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Abstract

In this paper, we present a novel approach to robust
skeleton extraction. We use undirected graphs to model
connectivity of the skeleton points. The graph topology
remains unchanged throughout the skeleton computation,
which greatly reduces sensitivity of the skeleton to noise in
the shape outline. Furthermore, this representation natu-
rally defines an ordering of the points along the skeleton.
The process of skeleton extraction can be formulated as en-
ergy minimization in this framework. We provide an itera-
tive, snake-like algorithm for the skeleton estimation using
distance transform.

Fixed topology skeletons are useful if the global shape of
the object is known ahead of time, such as for people sil-
houettes, hand outlines, medical structures, images of let-
ters and digits. Small changes in the object outline should
be either ignored, or detected and analyzed, but they do not
change the general structure of the underlying skeleton. Ex-
ample applications include tracking, object recognition and
shape analysis.

1. Introduction

Skeletons, or medial axis transforms, have been used in
computer vision for several decades. As the name implies, a
skeleton is a set of curves that approximates the local sym-
metry axis of the shape. Several definitions of skeletons
have been proposed in the literature. One of the first [2]
was based on a “grass fire” model, i. e. , a moving wave-
front generated by an inward motion of an outline curve
with constant speed along a normal vector at every point
on the curve. The skeleton is the set of points at which the
wavefront crosses itself. It can be shown that each skele-
tal point is the center of an inscribed circle that touches the
outline in more that one point.

An alternative definition for skeletons is based on a
distance transform. Distance transform, or distance map,

D(x, y) is a function that for any point inside a shape is
equal to the distance from the point to the closest point on
an outline [2, 15]. A skeleton of a shape can be defined as
the set of ridge points of the distance map. It can be proved
that the two definitions are equivalent, and furthermore, a
value of a distance map at any skeletal point is equal to the
radius of the inscribed circle associated with it.

Numerous algorithms have been developed for skeleton
extraction [1, 3, 12, 13], using wavefront propagation or dis-
tance transform. Another group of algorithms uses Voronoi
diagrams for skeleton computation [4, 16]. The main draw-
back of traditional skeletons is their high sensitivity to noise
in the boundary: small errors in segmentation of the object
can drastically change the structure of the subsequently de-
rived skeleton. This becomes a serious problem when the
shapes are not defined by smooth curves or surfaces, but ex-
tracted from digital images. Several methods have been pro-
posed to stabilize the skeleton extraction, mostly by prun-
ing “false” branches that are believed to be caused by noise
in the outline [4, 12, 13]. A different approach, based on
self-similarity of a smooth outline curve, was demonstrated
in [14].

Skeletons provide an intuitive, compact representation of
a shape, which made them appealing for many applications
in computer vision. One of the important features of the me-
dial axis representation is separation of the shape’s topolog-
ical properties (sub-parts and connectivity between them)
from its geometric properties (the location of the curves
and the shape width at every skeletal point). If the object
of interest undergoes non-rigid transformations, this prop-
erty becomes important for modeling the shape. Examples
include articulated motion (e.g., people, non-rigid objects),
as well as differences in shape between different instances
of the same object that cannot be explained by the simi-
larity transformation (for example, natural shape variabil-
ity of anatomical structures). Recent examples of applica-
tions using skeletons include modeling of articulated mo-
tion in tracking (a human body was modeled using a simpli-
fied version of a skeleton for a tracking application in [8]),
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shape modeling of anatomical structures for segmentation
and registration (a modified version of skeletons, so called
cores was used in [6] for this purpose) and statistical shape
analysis (shape features were extracted using skeletons for
corpus callosa and used for classification in [10]).

In this paper, we propose and develop an approach to
robust estimation of the geometrical properties of the shape
and its skeleton in cases when the topology of the skeleton
is known a priori.

