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Abstract. In functional connectivity analysis, networks of interest are
defined based on correlation with the mean time course of a user-selected
‘seed’ region. In this work we propose to simultaneously estimate the
optimal representative time courses that summarize the fMRI data well
and the partition of the volume into a set of disjoint regions that are best
explained by these representative time courses. Our approach offers two
advantages. First, is removes the sensitivity of the analysis to the details
of the seed selection. Second, it substantially simplifies group analysis by
eliminating the need for a subject-specific threshold at which correlation
values are deemed significant. This unsupervised technique generalizes
connectivity analysis to situations where candidate seeds are difficult to
identify reliably or are unknown. Our experimental results indicate that
the functional segmentation provides a robust, anatomically meaningful
and consistent model for functional connectivity in fMRI.

1 Introduction and Motivation

In this paper we propose and demonstrate a new approach to detection and
analysis of spatial patterns of activation from fMRI data. Functional connectiv-
ity analysis [4] is widely used in fMRI studies for detection and analysis of large
networks that co-activate with a user-selected ‘seed’ region of interest. Time
course correlation typically serves as a measure of similarity with the mean time
course of the selected seed region. Since no alternative hypothesis for correlation
values is formulated, the user must select a threshold, or significance level, used
in rejecting the null hypothesis that assumes zero correlation. This approach is
highly useful for analyzing experiment-specific fMRI data, but integration across
different runs or across subjects is challenging due to high variability of inter-
voxel correlation values across scans. Furthermore, in some studies it is unclear
how to select the seed region, and we would instead prefer to discover the inter-
esting ‘seeds’ and the associated networks in an unsupervised way. To eliminate
the sensitivity of the analysis to the seed and threshold selection and to general-
ize the method to situations when candidate seeds are not immediately obvious,
we propose to simultaneously estimate an optimal partition of the volume into a
set of disjoint networks and the representative time courses associated with these
networks. This formulation gives rise to an unsupervised segmentation algorithm
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that, very much like EM-segmentation of anatomical scans [19], estimates seg-
mentation labels by fitting a mixture density to the image data. The algorithm
adaptively determines the threshold for assigning a voxel to a network based on
the similarity of that voxel to the representative time courses, eliminating the
need for subject-specific threshold selection.

Our approach is based on a model that parcelates the brain into disjoint sub-
regions.PrincipalComponentAnalysis (PCA)and IndependentComponentAnal-
ysis (ICA) [3] provide an alternative model of functional connectivity that treats
the data as a linear combination of components, i.e., spatial maps with associated
time courses. The physiological evidence for either model is yet to be established,
but we find the parcellation model more appealing in explaining functional orga-
nization, in particular when we extend the model to multiple scales.

ICA, PCA and clustering have been extensively explored in the contexts of
regression-based detection [1, 2, 7, 8, 9, 13, 14, 16, 17]. Application of clustering
in fMRI analysis has traditionally focused on grouping voxels into small, func-
tionally homogeneous regions in paradigm-based studies [8, 13, 17]. In contrast,
we aim to construct a top-down representation of global patterns of activation
spanning the entire brain. Recently, clustering was also demonstrated in appli-
cation to full-brain scans in rest state [5, 18], revealing anatomically meaningful
regions of high functional coherency. Unlike prior work in clustering of fMRI
data [8, 13, 17, 18], we do not aim to determine the optimal number of systems
in the decomposition. Instead, our experience shows that active browsing of
the segmentation results across several levels of resolution (system size) in the
anatomical region of interest is substantially more instructive than considering
flat parcellations generated for a fixed, large number of clusters. In addition, we
perform clustering on the original time courses, replacing the dimensionality re-
duction step used in [18] by the constrained signal model that effectively fold the
dimensionality reduction into the estimation process. The resulting algorithm is
simple to implement and analyze, yet it produces highly stable results across
runs and subjects.

