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Abstract. We describe a permutation procedure used extensively in
classification problems in computational biology and medical imaging.
We empirically study the procedure on simulated data and real examples
from neuroimaging studies and DNA microarray analysis. A theoretical
analysis is also suggested to assess the asymptotic behavior of the test.
An interesting observation is that concentration of the permutation pro-
cedure is controlled by a Rademacher average which also controls the
concentration of empirical errors to expected errors.

1 Introduction

Many scientific studies involve detection and characterization of predictive pat-
terns in high dimensional measurements, which can often be reduced to training
a binary classifier or a regression model. Examples of this type of data include
medical image studies and gene expression analysis. Image-based clinical stud-
ies of brain disorders attempt to detect neuroanatomical changes induced by
diseases, as well as predict development of the disease. The goals of gene ex-
pression analysis include classification of the tissue morphology and prediction
of the treatment outcome from DNA microarray data. Data in both fields are
characterized by high dimensionality of the input space (thousands of features)
and small datasets (tens of independent examples), typical of many biological
applications.

A basic question is in this setting is how can one have any modicum of faith
in the accuracy of the trained classifier. One approach to this problem would be
to estimate the test error on a hold-out set – or by applying a cross-validation
procedure, such as a jackknife [2] – which, in conjunction with a variance-based
convergence bound, provides a confidence interval for the expected error. Small
sample sizes render this approach ineffective as the variance of the error on a
hold-out set is often too large to provide a meaningful estimate on how close
we are to the true error. Applying variance-based bounds to the cross-validation
error estimates produces misleading results as the cross-validation iterations are
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not independent, causing us to underestimate the variance. Classical generaliza-
tion bounds are also not appropriate in this regime due to the high dimensionality
and small sample size. In addition, even if a consistent algorithm is used that
produces a classifier with low variance the data itself may have no structure.
Neither cross-validation nor classical generalization bounds address this issue.

Recently, several research groups, including ours, proposed using permuta-
tion tests [10, 8] to assess the reliability of the classifier’s accuracy via a notion
of statistical significance [7, 16, 13, 15, 6]. Intuitively, statistical significance is a
measure of how likely the observed accuracy would be obtained by chance, only
because the training algorithm identified some pattern in the high-dimensional
data that happened to correlate with the class labels as an artifact of a small
data set size. A significant classifier would reject the null hypothesis that the
features and the labels are independent, that is, there is no difference between
the two classes. The cross-validation error or the test error on a hold-out set
is used as a test statistic that measures how different the two classes are with
respect to the family of classifiers we use in training, and its distribution under
the null hypothesis is estimated by permuting the labels.

A notion of statistical significance or of variance does not always add more
information to the classification problem than the classification error. For exam-
ple, for a fixed classifier [9] shows that statistical significance estimates carry at
most as much information as the classification error. This is due to the fact that
a fixed classifier can be modeled as a Bernoulli distribution and the variance
will be determined by the mean, which is an estimate of the classifiers accu-
racy. However, this will not hold for a family of classifiers, the family needs to be
restricted to control the variance and for a uniform law of large numbers to hold.

The objective of this paper is to examine with some care permutation tests
for classification both empirically and theoretically so as to provide users with
some practical recommendations and suggest a theoretical basis to the procedure.
The remaining of the paper is organized as follows. The next section describes
the permutation procedure to estimate statistical significance of classification
results. Section 3 applies the procedure to simulated data as well as real data
from the fields of brain imaging and gene expression analysis and offers practical
guidelines for applying the procedure. In Section 4, we suggest a theoretical
analysis of the procedure that leads to convergence bounds governed by similar
quantities to those that control standard empirical error bounds, closing with a
brief discussion of open questions.

2 Permutation Test for Classification

In two-class comparison hypothesis testing, the differences between two data
distributions are measured using a dataset statistic

T : (Rn × {−1, 1})l �→ R,

such that for a given dataset S = {(xk, yk)}l
k=1, where xk ∈ R

n are observations
and yk ∈ {−1, 1} are the corresponding class labels, T (x1, y1, . . . ,xl, yl) is a
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measure of the similarity of the subsets {xk|yk=1} and {xk|yk=−1}. The null
hypothesis typically assumes that the two conditional probability distributions
are identical, p(x|y=1) = p(x|y=−1), or equivalently, that the data and the
labels are independent, p(x, y) = p(x)p(y). The goal of the hypothesis test
is to reject the null hypothesis at a certain level of significance α which sets
the maximal acceptable probability of false positive (declaring that the classes
are different when the null hypothesis is true). For any value of the statistic,
the corresponding p-value is the highest level of significance at which the null
hypothesis can still be rejected.

