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Abstract. Automatic segmentation of the heart’s left atrium offers great
benefits for planning and outcome evaluation of atrial ablation pro-
cedures. However, the high anatomical variability of the left atrium
presents significant challenges for atlas-guided segmentation. In this pa-
per, we demonstrate an automatic method for left atrium segmentation
using weighted voting label fusion and a variant of the demons registra-
tion algorithm adapted to handle images with different intensity distri-
butions. We achieve accurate automatic segmentation that is robust to
the high anatomical variations in the shape of the left atrium in a clinical
dataset of MRA images.
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1 Introduction

The high anatomical variability of the heart’s left atrium makes its segmentation
a particularly difficult problem. Specifically, the shape of the left atrium cavity,
as well as the number and locations of the pulmonary veins connecting to it, vary
substantially across subjects (Fig. 1). In this paper, we propose and demonstrate
a robust atlas-based method for automatic segmentation of the left atrium in
contrast-enhanced magnetic resonance angiography (MRA) images.

Clinically, left atrium segmentation is a highly relevant problem. Atrial fib-
rillation is known to be one of the most common heart conditions. It manifests
itself by causing irregular contractions of the heart’s atria and can have seri-
ous consequences such as stroke and heart failure [1, 2]. Catheter-based radio-
frequency ablation has recently emerged as a treatment for this condition. It
involves burning the cardiac tissue that is responsible for the re-entry electrical
currents that cause fibrillation. The high anatomical variability of the left atrium
shape and the pulmonary veins that enter it presents significant difficulties for
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Fig. 1. Manual segmentations of the left atrium in three different subjects, illustrating
the variability of the anatomy.

cardiac ablation since it is commonly performed at the junction of the atrial
body and pulmonary veins. Consequently, accurate visualization of the patient’s
left atrium promises to substantially improve intervention planning. The knowl-
edge of the shape of the left atrium can also aid in the subsequent segmentation
of the resulting ablation scars and thus in the evaluation of the outcome of the
procedure [3].

One approach to segment the left atrium is whole heart segmentation, where
all of the heart chambers, and sometimes other structures, are included in a single
model and segmented simultaneously. Unfortunately, most whole heart segmen-
tation methods do not model the pulmonary veins of the left atrium [4, 5]. An
exception is [6], where the geometrical model of the heart constructed from CT
images includes the pulmonary veins. However, the approach involves building
a mean shape model that will face considerable challenges in the presence of
topological differences in anatomy.

An alternative approach is to focus on segmentation of the left atrium by first
extracting the whole blood pool by intensity thresholding and then separating it
into different heart chambers by making cuts at narrowings [7]. This work was
extended to allow tracking of centerlines of the pulmonary veins entering the
atrium [8, 9]. The method however suffers from requiring several thresholds to
be set manually because of varying intensity distributions and anatomies of the
left atrium across patients.

In this work, we perform the segmentation via a label fusion algorithm [10,
11] that uses a training set of MRA images of different patients with correspond-
ing manual segmentations. We first align the training images to the test subject
image to be segmented and apply the resulting deformations to the correspond-
ing manual segmentation label maps to yield a set of left atrium segmentations
in the coordinate space of the test subject. These form a non-parametric subject-
specific statistical atlas. We then use a weighted voting algorithm to assign every
voxel to the left atrium or to the background. A similar approach was demon-
strated in [12] for segmentation of the aorta and heart extent in CT images.
In contrast, we aim to delineate the considerably more complex structure of the
left atrium. This requires more powerful label fusion and registration algorithms.
Notably, we use a weighted label fusion scheme that assigns higher weights to
voxels in training segmentations that are located deeper within the structure of
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interest and that have similar intensities in training and test images [11]. We also
handle varying intensity distributions between images by incorporating iterative
intensity equalization in a variant of the demons registration algorithm [13, 14]
used for the registration of the training images to the novel test image.

We demonstrate fully automatic, accurate segmentations of both the atrial
body and pulmonary veins connected to it on a set of 16 clinical MRA images.
Our method captures all of the pulmonary veins in all patients in our dataset.
Comparison to traditional atlas-based segmentation and majority voting non-
parametric segmentation demonstrates the advantage of the proposed method
for this problem.

