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Abstract. We present a study of the relationship between the changes
in the shape of the human ear due to jaw movement and acoustical
feedback (AF) in hearing aids. In particular, we analyze the deformation
field of the outer ear associated with the movement of the mandible (jaw
bone) to understand its effect on AF and identify local regions that play
a significant role. Our data contains ear impressions of 42 hearing aid
users, in two different positions: open and closed mouth, and survey data
including information about experienced discomfort due to AF. We use
weighted support vector machines (WSVM) to investigate the separation
between the presence and lack of AF and achieve classification accuracy
of 80% based on the deformation field. To robustly localize the regions
of the deformation field that significantly contribute to AF we employ
logistic regression penalized with elastic net (EN). By visualizing the
selected variables on the mean surface, we provide clinical interpretations
of the results.

1 Introduction

One of the big challenges for hearing aid users is acoustical feedback (AF). When a
customized hearing aid is produced, the ventilation size and gain are adjusted ac-
cordingly. However, when the ear changes shape due to movement of the mandible,
false leaks and feedback can occur. Modern feedback cancellation algorithms ex-
ist, but they rely on the detection of feedback. The time lag between detection
and cancellation causes a squeaking sound when a person talks or chews. Identi-
fying and characterizing the main causes of AF can improve hearing aid designs to
minimize AF risk. In this paper, we investigate the relationship between the defor-
mation of the outer ear and AF. We are interested in localizing regions that play
a significant role in this phenomenon. In our experiments, we work with surface
scans of ear impressions from 42 subjects under two different conditions: open and
closed mouth and questionnaire data that includes information about AF-related
experience. The ear impressions are co-registered using a group-wise registration
algorithm via a kernel-based nonlinear deformation model. We analyze the intra
subject deformation fields using a classification method to illustrate the differ-
ences between the two groups: subjects who experience AF and subjects who do
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not. Using Weighted Support Vector Machines, we achieve 80% cross-validation
accuracy on our data. Additionally, we employ logistic elastic net regression (lo-
gistic EN) to identify the surface points that consistently explain the difference
between the two populations. Generalization performance and statistical signifi-
cance of the fitted model are used to determine the parameters of the regression
algorithm. We compute statistical significance based on a standard likelihood ra-
tio test and the effective degrees of freedom for the model similar to [1]. The model
is shown to be significant with p < 0.001 on the whole data set.

2 Prior Work

Previous studies investigated the deformation of the ear canal and concha using
calipers[2], and deformable shape models [3,4]. Yet, the relationship between de-
formations of the ear and clinical observations have so far not been explored. In
other medical contexts, such as neuroimaging, the relationship between image-
derived features and clinical data has been extensively studied [5]. A popular
method used to explore differences between two groups in a population is Sup-
port Vector Machines (SVM) [6]. The discriminative direction of an SVM can
be used to illustrate the differences between classes [7]. However, an important
challenge in such approaches, is the interpretation of discriminant features. An-
other problem commonly presented by medical data is its unbalanced nature:
there are typically more negative samples than positive examples. To handle
this, we use weighted SVMs [8]. Medical imaging provides further challenges:
samples are high dimensional and few. Moreover, we expect that some of these
dimensions exhibit significant correlations. Our goal is ideally to discover all
these dimensions. Ridge regression [9] (or, in general Tikhonov �2 regularization
[10]) takes this type of underlying structure into account. Additionally, we ex-
pect that only a small number of dimensions are related to the clinical outcome
of interest. This prior knowledge can be formalized using a constraint on the �1
norm of the regression coefficients [11]. Elastic Net (EN) [12] combines these two
approaches to achieve a sparse and correlated set of predictors. A Bayesian in-
terpretation of this method yields an efficient implementation [12]. The method
has been extended to fit the generalized linear model framework enabling various
types of regressions through the canonical link functions including logistic re-
gression. Analyzing multi-subject medical data requires spatial correspondence,
usually determined via image registration. Motivated by group-wise registration
methods [13], we use a co-registration formulation that simultaneously aligns
all surfaces. We employ a kernel-based nonlinear deformation model [14][15] to
achieve a dense, diffeomorphic correspondence within and across subjects.

3 Data

The data consists of 84 impressions from 42 hearing aid users. Two impressions
were obtained from each individual in different positions. (ı) Normal position,
chosen as reference, (ıı) mouth opened. A spacer was used to ensure consistency
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with respect to the angle of the mouth opening. The impressions were all acquired
from the subjects’ right ear. Each impression consists of ≈ 5500 points in 3D i.e.
vertices, corresponding to a 16500 dimensional feature vector. In addition to the
shape data, the subjects filled out a questionnaire, including questions regarding
acoustical feedback (AF). All subjects that experienced frequent AF problems
(once a week or more) were grouped together if the annoyance was related to
ear deformation, i.e. jaw movement and facial expressions. The latter is included
because it often involves jaw movement. Thus, we obtained two groups: subjects
who experience AF and subjects who do not.