The test statistics used in this paper are training errors, cross-validation
errors, or jackknife estimates. Here we give as an example the jackknife estimate

T (x1, y1, . . . ,xl, yl) =
1
l

l∑

i=1

I(fSi(xi) �= yi),

where Si is the dataset with the ith sample removed and fSi is the function
obtained by the classification algorithm given the dataset Si and I(·) is the
indicator function.

Suppose we have chosen an appropriate statistic T and the acceptable signifi-
cance level α. Let Πl be the set of all permutations of the samples (xi)l

i=1, where
for the permutation π, xπ

i is the i-th sample after permutation. The permutation
test procedure is described as follows:

– Repeat M times (with index m = 1, . . . , M):
• sample a permutation πm from a uniform distribution over Πl,
• compute the statistic value for this permutation of samples

tm = T (xm
1 , y1, . . . ,xm

l , yl).

– Construct an empirical cumulative distribution (ecdf)

P̂ (T ≤ t) =
1

M

M∑

m=1

Θ(t − tm),

where the step function Θ(x − y) = 1 if x ≥ y and otherwise is 0.

– Compute t0 = T (x1, y1, . . . ,xl, yl) and the corresponding p-value p̂0 =
P̂ (t0). If p̂0 ≤ α, then reject the null hypothesis.

Ideally, we would like to use the entire set of permutations Πl to calculate
the corresponding p-value p0, but it might be not feasible for computational
reasons. Instead, we resort to sampling from Πl and use Monte Carlo methods
to approximate p0. The Monte Carlo approximation p̂0 has a standard deviation

given by
√

p0(1−p0)
M [3]. Since p0 is unknown in practice, the corresponding upper

bound 1
2
√

M
is often used to determine the number of iterations required to

achieve desired prevision of the test.
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3 Application of the Test

In this section, we demonstrate the procedure on simulated data and then on two
different examples, a study of changes in the cortical thickness due to Alzheimer’s
disease using MRI scans for measurement and a discrimination between two
types of leukemia based on DNA microarray data. For a more extensive exposi-
tion over various datasets see [12].

The simulated data was generated as follows: 160 samples were generated
from two normal distributions in R

2 with means (±1, 0) and identity covariance
with half the samples drawn from each distribution. Samples from group one
were assigned a label y = +1 with probability p and y = −1 with probabil-
ity (1 − p). The opposite was done for group two. The probability p ∈ [0, .5]
denotes the noise level. We used linear discriminant analysis to train the classi-
fier. The results are shown in Figures (1, 2, 3) for training error, leave-one-out
error, and test error (the hold-out set is 20 samples per group), respectively.
The black lines in the graphs plot the ecdfs of various errors for 5000 permu-
tations of the data. As the noise parameter p is scanned over {.1, .2, .3, .4, .5}
the value of the unpermuted statistic, the red bar, shifts right. The value at
which the red bar meets the black line determines the p-value (given in the cap-
tion for each figure). When the noise level increases, that is, the labels and
features become more independent, the p-value increases as shown in those
figures.
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Fig. 1. Training error: p-values = {0.0002, 0.0002, 0.0574, 0.1504, 0.8290}

For the real dataset we used linear Support Vector Machines [19] to train a
classifier, and jackknifing (i.e., sampling without replacement) for cross-
validation. The number of cross-validation iterations was 1, 000, and the number
of permutation iterations was 10, 000.
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Fig. 2. Leave-one-out error: p-values = {0.0002, 0.0002, 0.0430, 0.1096, 0.7298}
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Fig. 3. Test error: p-values = {0.0764, 0.0012, 0.0422, 0.1982, 0.7594}

The first example compares the thickness of the cortex in 50 patients diag-
nosed with dementia of the Alzheimer type and 50 normal controls of matched
age [5, 4]. The dimensionality of the input space was 300, 000.

The statistic and its null distribution as a function of training set and hold-out
set size is plotted in Figure (4). Every point in the first two graphs is character-
ized by a corresponding training set size N and hold-out set size K, drawn from
the original dataset. It is not surprising that increasing the number of training
examples improves the robustness of classification as exhibited by both the ac-
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Fig. 4. Estimated test error (left) and statistical significance (middle) computed for
different training set sizes N and test set sizes K, and empirical error distribution
(right) constructed for N = 50 and different test set sizes K in the cortical thickness
study. Filled circles on the right graph indicate the classifier performance on the true
labels (K = 10: e = .30, p = .19; K = 20: e = .29, p = .08; K = 40: e = .29, p = .03)
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Fig. 5. Estimated test error and statistical significance for different training set sizes
N for (top) the cortical thickness study and (bottom) the leukemia morphology study.
Unlike the experiments in Figure (4), all of the examples unused in training were used
to test the classifier. The p-values are shown on a logarithmic scale

