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Abstract. We present a semi-parametric generative model for predict-
ing anatomy of a patient in subsequent scans following a single base-
line image. Such predictive modeling promises to facilitate novel anal-
yses in both voxel-level studies and longitudinal biomarker evaluation.
We capture anatomical change through a combination of population-wide
regression and a non-parametric model of the subject’s health based on
individual genetic and clinical indicators. In contrast to classical correla-
tion and longitudinal analysis, we focus on predicting new observations
from a single subject observation. We demonstrate prediction of follow-up
anatomical scans in the ADNI cohort, and illustrate a novel analysis ap-
proach that compares a patient’s scans to the predicted subject-specific
healthy anatomical trajectory.

1 Introduction

We present a method for predicting anatomy based on external information, in-
cluding genetic and clinical indicators. Specifically, given only a single baseline
scan of a new subject in a longitudinal study, our model predicts anatomical
changes and generates a subsequent image by leveraging subject-specific genetic
and clinical information. Such voxel-wise prediction opens up several new areas
of analysis, enabling novel investigations both at the voxel level and at the level
of derivative biomarker measures. For example, voxel level differences between
the true progression of a patient with dementia and their predicted healthy
anatomy highlight spatial patterns of disease. We validate our method by com-
paring measurements of volumes of anatomical structures based on predicted
images to those extracted from the acquired scans.

Our model describes the change from a single (or baseline) medical scan in
terms of population trends and subject-specific external information. We model
how anatomical appearance changes with age on average in a population, as
well as deviations from the population average using a person’s health profile.
We characterize such profiles non-parametrically based on the genotype, clini-
cal information, and the baseline image. Subject-specific change is constructed
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from the similarity of health profiles in the cohort, using a Gaussian process
parametrized by a population health covariance. Given the predicted change, we
synthesize new images through an appearance model.

Statistical population analysis is one of the central topics in medical image
computing. The classical correlation-based analysis has yielded important char-
acterization of relationships within imaging data and with independent clinical
variables [2,11,12,14]. Regression models of object appearance have been previ-
ously used for atlas construction and population analysis [2,14]. These methods
characterize population trends with respect to external variables, such as age
or gender, and construct clinically relevant population averages. Longitudinal
analyses also characterize subject-specific temporal effects, usually in terms of
changes in the biomarkers of interest. Longitudinal cohorts and studies promise
to provide crucial insights into aging and disease [11,12]. Mixed effects models
have been shown to improve estimation of subject-specific longitudinal trends
by using inter-population similarity [3,15]. While these approaches offer a pow-
erful basis for analysis of biomarkers or images in a population, they require
multiple observations for any subject, and do not aim to provide subject-specific
predictions given a single observation. The parameters of the models are ex-
amined for potential scientific insight, but they are not tested for predictive
power. In contrast, we define the problem of population analysis as predicting
anatomical changes for individual subjects. Our generative model incorporates
a population trend and uses subject-specific genetic and clinical information,
along with the baseline image, to generate subsequent anatomical images. This
prediction-oriented approach provides avenues for novel analysis, as illustrated
by our experimental results.

2 Prediction Model

Given a dataset of patients with longitudinal data, and a single baseline image for
a new patient, we predict follow-up anatomical states for the patient. We model
anatomy as a phenotype y that captures the underlying structure of interest.
For example, y can be a low-dimensional descriptor of the anatomy at each
voxel. We assume we only have a measurement of our phenotype at baseline yb
for a new subject. Our goal is to predict the phenotype yt at a later time t.
We let xt be the subject age at time t, and defineΔxt � xt�xb andΔyt � yt�yb.
We model the change in phenotype yt using linear regression:

Δyt � Δxtβ � ε, (1)

where β is the subject-specific regression coefficient, and noise ε � N �0, σ2� is
sampled from zero-mean Gaussian distribution with variance σ2.

2.1 Subject-Specific Longitudinal Change

To model subject-specific effects, we define β � β̄ � H�g, c, fb�, where β̄ is a
global regression coefficient shared by the entire population, and H captures a
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deviation from this coefficient based on the subject’s genetic variants g, clinical
information c, and baseline image features fb.

We assume that patients’ genetic variants and clinical indicators affect their
anatomical appearance, and that subjects with similar health profiles exhibit
similar patterns of anatomical change. We let hG���, hC���, hI��� be functions
that capture genetic, clinical and imaging effects on the regression coefficients:

H�g, c, Ib� � hG�g� � hC�c� � hI�fb�. (2)

Combining with (1), we arrive at the full model

Δyt � Δxtβ̄ �Δxt

�
hG�g� � hC�c� � hI�fb�

�
� ε, (3)

which captures the population trend β̄, as well as the subject-specific deviations
�hG���, hC���, hI���	.

