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Abstract. We introduce a method for registration of brain images
acquired in clinical settings. The algorithm relies on three-dimensional
patches in a discrete registration framework to estimate correspondences.
Clinical images present significant challenges for computational analysis.
Fast acquisition often results in images with sparse slices, severe artifacts,
and variable fields of view. Yet, large clinical datasets hold a wealth of
clinically relevant information. Despite significant progress in image reg-
istration, most algorithms make strong assumptions about the continuity
of image data, failing when presented with clinical images that violate
these assumptions. In this paper, we demonstrate a non-rigid registra-
tion method for aligning such images. The method explicitly models the
sparsely available image information to achieve robust registration. We
demonstrate the algorithm on clinical images of stroke patients. The pro-
posed method outperforms state of the art registration algorithms and
avoids catastrophic failures often caused by these images. We provide a
freely available open source implementation of the algorithm.

1 Introduction

We propose a robust non-linear registration method for images with sparse slice
acquisition. Medical image registration is a fundamental step in population stud-
ies and atlas-based analyses, and has been a topic of active research for many
years. Most registration algorithms require research quality images with suf-
ficiently high resolution. Unfortunately, in many clinical settings the acquired
images have extremely sparse slices. The proposed method enables explicit mod-
eling of spatially sparse images and facilitates analyses in a large class of image
data. Such analyses are currently unavailable to clinical research due to chal-
lenges in alignment.

Throughout this paper we use the motivating example of a clinical imaging
study of stroke patients where thousands of brain MR scans are acquired within
48 h of stroke onset. The in-plane resolution in these images is 0.85 mm, while
the slice spacing is 5–7 mm, as illustrated in Fig. 1. The study aims to quantify
the white matter disease burden and to analyze population trends, necessitat-
ing non-linear registration to a common coordinate frame, and segmentation of
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Fig. 1. An example clinical T2-FLAIR MRI of a stroke patient in axial (left), sagittal
(center) and coronal (right) views. The slice spacing is much larger than is usually
encountered in research scans, making registration a challenging task.

healthy tissue and pathology near the ventricles [13]. Analyses of such images
are hindered by the wide slice spacing, presenting significant challenges for basic
tasks such as registration, skull stripping, and bias correction. In this work, we
focus on registration.

Non-linear registration methods developed for high resolution images often
make continuity and smoothness assumptions [7] that are violated by clinically
acquired images, as illustrated in Fig. 1. Specifically, most algorithms operate on
image gradients. However, in volumes with wide slice spacing, the volume is no
longer smooth, and the anatomical structure may change dramatically between
subsequent slices. While for some images the registration may be adequate, in
many cases it fails catastrophically. Some methods attempt to directly address
this problem by designing processing pipelines and tuning respective parameters
specific to a particular dataset [14]. Instead, we explicitly account for the sparse
nature of the slices and avoid anatomical continuity assumptions.

Feature-based methods [8,11,15] present an alternative approach to voxel-
wise registration algorithms by extracting sparse features or region summaries
and using these features to guide the registration. Point set representations [3]
use a representative selection of voxels to direct the registration. Unfortunately,
the spatial sparseness of clinical images makes it difficult to extract meaningful
and consistent features or point sets.

Our algorithm builds on discrete registration methods [5,6] that have been
demonstrated recently as an alternative to gradient-based methods. The discrete
registration approach models voxels of a moving image as nodes of a discrete
Markov Random Field (MRF). Each node can move to a pre-specified number
of voxels in each direction. Node potentials capture the agreement of intensi-
ties between the voxel in the moving image and the target voxel in the fixed
image. Neighbouring voxels are encouraged to move together through pairwise
potentials. The optimal registration is obtained via minimizing the energy of
the MRF [5,6,12]. Since the same optimization can be used for a wide vari-
ety of potentials, the framework provides significant flexibility in adapting these
terms to specific tasks. Discrete registration algorithms typically achieve similar
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results to state of the art gradient-based methods for research quality high res-
olution scans, and offer an alternative framework when image gradients cannot
be computed reliably.

To address the challenges of clinical data, we design a general and robust
patch-based discrete registration algorithm that captures the sparse structure
characteristic of our problem. While most methods use single voxels to asses
data similarity, we design an appropriate 3D patch-based similarity function
surrounding each voxel. We demonstrate our approach on real clinical data from
a study of stroke.

While a large number of software packages is available for continuous reg-
istration, very few tools have been developed for discrete registration, and are
generally task-specific or proprietary [5,6]. To motivate and facilitate further
research, we provide a flexible, fast, and open-source implementation of discrete
deformable registration, and provide several voxel-based and patch-based data
similarity functions at http://github.com/adalca/patchRegistration.