curacy and the significance estimates. By examining the left graph, we conclude
that at approximately N = 40, the accuracy of the classification saturates at
71% (e = .29). After this point decreasing the number of hold-out samples does
not significantly affect the estimated classification error, but does substantially
decrease the statistical significance of the same error value. The right graph in
Figure (4) illustrates this point for a particular training set size of N = 50.
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Figure (5) shows the estimated classification error and the corresponding
p-values that were estimated using all of the examples left out in the training
step in the hold-out set. While the error graph looks very similar to that in
Figure (4), the behavior of significance estimates is quite different. The p-values
originally decrease as the training set size increases, but after a certain point,
they start growing. Two conflicting factors control p-value estimates as the num-
ber of training examples increases: improved accuracy of the classification, which
causes the point of interest to slide to the left – and as a result, down – on the
ecdf curve, and the decreasing number of test examples, which causes the ecdf
curve to become more shallow.

The second example compares DNA microarray expression data from two
types of leukemia acute myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL) [7, 16]. The data set contains 48 samples of AML and 25 samples
of ALL. The dimensionality of the input space was 7, 129. Figure 5 shows the
results for this study. The cross-validation error reduces rapidly as we increase
the number of training examples, dropping below 5% at N = 26 training ex-
amples. The p-values also decrease very quickly as we increase the number of
training examples, achieving minimum of .001 at N = 28 training examples. Like
the previous example, the most statistically significant result lies in the range of
relatively slow error change.

4 A Theoretical Motivation for the Permutation
Procedure

The point of the permutation procedure is to examine if a classifier selected from
a family of classifiers given a dataset is predictive. By predictive we mean that the
dependence relationship between y and x learned by the classifier is significantly
different from the independent one. In the examples shown previously in the
paper we used the training error as well as the leave-one-out or cross-validation
error as the statistic used in the permutation procedure. Our theoretical moti-
vation will focus on the training error. We will remark on generalizations to the
leave-one-out error.

In Section 4.2 we relate the concentration of the permutation procedure to
p-values and comment on generalizing the proof to account for the leave-one-out
error as the statistic used in the permutation procedure. In Section 4.3 we note
that for classifiers finite VC dimension is a necessary and sufficient condition for
the concentration of the permutation procedure.

4.1 Concentration of the Permutation Procedure

We are given a class of classifiers C. Since there are only two classes, any classifier
c ∈ C can be regarded as a subset of R

n to which class label {+1} is assigned.
Without loss of generality we will assume ∅ ∈ C. Assume there is an unknown
concept c0: y = +1, if x ∈ c0 and y = −1, otherwise. For a permutation π of
the training data, the smallest training error on the permuted set is
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el(π) = min
c∈C

Pl(c�c0) (1)

= min
c∈C

[
1
l

l∑

i=1

I(xi ∈ c,xπ
i �∈ c0) + I(xi �∈ c,xπ

i ∈ c0)

]
,

where xi is the i-th sample and xπ
i is the i-th sample after permutation. For a

fixed classifier c ∈ C the average error is

EPl(c�c0) =
(

1 − 1
l

)
[P (c)(1 − P (c0)) + (1 − P (c))P (c0)] +

1
l
[P (c) + P (co) − 2P (c ∩ c0)],

where the expectation is taken over the data x and permutations π. As l gets
large the average error is approximately P (c)(1 − P (c0)) + (1 − P (c))P (c0) and
since we can assume P (c0) ≤ 1/2 taking c = ∅ minimizes the average error at
P (c0). We later refer to P (c0) as the random error because, a classifier such as
c = ∅ is not informatively at all. Our goal is to show that under some complexity
assumptions on class C the smallest training error el(π) is close to the random
error P (c0).

Minimizing (1) is equivalent to the following maximization problem

max
c∈C

[
1
l

l∑

i=1

I(xi ∈ c)(2I(xπ
i ∈ c0) − 1)

]
,

since

el(π) = Pl(x ∈ c0) − max
c∈C

[
1
l

l∑

i=1

I(xi ∈ c)(2I(xπ
i ∈ c0) − 1)

]
,

and Pl(x ∈ c0) is the empirical measure of the target concept. We would like
to show that el(π) is close to the random error P (x ∈ c0) and give rates of
convergence. We will do this by bounding the process

Gl(π) = sup
c∈C

[
1
l

l∑

i=1

I(xi ∈ c)(2I(xπ
i ∈ c0) − 1)

]

and using the fact that, by Chernoff’s inequality, Pl(x ∈ c0) is close to P (x ∈ c0):

IP

(
P (x ∈ c0) − Pl(x ∈ c0) ≤

√
2P (c0)(1 − P (c0))t

l

)
≥ 1 − e−t. (2)