1.1. Fixed Topology Skeletons

In many applications, the global shape of the object is
known ahead of time, and one would like to either ignore
small changes in the shape (for example, in tracking of ar-
ticulated objects), or detect and study them (such as shape
analysis of anatomical structures). This information can
help in extracting the skeleton more reliably. We propose a
new representation, fixed topology skeletons, to be used as a
framework for incorporating constraints on shape topology
into the skeleton extraction algorithm. We model a skele-
ton using an undirected graph whose global structure does
not change during the computation, while its location is ad-
justed to approximate the main ridges of the distance map.
An important question is, “What are the situations when the
information on the topology of the skeleton is available and
can be used for robust estimation of its geometrical proper-
ties?” We discuss several such examples in this section and
provide the results for some of them in Section 5.

In tracking human motion, we know the general shape of
the object and would like to estimate its location, size and
the position of the articulated parts relative to each other.
By fixing the topology of the skeleton, we utilize informa-
tion available to us besides the input image to improve the
accuracy of the skeleton estimation. Moreover, the consid-
erations of speed in real time applications force us to use
images of low resolution, which causes even greater quanti-
zation error and more noise in the outline extraction. There-
fore the proposed approach can offer a significant improve-
ment by using additional information to stabilize the skele-
ton. The resulting skeleton can be used to study the object
motion, e.g., measuring the angles between branches of the
skeleton and their change over time, or detecting periodicity
of the motion.

Other examples are medical applications such as virtual
endoscopy and vessel connectivity estimation. One of the
tasks of virtual endoscopy [9, 17] is to generate a smooth
fly-through path between two points inside a tubular struc-
ture, such as bronchi or a colon, that is as close to the middle
of the tube as possible1. In the second example, the goal is

1Any contact of the path with the walls of the structure will cause poor
visualization and will increase chances of tissue damage if the system is
used to drive an endoscope.

to create a graph-like representation of the segmented set
of tubular structures, such as blood vessels, for therapeutic
planning and surgical navigation. While traditional skele-
tons are too sensitive to noise to produce a satisfactory re-
sult, the algorithm proposed in this paper can be easily ex-
tended to handle 3D tubular structures (whose skeletons are
curves), and therefore can be used in those applications.

1.2. Active Contours

A graph representation of a skeleton lends itself naturally
to a snake-like algorithm. Snakes, or active contours, were
introduced by Kass, Witkin and Terzopoulos [11] and have
been extensively used in computer vision for segmentation.
This approach casts the problem of boundary localization
into a curve evolution framework. The curve is evolved in a
potential energy field (intensity gradient in the case of seg-
mentation) under a set of smoothness constraints. Fua and
Brechbuhler [7] proposed a method for incorporating ge-
ometric constraints (angle values, distances, etc.) into the
active contour algorithm.

If we use the distance transform as the potential en-
ergy function in this formulation, the snake algorithm can
be used for skeleton extraction. In fact, Leymarie and
Levine [13] used the active contour algorithm on the dis-
tance transform to simulate the grass fire wavefront propa-
gation and estimate the shape skeleton. The points where
the wavefront crossed itself were identified as skeletal
points. A post-processing step of parsing the resulting snake
and estimating the graph structure from the collapsed con-
tour was proposed, as well as a pruning technique that could
be incorporated into the algorithm.

The main difference of the algorithm used in this pa-
per for estimation of the skeleton location from other snake
based methods is that we operate on a graph of a general
structure (as an opposite to a set of closed curves). In our
implementation, the branches of the graph are driven in a
snake-like fashion towards the ridges of the distance map,
while the connectivity between the branches is fixed. Use of
prior information allows us to eliminate the steps of topol-
ogy estimation and pruning required in [13]. This points to
an additional advantage of using a graph representation: it
defines a natural ordering of the points along the skeleton
curves. This can be important if the skeletons are used to
establish correspondence between similar shapes, or to ex-
tract shape features for further analysis. It can be difficult
to infer the connectivity structure in places where several
skeleton branches merge together, as many points seem to
be good candidates for a junction node. In the proposed rep-
resentation, the connectivity is fixed and we optimize for the
position of the junction.

