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Abstract. We propose and demonstrate an inference algorithm for the
automatic segmentation of cerebrovascular pathologies in clinical MR
images of the brain. Identifying and differentiating pathologies is impor-
tant for understanding the underlying mechanisms and clinical outcomes
of cerebral ischemia. Manual delineation of separate pathologies is infea-
sible in large studies of stroke that include thousands of patients. Unlike
normal brain tissues and structures, the location and shape of the le-
sions vary across patients, presenting serious challenges for prior-driven
segmentation. Our generative model captures spatial patterns and in-
tensity properties associated with different cerebrovascular pathologies
in stroke patients. We demonstrate the resulting segmentation algorithm
on clinical images of a stroke patient cohort.

1 Introduction

Identifying and differentiating cerebrovascular pathologies in brain MRI is crit-
ical for understanding cerebral ischemia (insufficient blood flow to the brain).
Unfortunately, different lesion types, such as leukoaraiosis (small-vessel disease)
and stroke, cannot be distinguished purely based on intensities or location. Clin-
icians use anatomical and other medical knowledge to categorize and delineate
pathology. We model intensity, shape, and spatial distribution of pathologies to
capture this anatomical knowledge of variability of pathology in order to suc-
cessfully annotate clinical brain scans in stroke patients.

Our work is motivated by imaging studies of stroke patients that acquire mul-
timodal brain scans within 48 hours of stroke onset. To understand susceptibility
to cerebral ischemia and associated risk factors, clinicians manually outline and
analyze vascular pathologies, focusing on leukoaraiosis and separating it from
stroke lesions. Using this approach, leukoaraiosis burden has been shown to be
lower in patients with transient ischemic attacks compared to patients with more
damaging cerebral infarcts [11]. Manual delineation of leukoaraiosis and stroke
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Fig. 1. Left: T2-FLAIR axial slice. Stroke (blue outline) can appear anywhere in the
brain, can vary dramatically in shape, and is hyperintense. Leukoaraiosis (yellow out-
line) is generally peri-ventricular, has a more predictable spatial distribution than
stroke lesions, and is usually roughly symmetric across hemispheres. We outline imag-
ing artifacts (red) that can interfere with automatic segmentation of pathologies. Right:
Examples of various stroke shapes and sizes, manually outlined in green.

takes up to 30 minutes per patient, and large population studies contain hun-
dreds to thousands of patients. Automatic segmentation is therefore necessary.
Here, we focus on segmenting leukoaraiosis and separating it from stroke lesions.

Variability in shape and location of lesions is one of the main challenges in au-
tomatic segmentation of stroke scans. Leukoaraiosis appears hyperintense in T2-
FLAIR, is found peri-ventricularly, has a widely variable extent, and is roughly
bilaterally symmetric. While also hyperintense, strokes can happen nearly any-
where in the brain and vary dramatically in size and shape. While acute stroke
(stroke that occurred in the last 48 hours) is visible on diffusion weighted MR
(DWI), the same is not true for chronic stroke (stroke that occurred a long time
before imaging). Additionally, DWI is often not available [17]. In this paper, we
concentrate on the more difficult task of separating leukoaraiosis from stroke,
both acute and chronic, in T2-FLAIR. Another challenge is the low quality of
images in the clinical setting due to the extremely limited scanning time. This
results in thick slices (5-7mm) and bright artifacts, which hinder registration
and intensity equalization of clinical images and further complicate automatic
segmentation. Representative images and segmentations are shown in Figure 1,
illustrating our challenge.

We introduce a generative probabilistic model of the effects of the cerebrovas-
cular disease on the brain. The model integrates important aspects of each
pathology, leading to an effective inference algorithm for segmentation and sep-
aration of different tissues in stroke patients. Specifically, we learn the spatial
distribution and intensity profile of leukoaraiosis, as well as the intensity profile
of stroke. We train the model on an expert-labeled dataset and demonstrate that
our modeling choices capture notions used by clinicians, such as symmetry and
covariation of intensity patterns. To the best of our knowledge, this is the first
comprehensive segmentation approach for different cerebrovascular pathologies.