For a longitudinal cohort of N subjects, we group all Ti observations for
subject i to form Δyi � �yi1 , yi2 , ...yiTi

	. We then form the global vector Δy �
�Δy1, Δy2, ..., ΔyN 	. We similarly form vectors Δx, hG, hC , hI , g, c, fb and ε,
to build the full regression model:

Δy � Δxβ̄ �Δx
 �hG�g� � hC�c� � hI�f b�� � ε, (4)

where 
 is the Hadamard, or element-wise product. This formulation is mathe-
matically equivalent to a General Linear Model (GLM) [9] in terms of the health
profile predictors �hG,hC ,hI 	.

We employ Gaussian process priors to model the health functions:

hD��� � GP �0, τ2DKD��, ���, (5)

where covariance kernel function τ2DKD�zi, zj� captures the similarity between
subjects i and j using feature vectors zi and zj for D � �G,C, I. We discuss
the particular form of K��, �� used in the experiments later in the paper.

2.2 Learning

The Bayesian formulation in (4) and (5) can be interpreted as a linear mixed
effects model (LMM) [10] or a least squares kernel machine (LSKM) regression
model [5,8]. We use the LMM interpretation to learn the parameters of our
model, and the LSKM interpretation to perform final phenotype predictions.

Specifically, we treat β̄ as the coefficient vector of fixed effects and hG,hC ,
and hI as independent random effects. We seek the maximum likelihood esti-
mates of parameters β̄ and θ � �τ2G, τ

2
C , τ

2
I , σ

2� by adapting standard procedures
for LMMs [5,8]. As standard LMM solutions become computationally expensive
for thousands of observations, we take advantage of the fact that while the entire
genetic and the image phenotype data is large, the use of kernels on baseline data
reduces the model size substantially. We obtain intuitive iterative updates that
project the residuals at each step onto the expected rate of change in likelihood,
and update β̄ using the best linear unbiased predictor.



522 A.V. Dalca et al.

2.3 Prediction

Under the LSKM interpretation, the terms h��� are estimated by minimizing
a penalized squared-error loss function, which leads to the following solution
[5,7,8,16]:

h�zi� �
N�
j�1

αjK�zi, zj� or h � αTK (6)

for some vector α. Combining with the definitions of the LMM, we estimate co-
efficients vectors αG,αC and αI from a linear system of equations that involves
our estimates of β̂ and θ. We can then re-write (4) as

Δy � Δxβ̄ �Δx
�
αT

GKG �αT
CKC �αT

I KI

�
(7)

and predict a phenotype at time t for a new subject i:

yt � yb �Δxt

�
β̄ �

N�
j�1

αG,jKG�gi, gj� � αC,jKC�ci, cj� � αI,jKI�fi, fj�

�
. (8)

3 Model Instantiation for Anatomical Predictions

The full model (3) can be used with many reasonable phenotype definitions.
Here, we describe the phenotype model we use for anatomical predictions and
specify the similarity kernels of the health profile.

3.1 Anatomical Phenotype

We define a voxel-wise phenotype that enables us to predict entire anatomi-
cal images. Let Ω be the set of all spatial locations v (voxels) in an image,
and Ib � �Ib�v�v�Ω be the acquired baseline image. We similarly define A �
�A�v�v�Ω , to be the population atlas template. We assume each image I is
generated through a deformation field Φ�1

AI parametrized by the corresponding
displacements �u�v�v�Ω from the common atlas to the subject-specific coor-
dinate frame [14], such that I�v� � A�v � u�v��. We further define a follow-
up image It as a deformation ΦBt from the baseline image Ib, which can be
composed to yield an overall deformation from the atlas to the follow-up scan
via Φ�1

At � Φ�1
AB � Φ�1

Bt � �u��v�v�Ω :

It�v� � A�v � u��v��. (9)

Using displacements u��v� as the phenotype of interest in (1) captures the
necessary information for predicting new images, but leads to very high dimen-
sional descriptors. To regularize the transformation and to improve efficiency, we
define a low-dimensional embedding of u��v�. Specifically, we assume that the
atlas provides a parcellation of the space into L anatomical labels L � �ΨLl�1.
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We build a low-dimensional embedding of the transformation vectors u�v� within
each label using PCA. We define the relevant phenotypes �yl,c as the coefficients
associated with the first C principal components of the model that capture 95%
of the variance in each label, for l � 1 . . . L.

We predict the phenotypes using (8). To construct a follow-up image It given

phenotype yt, we first form a deformation field �Φ�1
At by reconstruction from the

estimated phenotype yt, and use �ΦAt assuming an invertible transformation. Us-
ing the baseline image, we predict a subsequent image via ΦBt � �ΦAt�Φ

�1
AB . Note

that we do not directly model changes in image intensity. While population mod-
els necessitate capturing such changes, we predict changes from a baseline image.
We also assume that affine transformations are not part of the deformations of
interest, and thus all images are affinely registered to the atlas.

3.2 Health Similarities

To fully define the health similarity term H��, �, ��, we need to specify the forms
of the kernel functions KG��, ��, KC��, ��, and KI��, ��.