The remainder of the paper is organized as follows. In
the next section, we define the graph representation and in-
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troduce necessary notation. Section 3 contains a review of
the traditional active contours algorithm, followed by a de-
scription of a modified snake algorithm we developed for
skeleton extraction. Then the results of applying this tech-
nique and testing of the algorithm’s sensitivity to initializa-
tion are presented, followed by concluding remarks.

2. Graph Representation

We use undirected graphs to model skeletons. A node
in a graph corresponds to a point on the skeleton, an edge
establishes a neighborhood relationship between two points
of the skeleton. There are three types of nodes: leaves, junc-
tion nodes and internal nodes. A leaf has exactly one neigh-
bor and is used to model an endpoint of a skeleton. A junc-
tion node has more than two neighbors and corresponds to a
merging point of several branches of a skeleton. An internal
node has exactly two neighbors and is used to approximate
points on the branches of the skeleton. Formally, a skeleton
S = (V,E,X) is defined as following:

V = {i|1 ≤ i ≤ N},
E ⊆ V × V, (1)

X = {xi}i∈V ,

where V is the set of nodes, E is the set of edges of the
graph and X is the set of node positions xi = (xi, yi) in
the image plane. We use Ni to denote a set of neighbors of
node i

Ni
�
= {j|(i, j) ∈ E}. (2)

A reduction operation on an internal node is defined as
removing the node, while adding a new edge between its
neighbors. If reduction is applied repeatedly to the graph
until there are no internal nodes left in the graph, we call
the resulting graph an r-graph (for “reduced graph”):

R(V,E,X) = (Vr , Er, Xr),
Vr = {i||Ni| �= 2},

Er =


(i, j)

∣∣∣∣∣∣
there exists a path from
i to j in S passing thru
internal nodes only


 , (3)

Xr = {xi}i∈Vr ,

We say that two undirected graphs have the same topology
if the corresponding r-graphs are isomorphic. It is easy to
see that the topology of the skeleton is fully determined by
the connectivity between its leaves and its junction nodes.
Therefore, we can guarantee that the topology of the graph
does not change if we restrict our modifications of the graph
to reductions and insertions of internal nodes of the graph.

We observe that the nodes of the three types play differ-
ent roles in the graph representation of the skeleton: the in-
ternal nodes are used to approximate the curves of the skele-
ton (which are not necessarily straight lines), and the the

leaves and the junction nodes determine the skeleton topol-
ogy.

3. Active Contours

A common physical model used by active contours is an
elastic band with mass density ρ and elasticity κ moving
in the potential energy field. The band is parametrized by
arclength as x(ξ) = (x(ξ), y(ξ)), 0 ≤ ξ < 1. The problem
of ridge extraction of an image function can be formulated
as an energy minimization:

Etotal =
∫ 1

0

[ρEp(x(ξ), y(ξ)) + Ed(ξ))] dξ, (4)

where Ep(x, y) is the potential energy function, and

Ed(ξ) = κ

[(
∂x

∂ξ

)2

+
(

∂y

∂ξ

)2
]

(5)

is the energy of the elastic deformation. Using Euler-
Lagrange equations, we arrive at the dynamics of the curve
(defined by two forces: the gradient of the potential energy
and the elastic deformation force):

xt(ξ) = −ρ∇Ep(x) + κ
∂2x
∂ξ2 . (6)

Geodesic snakes algorithm [5] modifies this equation to
restrict the evolution of the curve to the normal direction at
every point on the curve:

xt(ξ) = 〈(−ρ∇Ep(x) + κ
∂2x
∂ξ2 ) · N(ξ)〉N(ξ), (7)

where 〈u · v〉 is an inner product of vectors u and v, and
N(ξ) is a unit length normal pointing inwards. This ap-
proach postulates that displacements along the tangent di-
rections affect the parameterization of the curve, but not its
shape, and should therefore be excluded from the evolution
dynamics.