2 Methods

In this section we describe the registration and segmentation algorithms we
employ in this work. We let {Ii} be the set of N training images, {Li} be the
set of corresponding expert manual segmentations and {Φi} be the warps from
the training images {Ii} to the test image I. Our goal is to estimate the label
map L of the test image I.

2.1 Diffeomorphic Demons Registration with Intensity Equalization

We perform pairwise registrations by first aligning the images affinely using a
mutual information metric [15], then using a diffeomorphic variant of the demons
registration algorithm [16]. The method represents warps Φ with a smooth
and stationary velocity field v using a one-parameter subgroup of diffeomor-
phisms [17]. In this formulation, Φ(x) = exp(v)(x), i.e., the flow of the velocity
field at time one is equal to its equivalent deformation. In addition to guarantee-
ing diffeomorphic registration, this parametrization is computationally efficient
and offers convenient access to the inverse deformation Φ−1(x) = exp(−v)(x).
At each iteration, the incremental update velocity field u is found by minimizing
the energy function [13]:

E(IF , IM , Φ, u) = ||IF − IM ◦ Φ ◦ exp(u)||2 + ||u||2, (1)

where IF and IM are the fixed and moving images respectively, and Φ is the
warp at the current iteration. The new updated velocity field is then smoothed
to optimize a regularization constraint.

One disadvantage of demons registration algorithms is that they are driven
by intensity differences between images IF and IM . Although the MRA images
we work with are of the same modality, the intensity distribution varies from
one image to the next. To address this problem, we introduce an intensity trans-
formation:

ĨM (x) =

K∑
k=1

θkbk(IM (x)) = B(IM (x)) θ, (2)
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where {b1(·) . . . bK(·)} is the set of basis functions and θ = {θ1 . . . θK} is the
vector of corresponding coefficients. This transformation effectively modifies the
energy function we are optimizing:

E(IF , IM , Φ, u) = ||IF −B[IM ◦ Φ ◦ exp(u)] θ||2 + ||u||2. (3)

Similar to [18], we use polynomial basis functions up to degree K. For a
fixed velocity field u, Eq. (3) reduces to a standard linear least squares problem.
We thus alternate between estimating coefficients {θi} from corresponding voxel
pairs in IM ◦ Φ and IF (using robust least squares with outlier detection) and
performing the standard demons iteration.

2.2 Label Fusion Segmentation

Rather than summarize the training set through average statistics, label fusion
algorithms keep the atlas in the form of the original training images with their
expert manual segmentations. After registering the training images {Ii} to the
test image I, we obtain a non-parametric subject-specific atlas composed of N
warped images and corresponding label maps.

To perform the segmentation, we use a weighted voting scheme at each voxel,
taking into account not only the number of occurrences of each label, but also
their locations in the manually segmented structures and the similarity between
the intensities of corresponding voxels in the training and test images, similar
to [11]. Formally, we compute the maximum a posteriori (MAP) estimate of the
label map:

L̂ = arg max
L

p(L|I, {Li, Ii, Φi}) = arg max
L

p(L, I|{Li, Ii, Φi}). (4)

We make a simplifying assumption that each voxel is generated from the train-
ing set independently from all other voxels. Furthermore, we assume that each
training image is equally likely to generate any particular voxel a priori. The
MAP estimation then reduces to an independent decision at each voxel:

L̂(x) = arg max
l∈1,...,L

N∑
i=1

p(L(x) = l, I(x)|Li, Ii, Φi) (5)

= arg max
l∈1,...,L

N∑
i=1

p(L(x) = l|Li, Φi)p(I(x)|Ii, Φi), (6)

where L is the total number of possible labels (L = 2 in our case). Eq. (6)
assumes that the label and intensity values at each voxel of the test image
are conditionally independent given the warp Φi and the fact that they were
generated from training subject i. This decision rule can be viewed as weighted
soft voting with p(L(x) = l|Li, Φi) providing the vote and p(I(x)|Ii, Φi) serving
as a weight. We set weights using a Gaussian image likelihood:

p(I(x)|Ii, Φi) =
1√

2πσ2
e−

1
2σ2

(I(x)−Ĩi(Φi(x)))2 , (7)
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where Ĩi (Φi(·)) is the training image Ii, registered to the test image I and
intensity equalized by applying the intensity transformation estimated during
the registration step. The weight is higher when the two corresponding voxels
in the aligned images have similar intensities. We define the votes through the
label likelihood term:

p(L(x) = l|Li, Φi) ∝ eρD
l
i(Φi(x)), (8)

where Dl
i (Φi(·)) is the signed Euclidean distance map of the manual segmenta-

tion of the training subject i in the coordinate space of the test subject and ρ is
the slope parameter. Voxels that are inside the structure and farther from the
boundary are assigned higher votes.