4 Methods

4.1 Co-registration and Preprocessing

The ear impressions were scanned to obtain surfaces, which were then manu-
ally preprocessed to remove artifacts. We represent each surface as a triangular
mesh S, with vertices denoted by xS ∈ S ⊂ R

3. The registration framework is
based on the method described in [16], which uses the difference between signed
distance maps of the two surfaces S1 and S2 to compute a similarity metric.
For computational efficiency, the distance is only computed on a narrow band
Q ⊂ R

3 that covers both surfaces, i.e., Q ⊃ S1, S2. The distance between S1 and
S2 is then defined as:

f(S1, S2) =
1

‖Q‖
∑

x∈Q

(dS1(x) − dS2(x))2, (1)

where dS denotes the signed distance map of the surface S and ‖Q‖ denotes the
volume of Q. The pairwise registration problem is formulated as the minimization
of Eq. 1 and solved using Newton’s method. We parameterize the deformations
using a kernel-based approach [15] defined on a control grid in a coarse-to-fine
fashion, from 23 −403 control points. The gradient of the objective function with
respect to this parametrization can be easily computed. We extend this approach
to a multi-subject setting by defining a mean surface Sμ = 1

N

∑
i Si, where N

is the number of subjects. The mean surface is updated at every iteration and
a set of transformation parameters is computed for each subject based on its
distance to the mean surface. To anchor the deformations, we constrain the
average deformation across all subjects to be identity. In other words, the mean
of the deformation parameters is zero.

4.2 Classification and Regression

Our goal is to analyze the deformation fields obtained from the co-registration
step to show differences between subjects who experience Acoustical Feedback
(AF) and subjects who do not. Ground truth labels were based on the question-
naire data, as described in Section 3. The localized nature of the deformation
parametrization allows us to identify regions that influence AF. We use the
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popular SVM method with no kernel to classify the data based on the whole
deformation field. Since our data contained 18 positive samples and 24 neg-
ative samples, we investigated weighted SVM (WSVM) [8]. In contrast with
SVM where the penalty of misclassification is universal, WSVM sets a different
penalty for each class and the the ratio between class penalties are inversely
proportional to the class size ratio. In our experiments, this approach improves
results by about 5% when compared with the uniform penalty on errors. Due
to the challenges of interpreting the discriminant features, i.e., support vectors
in the SVM experiment, we explored a logistic regression approach. Logistic re-
gression models the probability P of a certain outcome, in our case subjects who
experience AF and is estimated by the ratio of occurrences. This is accomplished
through the canonical link log( pi

1−pi
), known as the log-odds or logit. Standard

logistic regression can thus be formulated as:

log
(

pi

1 − pi

)
= β0 + βxi, ∀i (2)

where β0 is the intercept, β is the regression coefficients of size 1× number of
dimensions (16,500 in our case) and xi is a column vector that represents an ob-
servation. Logistic elastic net extends standard logistic regression by penalizing
the parameters β with the �1 and �2 penalty.

log
(

pi

1 − pi

)
= β0 + βxi + εi, s.t. ‖β‖2 < ρ, |β| < ξ (3)

for some ρ, ξ > 0 and for all i. The solution can be found via a MAP approach
where the following prior on the parameters is used:

Pλ,α(β) = C(λ, α)e−λ(α‖β‖2+(1−α)‖β‖), (4)

where λ is the hyper-parameter that determines the total amount of regular-
ization, α determines the trade-off between the two penalty terms and C is
the normalization. Logistic EN has the properties of ridge regression and yields
sparse solutions thanks to the �1 constraint. Thus the model takes covariations
into account while only consisting of a small subset of significant regression co-
efficients. This yields dimensionality reduction conditioned on the information
in the data set.

5 Model Validation and Selection

We use cross-validation to select the hyper-parameters α and λ. Furthermore,
by using the likelihood ratio test, we can ensure that the selected parameters
yield statistically significant models, i.e., explain the data well. The likelihood
ratio computes Λ = L(β|X)

L(β0|X) , where the numerator L(β) is the log-likelihood of
the fitted model, defined as:

L(β|X) =
N∑

i=1

[
yiβ

txi − log(1 + exp(βtxi))
]
, (5)
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where yi ∈ {0, 1} is the ground truth label, β0 is included in β and xi is the
i’th observation in X, the data to which the model is fitted. L(β0) is the null-
hypothesis likelihood, computed with β = 0. Note that (−2 logΛ) is approxi-
mately χ2 distributed with a parameter equal to the effective degrees of freedom
of the model minus 1. Following [17], we can compute the effective degrees of
freedom as

∑P
j=1

αi

αi+λ , where P is the number of dimensions and {αi} are the
eigenvalues of the data matrix XT X.