In practice, a discrete approximation is used, and Eq. (7)
becomes

∆xt
i

�
= xt+1

i − xt
i (8)

= 〈(−ρ∇Ep(xt
i) + κ

∑
j∈Ni

xt
j − xt

i) ·Nt
i〉Nt

i,

where xt
i is the location of point i on the discrete approxi-

mation of the snake at iteration t and Nt
i is the normal vector

at that location estimated using the point’s neighbors.
Since we are interested in extracting the ridges of the dis-

tance map, we use the negated distance transform D(x, y)
as a potential energy function:

∆xt
i = 〈(ρ∇D(xt

i) + κ
∑
j∈Ni

xt
j − xt

i) ·Nt
i〉Nt

i. (9)
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The process is stopped when the curve starts oscillating
around the ridge. We can see that this process essentially
simulates a smoothed version of a wavefront propagation
process.

4. Skeleton Estimation

Now we are ready to describe an algorithm for skeleton
estimation that consists of three main steps. First, we esti-
mate the positions of the leaf nodes along the outline and
initialize the graph. Then we use a snake-like algorithm
to “drive” the graph along the gradient of the distance map
while keeping the leaf nodes fixed. Once the graph has set-
tled onto the distance map ridges, the leaf node positions are
adjusted to minimize the reconstruction error. This section
describes each of the three steps in details.

4.1. Leaf Position Estimation

In order to initialize the skeleton graph, we first esti-
mate positions of all leaf nodes along the outline. Since the
leaf positions will be refined in the later steps of the algo-
rithm, the precision of this step is not crucial, as long as the
initial estimates are in the “right segments” of the outline
(i.e. , they can be off the optimal position, but not swapped
with another leaf on the outline). Section 5 examines the
method’s sensitivity to errors in initialization of the leaves.

It has been shown [12, 13, 15] that the endpoints of the
skeleton correspond to maxima of positive curvature along
the outline. This provides us with a way of estimating the
leaf positions. Fig. 1 shows an example shape, an initial
graph, and a plot of the outline curvature for that shape. The
five maximum points were used to initialize the skeleton.

In some applications, the initialization can use a priori
knowledge about the shape. For example, for people track-
ing, we can get a fairly accurate guess at the initial position
and orientation of the skeleton based on the bounding box
of the silhouette. Section 5 contains an example of a track-
ing application and provides the details of the leaf position
estimation. In tracking in general, the results from the previ-
ous frames can be used to initialize the skeleton in the next
frame, so that only the first frame needs to be initialized us-
ing additional information. If the motion is estimated from
a video sequence, some combination of the predicted posi-
tions for the leaf nodes in the next frame and the estimation
results from the previous frame can be used for initializa-
tion.

Medical images are another example where additional
information on the shape orientation might be available. In
this case, we usually know an approximate position and ori-
entation of a body in the scanner, and this might be suffi-
cient for initial estimation. Section 5 contains an example
of corpus callosum, when the initialization was performed
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Figure 1. Skeleton extraction, example: (a) orig-
inal distance map; (b) initial skeleton graph; (c)
curvature.

using one point on the left side of the shape and one point
on the right side of the shape. Since the skeleton structure
is fairly simple, this was sufficient for reliable skeleton es-
timation.

Once the leaf node positions on the outline are estimated,
the junction nodes are assigned arbitrary locations along the
outline. Then branches are constructed to follow the outline.
This constrains the graph to the inside of the shape, since we
are using the gradient of the distance transform to “drive”
the graph.

The algorithm is quite insensitive to the initial position
of the junction nodes. We have tested the algorithm for dif-
ferent initialization points, and it converged to the same so-
lution independently of the initial positions of the junction
nodes, while the number of iterations varied slightly de-
pending on the initialization point. For example, we tested
20 different initialization points for the junction nodes se-
lected randomly along the outline for the shape in Fig. 1.
The number of iterations required for the skeleton to con-
verge varied between 405 and 440. Using the first skeleton
as reference, in all trials the distance between any point on
the resulting skeleton and the closest point on the reference
skeleton was under 1 pixel. Fig. 2 shows the progress of the
algorithm and the final solution for two different initializa-
tion points for that shape.