For genetic data, we employ the identical by state (IBS) kernel often used
in genetic analysis [13]. Given a vector of genetic variants g of length S, each
genetic locus is encoded as g�s� � �0, 1, 2, and

KG�gi, gj� �
1

2S

S�
s�1

�2� �gi�s� � gj�s���. (10)

To capture similarity of clinical indicators c, we form the kernel function

KC�ci, cj� � exp

�
�

1

σ2
C

�ci � cj�
TW �ci � cj�

�
, (11)

where diagonal weight matrixW captures the effect size of each clinical indicator
on the phenotype, and σ2

C is the variance of the clinical factors.
We define the image feature vectors fb as the set of all PCA coefficients defined

above for the baseline image. We define the image kernel matrix as

KI�fb,i, fb,j� � exp

�
�

1

σ2
I

��fb,i � fb,j ��
2
2

�
, (12)

where σ2
I is the variance of the image features.

4 Experiments

We illustrate our approach by predicting image-based phenotypes based on ge-
netic, clinical and imaging data in the ADNI longitudinal study [6] that includes
two to ten follow-up scans acquired 0.5 � 7 years after the baseline scan. We
use affine registration to align all subjects to a template constructed from 145
randomly chosen subjects, and compute non-linear registration warps ΦAI for
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Fig. 1. Relative error (lower is better) of volume prediction for seven structures for sub-
jects in the top decile of volume change. We report relative change between the baseline
and the follow-up measurement (red), relative error in prediction using a population
model (green), and the complete model (blue).

each image using ANTs [1]. We utilize a list of 21 genetic loci associated with
Alzheimer’s disease (AD) as the genetic vector g, and the standard clinical fac-
tors including age, gender, marital status, education, disease diagnostic, and
cognitive tests, as the clinical indicator vector c. We learn the model parameters
from 341 randomly chosen subjects and predict follow-up volumes on a separate
set of 100 subjects. To evaluate the advantages of the proposed predictive model,
we compare its performance to a population-wide linear regression model that
ignores the subject-specific health profiles (i.e., H � 0).

4.1 Volumetric Predictions

In the first simplified experiment, we define phenotype y to be a vector of sev-
eral scalar volume measurements obtained using FreeSurfer [4]. In addition to
the population-wide linear regression model, we include a simple approach of
using the baseline volume measurements as a predictor of the phenotype trajec-
tory, effectively assuming no volume change with time. Since in many subjects,
the volume differences are small, all three methods perform comparably when
evaluated on the whole test set. To evaluate the differences between the methods,
we focus on the subset of subjects with substantial volume changes, reported in
Fig. 1. Our method consistently achieves smaller relative errors than the two
baseline approaches.

4.2 Anatomical Prediction

We also evaluate the model for full anatomical scan prediction. To quantify pre-
diction accuracy, we propagate segmentation labels of relevant anatomical struc-
tures from the baseline scan to the predicted scan using the predicted warps.
We compare the predicted segmentation label maps with the actual segmenta-
tions of the follow-up scans. The warps computed based on the actual follow-up
scans through the atlas provide an indication of the best accuracy the predictive
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Fig. 2. Prediction results. Left: Dice scores of labels propagated through three methods
for several structures implicated in AD in subjects with the most volume change for
each structure. We report the prediction based on the registration of the actual follow-
up scan to the atlas as an upper bound for warp-based prediction accuracy (red),
predictions based on the population-wide linear regression model (green), and the full
model (blue). Right: A predicted anatomical image for a patient diagnosed with AD
using a healthy model. The color overlay shows the squared magnitude of the difference
in predicted versus observed deformations, indicating a significantly different expansion
trajectory of the ventricles.

model could achieve when using warps to represent images. Similar to the volu-
metric predictions, the full model offers modest improvements when evaluated on
the entire test set, and substantial improvements in segmentation accuracy when
evaluated in the subjects who exhibit large volume changes between the base-
line scan and the follow-up scan, as reported in Fig. 2. In both experiments, all
components hg, hc and hI contributed significantly to the improved predictions.

Our experimental results suggest that the anatomical model depends on regis-
tration accuracy. In particular, we observe that directly registering the follow-up
scan to the baseline scan leads to better alignment of segmentation labels than
when transferring the labels through a composition of the transformations from
the scans to the atlas space. This suggests that a different choice of appearance
model may improve prediction accuracy, a promising direction for future work.

To demonstrate the potential of the anatomical prediction, we predict the
follow-up scan of a patient diagnosed with dementia as if the patient were
healthy. Specifically, we train our model using healthy subjects, and predict
follow-up scans for AD patients. In Fig. 2 we illustrate an example result, com-
paring the areas of brain anatomy that differ from the observed follow-up in
the predicted healthy brain of this AD patient. Our prediction indicates that
ventricle expansion would be different if this patient had a healthy trajectory.

5 Conclusions

We present a model to predict the anatomy in patient follow-up images given
just a baseline image using population trends and subject-specific genetic and
clinical information. We validate our prediction method on scalar volumes and
anatomical images, and show that it can be used as a powerful tool to illustrate
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how a subject-specific brain might differ if it were healthy. Through this and
other new applications, our prediction method presents a novel opportunity for
the study of disease and anatomical development.
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