ICA offers an unsupervised component-based decomposition of the spatio-
temporal fMRI data, but the interpretation of the resulting component maps
remains challenging. In particular, the method produces a flat decomposition
into a large number of spatially sparse, typically non-overlapping, components
which are often treated as a segmentation of the volume. We find it natural
to explicitly formulate the problem of characterizing the spatial patterns of co-
activation as segmentation of the fMRI volume. This model is well matched
to the questions of interest in exploratory analysis of fMRI data, in addition to
producing anatomically meaningful results that are easy to interpret as partitions
of the cortex into systems.

2 Unsupervised Segmentation of fMRI Data

Classical correlation-based connectivity analysis assumes a user-specified hy-
pothesis, for example through a selection of a seed region. In contrast, we
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formulate the problem of characterizing connectivity as a partition of voxels
into subsets that are well characterized by Ns representative hypotheses, or time
courses, m1, . . . mNs based on the similarity of their time courses to each hy-
pothesis. We model the fMRI signal Y at each voxel as generated by the mixture
pY(y) =

∑Ns

s=1 λspY|S(y|s) over Ns conditional likelihoods pY|S(y|s) [15]. λs is
the prior probability that a voxel belongs to system s ∈ {1, . . . , Ns}. Following a
commonly used approach in fMRI analysis, we model the class-conditional den-
sities as normal distributions centered around the system mean time course, i.e.,
pY|S(y|s) = N (y;ms, Σs). The high dimensionality of the fMRI data makes
modeling a full covariance matrix impractical. Instead, most methods either
limit the modeling to estimating variance elements, or model the time course
dynamics as an auto-regressive (AR) process. At this stage, we take the sim-
pler approach of modeling variance and note that the mixture model estimation
can be straightforwardly extended to include an AR model. Unlike separate di-
mensionality reduction procedures, this approach follows closely the notions of
functional similarity used by the detection methods in fMRI. In other words,
we keep the notion of co-activation consistent with the standard analysis and
instead redefine how the co-activation patterns are represented and extracted
from images.

We employ the EM algorithm [6] to fit the mixture model to the fMRI signals
from a set of voxels, leading to a familiar set of update rules:

p̃n(s|yv) =
λn

s N (yv;mn
s , Σn

s )
∑

s′ λn
s′N (yv;mn

s′ , Σn
s′)

, λn+1
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∑
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V
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∑
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s (t, t) =
∑
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∑
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where p̃n(s|yv) is the estimate of the posterior probability that voxel v belongs
to system s, and {λn

s ,mn
s , Σn

s }Ns

s=1 are the model parameter estimates at step
n of the algorithm. As mentioned above, we model the covariance matrix as a
diagonal matrix. To ensure that we properly explore the non-convex space of
the solutions, we perform multiple runs (10 in our experiments) of the algorithm
using different random initializations and select the solution that corresponds to
the maximum likelihood of the data. We initialize each run by randomly selecting
Ns voxels and using their time courses as an initial guess for the cluster means.

When the algorithm converges, p̃(·|yv) represents probabilistic segmentation.
The exponential form of class-conditional densities, combined with high dimen-
sionality of the input space, leads to essentially binary posterior probabilities (in
our experience, fewer than 1% of voxels is assigned a posterior probability that
is more than 10−3 away from 0 or 1). Unlike anatomical segmentation, atlas-
based approaches are not applicable to this problem, since the instantaneous
properties of fMRI signals vary substantially across runs, and little is known
about spatial organization of the functional activity we should expect to see as
a result of segmentation. Consequently, we perform the segmentation in a fully
unsupervised fashion.
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To summarize the results of the segmentation across subjects, we must make
sure that the labels assigned to the same anatomical system agree across subjects.
We employ an approximate algorithm that matches the label assignments in pairs
of subjects with the goal of maximizing the number of voxels with the same label
in both subjects until convergence. In practice, this algorithm quickly (1-2 passes
over all subjects) finds the correct label permutation in each subject.

3 Experimental Results

We demonstrate our approach on a study of functional connectivity that included
7 subjects. We used previously collected fMRI scans in a large set of visual
experiments, from simple localizer tasks to viewing continuous stimuli (movies),
as well as a rest scan. The total amount of fMRI data per subject was close to
one hour. In the movie viewing experiments, the functional connectivity analysis
revealed two systems: the stimulus-dependent system that contained sensory-
motor cortexes and was strongly correlated with the seed region in the visual
cortex and the ‘intrinsic’ system that showed little correlation with the visual
seed, but exhibited high intra-system correlation [11].