4.2. Graph Position Estimation

The branches of the graph evolve using the standard
snake update rule of Eq. (9) (we use ρ = 1, κ = 0.5 in
our experiments), while the leaf nodes remain fixed on the
outline. This evolution allows us to update the positions
of the internal nodes. For technical reasons, it is desirable
to maintain close to uniform sampling along the curves, and
therefore the branches of the skeleton need to be re-sampled
(re-parametrized) every few iterations. Note that this does
not change the topology of the corresponding r-graph, as
we only operate on internal nodes.

The junction nodes serve as connectors between the
branches, their main purpose is to preserve the structure of
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Figure 2. Skeleton location after 0, 5, 15, 200, 300 and 400 iterations for two different initializations of the junction
nodes. Stars indicate junction nodes. The skeleton is first folded along the outline with both junction nodes
placed at the same point. As the algorithm progresses, the skeleton unfolds and settles onto the ridges of the
distance map.

the skeleton. Thus the update rule for a junction node places
it in the center of the polygon defined by its neighbors:

xt+1
i =

1
|Ni|

∑
j∈Ni

xt
j . (10)

This rule is somewhat similar to Eq. (9), except that the
junction nodes are not affected by the distance map.

The algorithm stops when no node is moving signifi-
cantly. Fig. 2 shows several snapshots of the skeleton during
this process.

4.3. Leaf node position re-estimation

In order understand how the optimal positions of the
leaves are estimated, let’s first consider reconstructing the
outline from its estimated skeleton. This can be achieved
by creating a circle around each skeletal point with the ra-
dius equal to the value of the distance map at that point and
computing an envelope of all the circles. If the skeleton
were precise, the reconstructed outline would be identical to
the original one. But since we are computing a constrained
version of the skeleton, the reconstructed outline is only an
approximation of the original outline. We define a distance
from point u to outline O to be the shortest distance from
that point to any point on the outline:

d(u;O) = min
v∈O

‖u− v‖, (11)

and the reconstruction error to be an average distance from
the points on the original outline O to the reconstructed out-
line O′:

er(O,O′) =
1
|O|

∑
u∈O

d(u;O′). (12)

Note that we can bound the distances d(u;O′) and er using
the points of the skeleton directly, without reconstructing
the outline (a triangle inequality):

d(u;O′) ≤ min
xi∈S

(‖u− xi‖ + D(xi)). (13)

We say that point u on the original outline is explained
by point xi on the skeleton if the closest point to u on the
reconstructed outline was generated by the circle centered
at xi. We will say that a segment of an outline is explained
by a particular branch of the skeleton if every node in the
segment is explained by some node on the branch.

Now we can describe the algorithm for estimating an
optimal position for each leaf node. First, we estimate a
segment of the outline that is explained by the leaf branch
(which consists of nodes between the leaf and the closest
junction node). This is achieved by scanning the outline
from the leaf node in each direction until we encounter a
node on the outline that is explained by the node on the
skeleton that does not belong to the leaf branch. Then we
allow the leaf node to slide along the outline (first in the
clockwise and then in the counterclockwise direction), and
for every new leaf position, we re-estimate the position of
the leaf branch using the update rule of Eq. (9). Since the
position of the leaf node doesn’ t change much in every step,
re-estimation of the branch location takes only a few itera-
tions. For every new position of the leaf node, we compute
the reconstruction error er for the outline segment explained
by the current leaf branch. The process stops when a local
minimum is found, or when the leaf reaches the boundary of
the explained outline segment. Fig. 3 shows the outline seg-
ments explained by the corresponding leaf branches and the
final positions of the leaf branches, as well as the resulting
skeleton and the reconstructed outline.
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(g) (h) (i)

Figure 3. Final leaf positions: (a) fixed topology
skeleton before leaf position re-estimation; (b)-(f)
leaf position re-estimation: the shaded area corre-
sponds to the part of the shape that is explained by
the leaf branch, only that area is used in the final
leaf position estimation; (g) fixed topology skele-
ton, the final result; (h) the final reconstruction
(gray) with the original outline (black), compare
the leaf node positions to (a); (i) compare to the
traditional skeleton.

