c,xi,yi]=improfile(im2an); 
    [ca,cb]=size(c); 
% ca is the length of c 
    newdata=zeros(ca,maxN); 
    newdata(:,1)=c; 
    nFile=file; 
    for i=1:maxN-1 
        file=nFile; 
        nFile=FindNextFile(file); 
        nimg=imread(file); 
        nimg=rgb2gray(nimg); 
%       mim=mean2(nimg); 
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        for k=1:na 
            for j=1:nb 
            ntemp=double(nimg(i,j))/255; 
            ntemp=uint8(255*ntemp*ntemp); 
            nimg(i,j)=ntemp; 
 %          if nimg(k,j)<mim 
 %              nimg(k,j)=0; 
 %          end 
            end 
        end 
        xlabel(['frame ', num2str(i)]); 
        d=improfile(nimg,xi,yi,ca); 
        newdata(:,i+1)=d; 
    end 
end 
newconstruct=uint8(newdata); 
imshow(newconstruct); 
fileout=[path,fname,'z',ext]; 
imwrite(newconstruct,fileout); 
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%% Sub-function FindNextFile 
function [filename,num]=FindNextFile(currfile) 
[path,fnamsh,ext]=fileparts(currfile); 
%determine current file number 
i=1; 
while length(str2num(fnamsh(end-i:end))) 
    i=i+1;    
end 
num=str2num(fnamsh(end-i+1:end)); 
if num>=0  % only perform analysis if file contains number in 
the filename 
    % determine the following number 
    n=num+1;   
    N=length(num2str(n)); 
    nextfile1=[fnamsh(1:end-N), num2str(n), ext]; 
    if mod(log10(n),1) 
        nextfile2=nextfile1; 
    else    
        nextfile2=[fnamsh(1:end-N+1), num2str(n), ext]; 
    end 
    if exist(fullfile(path,nextfile1))==2 
        filename=fullfile(path,nextfile1); 
    elseif exist(fullfile(path,nextfile2))==2 
        filename=fullfile(path,nextfile2); 
    else 
        filename='-1'; 
    end 
else 
    filename='-1'; 
    num=-1; 
end
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%% Sub-function CountFrames 
function Frames=CountFrames(filename,pathname) 
n=0; 
nextname=fullfile(pathname,filename); 
while (~strcmp(nextname,'-1') & n<10000) 
    n=n+1; 
    prevname=nextname; 
    nextname=FindNextFile(prevname); 
end 
Frames=n; 