3 Results

We validate our method on a set of 16 electro-cardiogram gated Gadolinium-
DTPA (0.2 mmol/kg) contrast-enhanced MRA images (CIDA sequence, TR=
4.3ms, TE=2.0ms, T=40°, in-plane resolution varying from 0.51mm to 0.68mm,
slice thickness varying from 1.2mm to 1.7mm, ±80 kHz bandwidth, atrial dias-
tolic ECG timing to counteract considerable volume changes of the left atrium).
We perform leave-one-out experiments by treating one subject as the test image
and the remaining 15 as the training set, and repeating for each subject in the
dataset. We use the Dice overlap score [19] between the automatic and expert
manual segmentations as a quantitative measure of segmentation quality. Dice
scores vary from 0 to 1, with 1 corresponding to perfect overlap.

In the label fusion segmentation algorithm, we set σ = 100 and ρ = 1.5. We
explored the parameter space by varying σ between 50 and 500, and ρ between
0.3 and 2.5. During this process, we confirmed that our method is in fact robust
to the choice of the parameters. The difference between the best and the worst
Dice scores obtained for each subject while varying the parameters was 0.05 ±
0.03. We also explored different values for the polynomial degree of the intensity
transformation in the registration algorithm. We varied the degree from 1 to 5
and found that it had similarly little effect on the results, with a 0.008 ± 0.007
difference between the best and worst overlap scores for each subject. We chose
a degree of 3 because it provided the highest overall Dice scores.

We compare our method of weighed voting (WV) label fusion to three al-
ternative atlas-based approaches: majority voting (MV) label fusion, parametric
atlas thresholding (AT) and atlas-based EM-segmentation (EM). The majority
voting label fusion is similar to weighted voting, except it assigns each voxel
to the label that occurs most frequently in the registered training set at this
voxel [10, 20]. We also construct a parametric atlas that summarizes all 16 sub-
jects in a single template image and a probabilistic label map by performing
group-wise registration to an average space. After registering this new atlas to
the test subject, we segment the left atrium using two different approaches. In
atlas thresholding, we simply threshold the warped probabilistic label map at 0.5
to obtain the segmentation. We also use this parametric atlas as a spatial prior
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Fig. 2. Example segmentations of four different subjects: (a) expert manual segmen-
tation, (b) weighted voting label fusion (WV), (c) majority voting label fusion (MV),
(d) parametric atlas thresholding (AT) and (e) EM-segmentation using the parametric
atlas as a spatial prior (EM).

in a traditional model-based EM-segmentation [21]. Note that this construction
favors the baseline algorithms as it includes the test image in the registration of
all subjects into a single coordinate frame.

In our application, correctly segmenting all of the pulmonary veins of the
left atrium is crucial. Therefore it is important to visually inspect the result-
ing segmentations to fully evaluate them. Fig. 2 shows segmentation outlines of
expert manual segmentations and the four methods we compare on correspond-
ing slices of four different subjects. In the first row, majority voting and atlas
thresholding miss a pulmonary vein that is correctly identified by our approach.
EM-segmentation segments that vein only partially while at the same time pro-
ducing false positives in the aorta and atrial body. The second and third rows
show similar situations. In the last row, all methods correctly segment the pul-
monary veins, but our method produces the most accurate outlines. Detailed
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Fig. 3. Dice scores of results for weighted voting label fusion (WV), majority voting la-
bel fusion (MV), parametric atlas thresholding (AT) and atlas-based EM-segmentation
(EM). For each box plot, the central red line indicates the median, the boxes extend
to the 25th and 75th percentiles, and the whiskers extend to the most extreme val-
ues not considered outliers, which are plotted as red crosses. Stars indicate that the
weighted label fusion method achieves significantly more accurate segmentation than
the baseline method (single-sided paired t-test, ∗: p < 0.05, ∗∗: p < 0.01).

analysis of all subjects shows that our method does not miss a single pulmonary
vein in the whole dataset, in spite of the high anatomical variability.