Note that this procedure finds a leaf position that corre-
sponds to a local minimum of the reconstruction error. If the
run time is not a concern, an exhaustive search can be per-
formed for every leaf inside the outline segment explained
by that leaf.

5. Experimental Results

We have applied the algorithm to both artificial and real
images from different domains. Since it relies on the initial
positions of the leaf nodes, we have tested the algorithm’s
sensitivity to the initialization. The results are reported in
this section.

Fig. 4 shows an example of another artificial image
skeletonization. The initial leaf positions have been esti-
mated using the extrema of the curvature points. The “ tra-

(a) (b) (c)

Figure 4. Skeleton extraction, artificial example:
(a) original distance map; (b) traditional skeleton;
(c) fixed topology skeleton.

ditional” skeletons shown for comparison in this paper were
computed by extracting local maxima of the distance trans-
form.

Real Images. Fig. 5 demonstrates application of fixed
topology skeletons to tracking data. We show the estimated
skeleton overlaid on top of the grayscale images (64 × 64
pixels) of a walking person. The tracking software devel-
oped in our group [18] was used to segment the images,
then the largest connected component was extracted and the
resulting binary image was given as an input to the skele-
tonization algorithm. The leaves were initialized as follow-
ing:

• head: the highest point of the silhouette,
• arms: (xmin,max,

1
2 (ymin + ymax)),

• legs: (xmin,max, ymin),
where (xmin, xmax, ymin, ymax) define the bounding box of
the silhouette. For each of the five points above, the clos-
est point on the outline was found and used as the initial
position for the corresponding leaf.

We can see that the algorithm estimated well the features
that were present in the images and made reasonable inter-
polation for the occluded features (arms). Since we did not
introduce any knowledge on the geometry of the skeleton,
the absence of the arms did not prevent the algorithm from
“detecting” them2. We do not expect the branches of the
skeleton to exactly mimic the position of the limbs of the
person, since we have not incorporated such geometric in-
formation, but we do expect the leaf associated with each
extremum to be close to the appropriate contour bound-
ary point. As can be seen, this generally occurs for these
cases, even when the arm is not visible as a boundary point.
This demonstrates that we can use fixed topology skeletons
to model non-rigidly moving bodies for such problems as

2If such behavior is undesirable, additional constraints have to be intro-
duced. For example, if removing a particular branch of the skeleton does
not increase the reconstruction error significantly, we might want to con-
clude that the corresponding feature is absent from the image. This has
to be done on per application basis, as requirements on the inference can
change from problem to problem.
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Figure 5. Skeleton extraction for two sequences of five frames each.

gait recognition, detecting periodicity of the motion, mea-
suring motion parameters, etc. The method uses the results
of tracking (segmentation) to produce a simple graph de-
scription of the moving shape. If we further want to extract
limb articulations, then adding geometric information to the
skeleton would be necessary.

Shape Analysis. We have used fixed topology skele-
tons for feature extraction in shape analysis of corpus cal-
losum (a cross-section of the fiber tract that connects the
two hemispheres in the brain). Fig. 6 shows an example of
skeletonization of corpus callosum from a segmented MRI
slice of a brain. Once the skeleton was extracted, the cur-
vature and the width of the shape were measured at a set of
discrete points along the skeleton and used as features for
detecting statistical differences in shape between a group of
schizophrenia patients and a group of normal control pa-
tients [10]. The algorithm was used to extract a skeleton for
66 different images of corpus callosum in the study.