The functional scans were pre-processed for motion artifacts, manually aligned
into the Talairach coordinate system, detrended (removing linear trends in the
baseline activation) and smoothed (8mm kernel). We experimented with dif-
ferent amount of smoothing and observed that is had very little effect on the
resulting decompositions. We restricted the analysis to the voxels in the cortical
segmentation mask in the corresponding anatomical scans and chose to visual-
ize the resulting decompositions on the inflated surface of the cortex, as well
as using a flattened representation of both hemispheres. Functional segmenta-
tions extracted for the same subject in different visual experiments varied little
in the anatomical boundaries of the detected systems even though the details
of the systems’ time course dynamics changed substantially across experiments.
This is in line with the current theories of the functional organization of the
brain that postulate anatomically stationary regions whose changing activation
dynamics drives the cognitive processes. Using all the data in a single segmenta-
tion resulted in a more repeatable segmentation when compared across subjects,
suggesting that increasing the amount of fMRI data stabilizes the estimation
process. The experimental results reported in the remainder of this section are
based on all available data for each subject.

Fig. 1a shows the 2-system partition extracted in each subject independently
of all others. It also displays the boundaries of the intrinsic system determined
through the traditional seed selection, showing good agreement between the
two partitions. In contrast to the difficulties associated with the subject-specific
threshold selection in group analysis within the standard functional connectiv-
ity framework, the clustering-based decomposition produces highly repeatable
maps that do not involve subject-specific adjustments. Fig. 1c shows a group-
level label map that summarizes the maps from Fig. 1a, further illustrating the
stability of the decomposition. We emphasize that no sophisticated group-wise
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(a) 2-system segmentation, subject-specific maps

(b) 3-system segmentation, subject-specific maps

(c) group average of 2-system (d) group average of 2-system
subject-specific maps in (a) partition of the intrinsic system

(e) Hierarchical interpretation of 8-system segmentation for subject 1

Fig. 1. Functional segmentation examples. (a,b) Subject-specific segmentation results
for two and three systems respectively (flattened view). Green: intrinsic system, blue:
stimulus-driven cortex, red: visual cortex. Solid lines show the boundaries of the intrin-
sic system determined through seed selection. (c) Group average of the subject-specific
2-system maps. Color shading shows the proportion of subjects whose clustering agreed
with the majority label. (d) Group average of the subject-specific segmentation of the
intrinsic system into two sub-systems. Only voxels consistently labeled across subjects
are shown. (e) Subject-specific segmentation into a large number of systems. Browsing
of all preceding levels (not shown here) revealed the hierarchy displayed on the right.
Colors show matching systems in the image (left) and labels in the hierarchy (right).
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(a) Visual cortex

(b) Segmentation of the visual cortex: retinotopical cortex (yellow),
peripheral visual areas (blue) and high visual areas (red).

Fig. 2. Comparison with the regression-based detection. (a) Color shows the statisti-
cal parametric map; solid lines indicate the boundaries of the visual system obtained
through clustering. (b) 3-system segmentation of the visual cortex for subjects 1,2,5,7.
Only the posterior half of the flattened view is shown for each subject. The black lines
indicate the boundaries of V1-V4 regions.

registration was performed; no information was shared across subjects during
segmentation. Subsequent subdivision of the cortical gray matter into three sys-
tems produced the results in Fig. 1b. With the exception of one subject, the
3-system segmentation reveals visual cortex. In subject 7, the visual cortex sep-
arated in segmentation into 4 systems (shown in the figure). Fig. 1e shows an
example of subject-specific segmentation into 8 systems and its hierarchical inter-
pretation that was constructed by a neuroscientist through interactive browsing
of the increasingly detailed segmentations (not shown here). While the final seg-
mentation map in Fig. 1e would be difficult to interpret if it were considered as
a stand-alone flat parcellation, a collection of segmentations into an increasingly
large number number of systems makes interpretation exceedingly easy. The
nested nature of the segmentation results suggests future work in hierarchical
representations that capture and exploit this property to improve detection and
interpretation.