Fig. 3 reports the segmentation accuracy for each method, as measured by
the volume overlap Dice scores. We also report the differences in segmentation
accuracy between our method and the benchmark algorithms. To compute the
difference between two methods, we subtract the Dice score of the second method
from the score of the first for each subject. Our approach clearly outperforms
other algorithms (WV vs. MV: p < 10−9, WV vs. AT: p < 0.002, WV vs. EM:
p < 0.003; single-sided paired t-test). To focus the evaluation on the critical
part of the structure, we manually isolate the pulmonary veins in each of the
manual and automatic segmentations, and compare the Dice scores for these
limited label maps. Again, we observe consistent improvements offered by our
approach (WV vs. MV: p < 10−7, WV vs. AT: p < 10−7, WV vs. EM: p < 0.03;
single-sided paired t-test). Since atlas-based EM-segmentation is an intensity
based method, it performs relatively well in segmenting pulmonary veins, but
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suffers from numerous false positives in other areas, which lower its overall Dice
scores.

In Table 1, we present the computational cost for the different methods. The
computation time consists of the time needed to perform the registrations and
the time required by the segmentation step. We use an ITK implementation of
the diffeomorphic demons registration algorithm [14] and implement the segmen-
tation step in MATLAB. The weighted voting and majority voting label fusion
methods register all of the training images (15 in our case) to the test subject.
Each registration takes on average 8 minutes. The parametric atlas can be com-
puted without any knowledge about the test image. Therefore, the parametric
atlas thresholding and the atlas-based EM-segmentation require only a single
registration of the atlas to the test subject.

Table 1. Computation times for different methods.

Method Registration Segmentation Total

WV 8 min × 15 5 min 125 min

MV 8 min × 15 0.5 min 120.5 min

AT 8 min 0.1 min 8.1 min

EM 8 min 15 min 23 min

4 Discussion and Conclusions

We demonstrated a non-parametric atlas-based method for automatic left atrium
segmentation. This label fusion style approach first registers the whole training
set to the test subject and then combines weighted votes from training subjects
to make decisions. These votes are computed independently at each voxel and
depend on the intensity similarity between the training and test images, as well
as the voxel’s location in the structure of interest. To handle global shifts in
the intensity distribution across images, we modified the diffeomorphic demons
registration algorithm to perform iterative intensity equalization during regis-
tration.

Experimental results illustrate the capacity of our method to handle high
anatomical variability, yielding accurate segmentation and detecting all pul-
monary veins in all subjects. By explicitly modeling the anatomical variability
represented in the label maps and the corresponding training images, the pro-
posed method outperforms traditional atlas-based segmentation algorithms and
a simple label fusion benchmark.

This increased accuracy however comes at the cost of additional computation
time since the whole training set needs to be registered to every test subject that
is being segmented. Although the weighted voting label fusion approach is more
computationally expensive than the other methods, this requirement does not
pose a problem in our application because the left atrium segmentation does
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not need to be produced in real-time. The computation time can be substan-
tially reduced by parallelizing the registration step since the registrations are
independent from each other. Moreover, clustering training images, similar to
the approach in [22], and using cluster centers as training templates can further
reduce the number of necessary registrations. The registration algorithm itself
also clearly affects the overall segmentation results and a careful study will be
necessary to inform future development of the method.

We found that there was no clear relationship between our method’s perfor-
mance on a specific subject and the number of similar examples in the training
set. For example, one subject in our dataset had a pulmonary vein that was not
present in any of the other patients. Our method still produced an accurate seg-
mentation of that vein, even with no similar left atrium anatomy in the training
set. A more detailed analysis of the effects of sub-populations in the training set
on the quality of the resulting segmentations is an interesting future research
topic.

In addition to the benefits automatic segmentation offers for the planning
stages of cardiac ablation, our method can also assist in the evaluation of the
procedure outcome. Segmentation of the ablation scars in post-procedure images
is a clinically relevant but difficult problem. Using left atrium segmentation as a
prior for scar location is a promising future direction of research we will pursue.
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