In this application, the skeleton was assumed to be a sim-
ple string (no junction nodes), and the initialization was ob-
tained from a priori knowledge on the shape orientation:
one point was “guessed” to be in the left half of the im-
age, and another leaf was assumed to be in the right half
of the image. Then the closest points on the outline were
automatically found and used as the initial positions of the
two leaves. We can see that the initialization is far from
the optimal position of the leaf nodes found by the algo-
rithm. The corpus callosum case presents a serious chal-
lenge to the conventional methods for skeleton extraction,
as the shape size is comparable to the pixel size, and using
segmented images results in a highly noisy skeleton. By
fixing the structure of the skeleton, we avoid the problem of
false branches.

Robustness. To test the algorithm’s sensitivity to ini-
tialization, we performed the following experiment: given
the shape and the optimal leaf positions (found by the algo-
rithm and verified by the user), we moved every leaf away

from the optimal position. Then we performed the skele-
tonization algorithm and measured the maximal distance
from any point on the original outline to the reconstructed
outline:

emax(O,O′) = max
u∈O

d(u;O′) = max
u∈O

min
v∈O′

‖u− v‖ (14)

In addition to distance emax(O,O′) between the outlines,
we also report distance emax(S,S′) between two skeletons:
the skeleton estimated using the optimal leaf positions and
the one estimated after perturbing the leaves. These two
measures indicate how robust the algorithm is to the initial
conditions.

Fig. 7 shows the results of the experiment for the shape
in Fig. 1. Every data point in the graph corresponds to a
single run with all five leaves perturbed from the optimal
position; a total of 200 runs is reported. The first step of the
algorithm is to place the leaves on the outline, thus it is rea-
sonable to report the results based on the distance between
the points along the outline (rather than the Euclidean dis-
tance between them). Furthermore, since different leaves
explain different portions of the outline, we normalize the
distance by the appropriate outline segment length. For ex-
ample, if a new leaf position is 50 pixel lengths away from
its optimal position in the clockwise direction, we divide 50
by the distance (along the outline) between the optimal leaf
position and the last node on the outline in the clockwise di-
rection that is explained by the corresponding leaf branch.
This normalization allows us to compare results from differ-
ent branches of the skeleton. In Fig. 7, we show the maxi-
mal distance emax between the outlines and the skeletons as
a function of the largest (among the five leaves) normalized
displacement.

As we can see, the algorithm is quite robust if all the
leaves are initialized inside the corresponding outline seg-
ments (normalized displacement is smaller than 1). The dis-
tance between the outlines is between 3 and 4 pixels for all
the runs and the distance between the skeletons is under 4
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(a) (b)

Figure 6. Skeleton extraction, corpus callosum:
(a) a slice of an MR scan with the corpus callo-
sum outlined in white; (b) skeletonization results:
traditional skeleton (top), fixed topology skeleton
before leaf re-estimation (middle) fixed topology
skeleton, final result (bottom).

pixels. Note that this is the maximal distance, and most of
the points on the resulting skeleton (83% to 87% for the
runs with the normalized displacement of all the five leaves
smaller than 1) are less than 1 pixel away from the original
skeleton. As we consider runs with the normalized initial
displacement greater than 1 (at least one leaf was initial-
ized outside of its corresponding range), the error increases.
Several distinct values for the distance between the outlines
emerge, which corresponds to the algorithm erring on dif-
ferent leaves.

6. Concluding remarks

We have presented a new approach to incorporating a
priori information into skeleton estimation. We use a graph
representation for the skeleton. Robustness is achieved by
constraining the graph topology and introducing smooth-
ness constraints on the skeleton branches. We use an itera-
tive snake-like algorithm for estimating the location of the
branches.

Fixed topology skeletons can be useful in applications
where some information on the global shape of the object
is available. They provide a way to constrain the skele-
ton, restricting the space of possible solutions. Example
applications that could benefit from this approach include
object recognition, articulate shape modeling, shape feature
extraction.
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Figure 7. Maximal distance emax (in logarithmic
scale) as a function of relative leaf displacement
(a) between the original and the reconstructed out-
lines; (b) between the skeletons before and after
the initial leaf positions were perturbed. See text
for more details.
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