6 Analysis

The analysis is divided into two parts, classification and regression. Performing
classification demonstrates the difference between the two classes. To reveal how
the deformation field relates to AF problem regression is performed. We fit a
logistic regression model to each variable i.e. vertex independently and selects
the significant models as determined by the likelihood test to identify signifi-
cant variables. This approach does not take covariances into account since each
variable is treated independently. We use logistic EN on all the data to perform
variable selection while accounting for covariances. Logistic EN provides better
and more robust localization, which yields interpretable results. Yet, SVM is
typically superior with respect to classification accuracy.

6.1 Classification

To investigate if the data set size is sufficient for generalization, we use SVM
to classify and perform cross validation (100 random trials) with an increasing
number of samples included in the training set. The purpose is to investigate
whether including further samples will improve the classification. The test error
for each class vs. the number of samples included in the model is plotted in
Fig. 1(c). From the figure it is clear that better results could be obtained with
more data, however, the test error is around 22-25%, clearly showing separation
in the data. Using WSVM reduces the error further to 20%. Fig. 2 illustrates
the variable weights on a mean surface in four representative random trials.
Comparing these four trials, one sees that even though the general patterns
seem to be consistent, there is significant noise and the localization quality is
not sufficient. Fig. 2(e)shows the frequency of each variable appearing in the top
20% quantile over all 100 trials. We notice that variables robustly (red regions)
appearing in the top 20% quantile are sparse.

6.2 Regression

To get a base line, we perform a logistic regression of each parameter against
the response variable. The significant variables are shown in Fig. 4(a), where
red indicates a significant model. As can be seen significant variables cluster
nicely. However, we expect significance in and around the canal as well, which
is not present in this figure. This is due to the fact that each variable is treated
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Fig. 1. (a) An anatomical atlas of the ear. (b) A typical ear impression. (c) Number
of parameters for each class included in the model vs. the test error.

(a) (b) (c) (d) (e)

Fig. 2. The normalized coefficients from the SVM solution for 4 random cross validation
iterations mapped to the mean surface.(e) the frequency of each vertex appearing in
the to 20% quantile.

(a) (b) (c) (d) (e)

Fig. 3. The selected coefficients from the penalized logistic regression solution for 4
different cross validation iterations mapped to the mean surface. Red indicate a selected
variable.3(e) Is the cross-validated probability of a variable being selected.

(a) (b)

Fig. 4. (a) The significant logistic regression models on each variable mapped to the
mean surface. (b) The selected variables of the full logistic EN regression model mapped
to the mean surface. Red indicate a selected model/variable/vertex.
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independently. To recover from this, we use the Logistic EN with the hyper-
parameters determined by cross validation and the likelihood ratio test. From
the formula for effective degrees of freedom we can make an educated guess of
the initial regularization parameter for the �2-penalty, which needs to be around
1000 for the model to be statistical significant. An interval around this value
is searched to find a suitable combination where the likelihood ratio rejects the
null hypothesis. This yields λ = 1000 and α = 0.997. The resulting models
contain between 2000-2500 variables but are heavily constrained with 2-3 free
parameters. To validate the model, 10-fold cross validation is performed with an
equal number of observations from each class used in training, which yields 73%
accuracy for both classes. The regularization in the model increases test error
to 5-10%. A representative selection of the resulting cross validation models can
be seen in Fig. 3. We note that the models are consistent over different runs.
Having estimated the regularization parameters we build a model on the full
data set. The model is shown in Fig. 4(b). The estimated degrees of freedom for
the model is 3.88, the model is significantly better than H0 (p < 0.001). The
resulting model is in very good correspondence with the individual models from
the cross validation and includes far more of the surface in the model compared
to the logistic regression in Fig. 4(a). Moreover, the logistic EN gives better
and more consistent localization compared to the SVM, and the results are less
noisy (Fig. 2 and Fig. 3). In addition the results are in good correspondence with
clinical observations.

6.3 Clinical interpretation

The results are consistent with how hearing aids are situated in the ear. It is
interesting that not only the entrance to the canal is important, but also the
lower part of the outer ear, tragus and anti tragus (see Fig. 1(a)). The reason is
that its often one or both of these that hold the hearing aid in place. The small In
The Ear devices (ITE) are held in place by the opening of the canal and Tragus,
where as Behind The Ear aids (BTE) are molded to the entire concha (most of
the impression). Also the deformation, which we know occur deeper inside the
canal seems to have little influence on the acoustical feedback. Only the bottom
part of the inner canal seems to have a small influence, which corresponds to
clinical observations made during normal practice. The results in Fig. 4(b) lead
to the possibility of improving the fit with respect to feedback.

7 Conclusion

By using constrained logistic regression, we find parts of the ear canal surface
that explain the feedback problems experienced by users. The regression model
gives good localization and the outcome is easy to interpret. Furthermore, by
using an extended framework for estimation of the free parameters in the model,
a cross validation scheme based on significant models can be used. We show that
the final model is significant (p < 0.001). In addition, we show that a classifier
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based on the WSVM can achieve a classification accuracy of 80% for both classes,
with the possibility of improvement if more data were available.
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