Our model incorporates several approaches previously proposed for segmen-
tation of healthy anatomy that is consistent across individuals [3,15,16]. We
combine these methods to accurately model pathology. Intensity-based lesion
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Fig. 2. A graphical representation of our generative model.
Circles indicate random variable and rounded squares repre-
sent parameters. Shaded circles represent observed quantities
and the plates indicate replication. I is the acquired image.
The image intensities are generated from a normal distri-
bution parametrized by μc and σc for each tissue class c in
the label map C. Priors for the tissue classes are controlled
by the weights �αk� of the K-component PCA shape model
and spatial parameters βx that define the prior probability
of stroke in non-leukoaraiosis tissue.

segmentation algorithms utilize tissue intensities to segment pathology [1,7]. Spa-
tial priors are sometimes added in a form of Markov Random Fields or spatial
distributions [4,12,15]. These methods are successful in delineating structures
that are hyper- or hypointense compared to their surroundings, such as MS
lesions or tumors. Unfortunately, these methods are not designed to differenti-
ate between multiple hyperintense structures, such as leukoaraiosis, stroke, and
certain artifacts, which share an intensity profile and can co-occur spatially.
Clinicians use spatial features, such as the bilateral symmetry of leukoaraiosis,
to tell them apart. Shape-based methods generally model the shape of a struc-
ture, either via an explicit [3,8,14] or implicit [5,9,10] representation. We utilize
a shape model to capture the variability in spatial distribution of leukoaraiosis,
which develops in a consistent pattern peri-ventricularly. In contrast, stroke can
happen at random locations almost anywhere in the brain, and has no obvious
shape or location profile (Figure 1). We demonstrate that combining intensity
and spatial context for stroke and spatial distribution models for leukoaraiosis
produces accurate segmentation. We validate the method on over 100 stroke
subjects with various pathologies and artifacts.

2 Generative Model

We use a generative model to describe the spatial distribution, shape and ap-
pearance of healthy tissue and cerebrovascular pathology. Figure 2 provides a
graphical representation of our model.

We let Ω be the set of all spatial locations (voxels) in an image, and I �
�Ix�x�Ω be the acquired image. We assume image I is generated from a spa-
tially varying label map C � �Cx�x�Ω that represents tissue classes. For each
voxel x,Cx is a length-3 binary indicator vector that encodes three tissue labels –
leukaraiosis (L), stroke (S) and healthy tissue (H). We use notation Cx�c� � 1 to
mean that the tissue class at voxel x is c, for c � �L, S,H�. Otherwise, Cx�c� � 0.

Given the label map C, the intensity observations Ix are generated indepen-
dently from a Gaussian distribution:

P �I�C;μ,σ� �
�
x�Ω

�
c�C

N �Ix;μc, σc�
Cx�c�, (1)

where N ��;μ, σ� is the normal distribution parametrized by mean μ and vari-
ance σ2, C � �L, S,H�, μ � �μL, μS , μH� and σ � �σL, σH , σS�.
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The prior for the tissue classes captures our knowledge about spatial distri-
butions and shape of pathology. We assume that the spatial extent of leukoa-
raiosis depends on a spatial distribution M � �Mx�x�Ω, where Mx is a prior
for leukoaraiosis for voxel x. As we describe later on, M will be parametrized
by parameter α. If voxel x is not assigned to leukoaraiosis, it is assigned to
be stroke with spatially varying probability βx, and to be healthy tissue with
probability �1 	 βx�. To encourage spatial contiguity, we incorporate a Markov
Random Field (MRF) as a spatial prior. Formally,