2 Methods

We let Ω be the set of all spatial locations, and aim to non-rigidly register a
moving image M = {Mx}x∈Ω to a fixed image F = {Fx}x∈Ω . For simplicity we
assume both images have been interpolated to isotropic resolution and are of the
same size. In our experiments we use affine registration with linear interpolation
to align images into a common space as a pre-processing step. Although the
method we develop below applies to the registration of data with any spatially
missing data, in this paper we focus on registering a moving image with sparse
slice acquisition to a high resolution atlas. In this section, we first review discrete
deformable registration, then describe our treatment of sparse data within this
framework, and finally discuss important implementation details.

2.1 Discrete Deformable Registration

Discrete registration is often modeled as a labeling problem using a Markov Ran-
dom Field (MRF) [5,6]. Control points x ∈ Ω of the moving image M are viewed
as nodes arranged on a grid. For each node x, a finite set of states Dx = {dx}
represent discrete displacements dx ∈ Z

3 that node x can take. For example, a
node could be allowed to move at most one voxel in each direction, resulting
in 27 possible states.

The node potential Φx(dx) measures the quality of each displacement dx,
most often in terms of similarity of image intensities M(x) and F (x+ dx). The
pairwise potential Ψx,x′(dx,dx′) encourages similar displacements for neighbour-
ing nodes x and x′. Registration aims to find the optimal displacement field by
minimizing the MRF energy function

E(D) =
∑

x

Φx(dx) + λ
∑

x,x′∈N (x)

Ψx,x′(dx,dx′), (1)

http://github.com/adalca/patchRegistration
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Fig. 2. Overview of the information captured by the unary potentials using 3D patches.

where λ is a parameter that trades off between the data and smoothness terms,
and N (x) is the set of neighbors of node x. While efficient MRF optimization
methods have been a topic of active research [4,5,9], we find that using Loopy
Belief Propagation [12] is sufficiently fast and accurate for our application.

2.2 Patch Based Discrete Registration

The node potential is most often based on a difference between image intensi-
ties M(x) and F (x + dx):

Φx(dx) = (M(x) − F (x + dx))2. (2)

In clinical datasets, where known voxels are sparse, we instead use patches to
aggregate information from available voxels.

We introduce masks WM = {WMx ∈ [0, 1]}x∈Ω and WF = {WFx ∈ [0, 1]}x∈Ω

that define the confidence in image intensities for each voxel. For example, in
our clinical dataset, the moving weight mask describes the original locations
of the original high-resolution slices in the interpolated clinical image (Fig. 2).
Mask values vary between 0 and 1 due to interpolation effects of the affine
transformations of the moving image M and the fixed image F .

All patches in our method share the same shape and size. We let {I(x +
z)}z∈Ωx define a patch of image I centered at voxel x with patch footprint Ωx.
We define the unary potential as the weighted patch distance

Φx(dx) =

∑
z∈Ωx

W (x,dx, z) (M(x + z) − F (x + dx + z))2
∑

z∈Ωx
W (x,dx, z)

, (3)

where

W (x,dx, z) = WM (x + z)WF (x + dx + z). (4)
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The classical node potential (2) uses a single pair of potentially interpolated
intensities at M(x) and F (x+dx), forcing implementations to either limit con-
trol points to only available high-resolution planes, or use interpolated intensities
to drive the registration, resulting in sub-optimal alignment. Instead, our patch-
based potential (3) relies more heavily on voxels whose intensity was observed
directly and downweights the interpolated values (Fig. 2). This approach pro-
vides a robust measure of the quality of displacement dx for voxel x, capturing
context for voxel x using known data.

We do not explicitly model slice thickness [10], as in many clinical datasets
the slice thickness is unknown or varies by site, scanner or acquisition. Instead,
we simply treat the original data as thin high resolution planes. When known,
slice thickness can be easily modeled by modifying the sampling mask W .

We use the �2 distance as the pairwise potential:

Ψ(dx,d′
x) = ||dx − d′

x||22. (5)

Once Φ(dx) and Ψ(dx,d′
x) are defined and the parameter λ is set, we seek the

optimal MRF labeling to obtain the desired displacement of each image voxel.

2.3 Implementation

We implemented a multi-resolution variant of the discrete registration algorithm
described above. We prepare the moving clinical images at different scales by first
down-sampling the original acquired slices for each scale, and then interpolating
the data between slices. This approach maximizes the use of voxels with known
intensity values.