Since the original study aimed to characterize the intrinsic system, we also
performed a subdivision of just that system in each subject. Interestingly, this
subdivision produced a stable partition across subjects; the corresponding group-
level map is shown in Fig. 1d. The overlap of the smaller sub-systems is weaker
than that of the intrinsic system, but it clearly represents a coherent division of
the intrinsic system. We are currently investigating neuroanatomical and func-
tional characteristics of the two new sub-areas.

We also provide preliminary validation of the method by comparing the re-
sulting parcellations with well known partitions in the visual cortex. Fig. 2a
compares the boundaries of the visual system identified through clustering (red
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Fig. 3. Performance statistics. (a) Proportion of runs that resulted in the segmen-
tation that was close to the best (max likelihood) segmentation. (b) Null hypothesis
distribution for the number of voxels that showed perfect agreement across all subjects.

cluster in Fig. 1b) with the statistical parametric map (SPM) from a block-
design visual localizer experiment. The regions of reduced activation in the SPM
correspond to the well known suppression of activation in the intrinsic system
(anterior of the visual cortex; outside the visual system) and the reduction in the
signal often observed in the peripheral visual areas (posterior cortex; included
in the visual system). We can see that the two methods agree on the location
of the boundary between the visual cortex and the adjacent areas. We empha-
size that the segmentation method had no access to the protocol regressor from
the visual experiments. Further subdivision of the visual system revealed the
central-peripheral partition that separates retinotopic areas (V1 through V4)
from the peripheral visual areas and the retinotopic-high partition that sepa-
rates the retinotopic cortex from the high visual areas. These two fundamental
organizational principles have been extensively studied using a set of techniques,
including fMRI [12]. Fig. 2b compares the results of segmentation with the retino-
topical mapping available for four subjects in our study. The solid lines indicate
the extent and the boundaries of the retinotopic areas obtained in a separate
fMRI experiment [12]. We can see that the segmentation accurately estimated
the boundaries between the retinotopic areas (yellow), the high visual areas (red)
and the peripheral areas (blue) using fMRI data from a diverse set of experiments
which were not specifically tailored for retinotopic mapping.

To test the robustness of the EM algorithm in this application, we ran the
segmentation for 100 different random iterations and examined the resulting
maps. We sorted the resulting segmentations by the value of the corresponding
data likelihood. Using the best result as a reference, Fig. 3a shows the number of
resulting segmentations that varied from the best segmentation by less than 1%,
2% and 5% respectively. We observe that a reasonable proportion of the runs
(from 15% to 50%) produced segmentations that are very close to the best one.
Similar to other hill-climbing optimization problems, our goal is not to ensure
that all runs result in a good solution, but rather than sufficiently high proportion
of random initializations leads to a good solution. To quantify the significance of
the agreement across subjects, we ran permutation tests. In each iteration of the
test, the voxel locations were permuted, the best relabeling across subjects was
estimated and the proportion of voxels that achieved perfect agreement across
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subjects was recorded. When comparing the observed proportion in the real data
with the histograms created in the permutation test for 105 iterations (Fig. 3b),
we note that the result is dramatically significant under this null hypothesis.
Our future work includes developing more realistic null hypotheses that maintain
spatial statistics of labels observed in the estimated segmentations.

4 Conclusions

We proposed and demonstrated a novel approach to characterizing global spatial
patterns of co-activation in fMRI. The analysis produces hierarchical decompo-
sitions of the gray matter into a set of regions with increasingly consistent func-
tional activity. By explicitly decoupling inter-subject variability in the spatial
pattern of activation from the time course variability, our approach overcomes
the need for subject-specific threshold selection often necessary in the standard
methods for group analysis of fMRI data. In contrast to component-based anal-
ysis, the proposed method provides an intuitive model of cortical parcellation
into systems and leads naturally to a hierarchical formulation that we plan to
explore in the future. We provide initial validation of the method by compar-
ing the detected systems with the previously known divisions of cortical areas.
We also demonstrate an application of the method to detect novel functional
partitions.
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