P �C�α,β� �
�
x

�
c

πx�c�
Cx�c�

�
y�N�x�

exp
�
CT

xACy

�
, (2)

where

πx � 
Mx�α�, �1	Mx�α��βx, �1	Mx�α���1	 βx��
T

(3)

is a length-3 vector of prior probabilities for the three tissue classes as described
above, N�x� is the set of voxel locations neighboring x, and the 3� 3 matrix A
is chosen to encourage neighboring voxels to share the same tissue label. In our
implementation, the MRF term penalizes interactions between stroke and other
tissues more than leukoaraiosis bordering healthy tissue, as we find that stroke
is generally more spatially contiguous than leukoaraiosis, which is more diffuse.

Using (1), (2) and (3), we form the posterior distribution for the tissue classes:

P �C � I;μ,σ,α,β�  P �I,C;μ,σ,α,β� � P �I�C;μ,σ�P �C;α,β�

�
�
x�Ω

�
��

c�C

πx�c�N �Ix;μc, σc��

Cx�c�
�

y�N�x�

exp
�
CT

xACy

���. (4)

2.1 Spatial Distribution Prior for Leukoaraiosis

We model the spatial extent of leukoariosis with a probabilistic atlas constructed
by applying Principal Component Analysis (PCA) to a training set of manual
leukoaraiosis binary segmentation maps. We let �M be the mean map, �Mk�

K
k�1

be the principal components that correspond to theK largest eigenvalues, and αk

be the weights (or loadings):

P �α� � N �α; 0, Σ�, (5)

where Σ is the diagonal covariance matrix containing the K largest eigenvalues.
Given α, the spatial prior M � �Mx�x�Ω is deterministically defined:

M �α� � �M �
	
k

αkMk.

We also experimented with LogOdds shape representation [10], often used for
modeling normal anatomical variability. We found that the leukoaraiosis struc-
tures are in general too thin and variable in location to be properly captured
by this representation. On the other hand, a simple average probability map
representation fails to capture the covariation of leukoaraiosis distribution.
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3 Inference

To obtain the segmentations, we perform MAP inference and seek

Ĉ � argmax
C

P �C�I;μ,σ,α,β� � argmax
C

P �C, I;μ,σ,α,β�. (6)

Since exact computations become infeasible whenever the MRF weight
matrix A is non-zero, we employ a variational EM approximation [6] to es-
timate the MAP solution. Specifically, we approximate the posterior distribu-
tion P �C�I;μ,σ,α,β� with the fully factored distribution

q�C� �
�
x�Ω

q�Cx� �
�
x�Ω

�
c

wx�c�
Cx�c�, (7)

where wx is a vector of probabilities for the three tissue classes at voxel x.
Due to space constraints, we omit the derivations and provide the resulting
updates. Because the prior for the PCA loadings P �α� is not conjugate to the
likelihood P �C�α�, we approximate the corresponding E-step computation with
a regularized projection:

α � argmin
a

��w�L� 	 Ua��2 � λaTΣ�1a (8)

�


UTU � λΣ�1

��1
UTw�L�,

where U � 
M1, ...,Mk�, and we use clipping to force the resulting values
in M�α� to be between 0 and 1.

In the M-step, we update the parameters of the model. The updates are intu-
itive. The class mean and variance estimates are computed as weighted averages:

μc �

�
x wx�c�Ix�
x wx�c�

, σc �

�
xwx�c��Ix 	 μc�

2�
x wx�c�

, for c � C (9)

Given large variable intensity pathologies and severe artifacts, image inhomo-
geneity cannot be corrected through pre-processing steps. To address image in-
homogeneity for the healthy tissue, we model the intensity mean estimate as
spatially varying, and introduce a low pass filter GH to enforce spatial smooth-
ness, similar to the original EM-segmentation formulation [16]. Specifically,

μH � GH � �wx�H� � I� , (10)

where � denotes spatial convolution. The healthy tissue prior βx is a fraction of
current frequency estimates for stroke and healthy tissue probabilities:

βx �
wx�S�

wx�H� � wx�S�
. (11)

Finally, the variational posterior parameters wx are weighted by their agree-
ment with the neighbors:

wx�c� � πx�c�N �Ix;μc, σc�
�

y�N�x�

exp


wT

xAwy

�
, (12)

where πx�c� is defined in (3). We iterate the updates until the parameter
estimates converge.
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Fig. 3. Leukoaraiosis segmentation evaluation. Left: Volume measurements based on
the automatic segmentation (orange) are within the range of experts (blue circles).
Right: Volume estimates based on the automatic segmentation of leukoaraiosis against
volume estimates based on the manual segmentations; the correlation coefficient is r �
0.82.

4 Results

In this section, we present experimental results on 100 test images with manually
delineated leukoaraiosis, and another six test volumes, each with manually delin-
eated leukoaraiosis by multiple experts. Leukoaraiosis is the primary phenotype
in many stroke studies, and thus its segmentation and delineation from stroke is
our main focus in the experiments. We only run our algorithm inside the white
matter where we expect to see most of the leukoaraiosis and strokes. A future
direction for our work is to include healthy gray matter and cerebrospinal fluid
classes.

In our experiments, the scans include T2-FLAIR scans (1 � 1mm in-plane,
slice thickness 5-7mm, PROPELLER sequence sometimes used if the patient
moved). Acquisition TR and TE varied depending on the image protocol. All
subjects are registered to an atlas template using ANTs [2] based on T1 images
acquired for each subject in the study [13].

Parameters. We trained the PCA shape model ��Mk�, Σ� on binary maps of
manual leukoaraiosis segmentations in 42 training scans, different from the 106
test scans. The fixed parameters λ and A were chosen manually to optimize
results in a single test example, not included in the results below. In particular,
we use λ � 250, A�c, c� � 100 for c � �L,H, S�, A�L,H� � 97, A�S,L� � 1, and
A�S,H� � 20. This choice discourages stroke from neighbouring leukoaraiosis
more than neighbouring healthy tissue. We initialized the posterior estimates
using a simple threshold classifier learned from the training subjects [13].

In Figure 3, we compare the volume of leukoariosis obtained by our method
against expert delineations. The first graph demonstrates that the automatic
approach is consistently within the range of inter-rater variability. The second
graph compares the automatically computed leukoaraiosis burden to that based
on manual segmentations in a test set of 100 subjects. Visual inspection of the
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Fig. 4. Automatic segmentation on three subjects showing stroke segmentation (blue
outlines) and leukoaraiosis (yellow outlines): the image used to tune the parameters
(left), a typical result of our method (center), and an example of a difficult case (right).

outlier image reveals little to no apparent leukoaraiosis and a possible manual
over-segmentation.

Figure 4 provides example segmentation results for three subjects with leu-
koaraiosis and stroke. The first subject was used for parameter tuning (and was
not included in testing), and includes a stroke in areas where leukoaraiosis is
often found near the ventricles. The second subject is a typical result, where
we see that most of the stroke is accurately separated from leukoaraiosis. The
third subject is an example of an outlier result, where the separation of the two
hyperintense pathologies is nearly impossible to define even by a clinical expert.
In both the second and third subjects, our leukoaraiosis segmentation is conser-
vative, which is likely caused by the regularized projection. This observation is
consistent with the results shown in Figure 3.

5 Conclusions

We presented an algorithm for segmentation of separate cerebrovascular patholo-
gies in brain MRI. Our algorithm is derived from a generative probabilistic model
that captures experts’ knowledge of the disease. By modeling the spatial distribu-
tion of leukoaraiosis, as well as the intensities of leukoaraiosis and stroke lesions,
our method automatically segments tissues that are indistinguishable based on
intensity alone. We presented our method on a study of stroke patients, and
showed strong agreement between our results and expert segmentation volumes.
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