To improve runtime, we implement several approximations. Specifically, we
limit the number of states for each node to the top few states based on unary
potentials, and remove nodes from the MRF based on the variance among their
state potentials. Both pruning steps are controlled by model parameters. At
the end of the registration step at each scale, the displacement field is linearly
interpolated between nodes. We optimize parameter settings on a held-out subset
of images described below. In this experiment, we varied the parameter λ to trade
off the importance of the data and smoothness terms, as well as the spacing of
the control points.

We use Loopy Belief Propagation to minimize energy function (1). When
run on a single quad-code 2.7 GHz, 32 Gb of RAM registering two images takes
approximately 120 min. Our implementation accepts for any patch definition and
weight pattern and includes several built-in patch similarities. Developed to be
highly modifiable and extensible, the code is freely available at http://github.
com/adalca/patchRegistration.

3 Results

We demonstrate the performance of our algorithm on clinically acquired stroke
images. The stroke study aims to quantify periventricular white matter disease
burden, requiring particularly accurate registration around the ventricles.

http://github.com/adalca/patchRegistration
http://github.com/adalca/patchRegistration
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Fig. 3. Results on the stroke clinical dataset. For each setting, the measurements are
shown in gray. The red line and cross represent the median and mean value respec-
tively, box edges show 25th and 75th percentiles, and black whiskers show 10th and
90th percentiles. Left: Ventricle Dice measure for the ANTs algorithm with default and
optimized parameters, and the patch based method. Right: Dice improvement achieved
by patch based registration compared to ANTs, for both default and optimized para-
meters, respectively. Our method improves registration for all subjects when compared
to default ANTs settings, and for 92 % of the subjects when compared to optimized
ANTs settings. (Color figure online)

Data and Processing. To evaluate the algorithm, we randomly selected 100
T2-FLAIR brain MR scans from the stroke patient cohort for evaluation. Our
clinical scans are severely anisotropic (0.85 × 0.85 mm in-plane, slice separation
of 6mm, variable TR and TE). All subjects are linearly interpolated to isotropic
resolution and intensity corrected by matching the intensity of the white matter
across subjects. Finally, the subjects are affinely registered to a T2-FLAIR atlas.
All subjects have manual delineation of the ventricles created for this evaluation.

Parameters. We choose patch registration parameters found to be optimal in
a subset of 18 held-out scans, separate from those used in the experiments. We
varied the parameter λ and the spacing of the control points. We set λ = 0.1
and an optimal grid spacing of 3 mm, but find little variation in the results when
using wider spacing. At each scale, each node can only move up to two voxels
in each dimension. We keep the top 50 states (out of 125 possible states) for
each node, and keep the top 50% of nodes. We use a patch size large enough to
include at least two observed slices in every patch, which for our experiments is
9 mm in the highest resolution scale and 3 mm in the lowest.

Experiments. We register each scan in the evaluation set to the atlas. We
evaluate registrations by propagating manual segmentations of the ventricles
from the atlas to each subject through resulting warps and measuring volume
overlap via the Dice metric [2]. We use the state of the art ANTs registration
algorithm [1] as the baseline method for evaluation. Throughout our work with
the clinical study, we found ANTs to be the most consistent at tackling the sparse
data among all existing algorithms. We run ANTs with the default parameters,
as well as parameters we identified by optimizing ANTs for stroke clinical images.
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Fig. 4. Examples of serious registration failures of the ANTs algorithm. For the first
two subjects, that patch based registration recovers successful registrations. For the
third subject, the patch based registration yields dramatic improvement, but several
areas can still be improved. Aside from low resolution, the image exhibits significant
pathology, imperfect skull stripping, and suboptimal affine registration, all common in
stroke subjects.

Patch based registration outperforms substantially the baseline ANTs algo-
rithms in most subjects. Since the Dice measure varies significantly among sub-
jects due to variable ventricle shape and cerebral pathology, we also report sta-
tistics of patch based registration improvement over ANTs results (Fig. 3). Patch
based registration yields an improved Dice score in 92 % of the subjects com-
pared to optimized ANTs results, with a mean improvement of 4.1 dice points. It
also yields significant improvement (more than 5 Dice points) in 31 % of the sub-
jects where ANTs often resulted in serious registration errors (Fig. 4). Overall,
the presented algorithm shows consistent improvement across the dataset.

4 Conclusion

Clinical images present significant challenges for many computational analy-
ses, yet hold the wealth of clinically relevant information. We combine three-
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dimensional patch information with the discrete registration framework to
robustly drive registration of such images. The three-dimensional patches explic-
itly model the sparsely available image information to achieve robust registra-
tion. We demonstrate the algorithm on images with sparsely acquired slices in
clinical scans of stroke patients. The proposed method outperforms the state
of the art registration algorithms and avoids significant failures often observed
in the alignment of these images. Our implementation is freely available and
accepts images of varying resolution.
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