Theorem 1. If the concept class C has VC dimension V then with probability
1 − Ke−t/K

Gl(π) ≤ K min

(√
V log l

l
,

V log l

l(1 − 2P (c0))2

)
+

√
Kt

l
.
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Remark. The second quantity in the above bound comes from the application
of Chernoff’s inequality similar to (2) and, thus, has a “one dimensional nature”
in a sense that it doesn’t depend on the complexity (VC dimension) of class
C. An interesting property of this result is that if P (c0) < 1/2 then first term
that depends on the VC dimension V will be of order V log l

l which, ignoring the
“one dimensional terms”, gives the zero-error type rate of convergence of el(π)
to P (x ∈ c0). Combining this theorem and equation (2) we can state that with
probability 1 − Ke−t/K .

P (x ∈ c0) ≤ Pl(x ∈ c0) + K min

(√
V log l

l
,

V log l

l(1 − 2P (c0))2

)
+

√
Kt

l
.

Throughtout this paper K designates a constant the value of which can change
over the equations.

In order to prove Theorem 1, we require several preliminary results. We first
prove the following useful lemma.

Lemma 1. It is possible to construct on the same probability space two i.i.d
Bernoulli sequences ε = (ε1, . . . , εn) and ε′ = (ε′1, . . . , ε

′
n) such that ε is inde-

pendent of ε′1 + . . . + ε′n and
∑n

i=1 |εi − ε′i| = |
∑n

i=1 εi −
∑n

i=1 ε′i|.

Proof. For k = 0, . . . , n, let us consider the following probability space Ek. Each
element w of Ek consists of two coordinates w = (ε, π). The first coordinate
ε = (ε1, . . . , εn) has the marginal distribution of an i.i.d. Bernoulli sequence.
The second coordinate π implements the following randomization. Given the
first coordinate ε, consider a set I(ε) = {i : εi = 1} and denote its cardinality
m = card{I(ε)}. If m ≥ k, then π picks a subset I(π, ε) of I(ε) with cardinality
k uniformly, and if m < k, then π picks a subset I(π, ε) of the complement
Ic(ε) with cardinality n − k also uniformly. On this probability space Ek, we
construct a sequence ε′ = ε′(ε, π) in the following way. If k ≤ m = card{I(ε)}
then we set ε′i = 1 if i ∈ I(π, ε) and ε′i = −1 otherwise. If k > m = card{I(ε)}
then we set ε′i = −1 if i ∈ I(π, ε) and ε′i = 1 otherwise. Next, we consider a
space E = ∪k≤nEk with probability measure P(A) =

∑n
k=0 B(n, p, k)P(A ∩ Ek),

where B(n, p, k) =
(
n
k

)
pk(1 − p)n−k. On this probability space the sequence ε

and ε′ will satisfy the conditions of the lemma. First of all, X = ε′1 + . . . + ε′n
has binomial distribution since by construction P(X = k) = P(Ek) = B(n, p, k).
Also, by construction, the distribution of ε′ is invariant under the permutation
of coordinates. This, clearly, implies that ε′ is i.i.d. Bernoulli. Also, obviously,
ε is independent of ε′1 + . . . + ε′n. Finally, by construction

∑n
i=1 |εi − ε′i| =

|
∑n

i=1 εi −
∑n

i=1 ε′i|. �

Definition 1. Let u > 0 and let C be a set of classifiers. Every finite set of
concepts c1, ..., cn with the property that for all c ∈ C there is a cj such that

1
l

l∑

i=1

|cj(xi) − c(xi)|2 ≤ u
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is called a u-cover with respect to ||·||L2(xl).The covering number N (C, u, {x1, ..xl})
is the smallest number for which the above holds.

Definition 2. The uniform metric entropy is logN (C, u) where N (C, u) is the
smallest integer for which

∀l, ∀(x1, ...,xl), N (C, u, {x1, ..xl}) ≤ N (C, u).

Lemma 2. The following holds with probability greater than 1 − Ke−t/K

Gl(π)≤ sup
r

[
K

1√
l

∫ √
µr

0

√
logN (u, C)du − µr

2
(1 − 2P (c0)) +

√
µr(t + 2 log(r + 1))

l

]

+2

√
2tP (c0)(1 − P (c0))

l
,

where µr = 2−r and logN (C, u) is the uniform metric entropy for the class C.

Proof. The process

Gl(π) = sup
c∈C

[
1
l

l∑

i=1

I(xi ∈ c)(2I(xπ
i ∈ c0) − 1)

]
.

can be rewritten as

Gl(π) = sup
c∈C

[
1
l

l∑

i=1

I(xi ∈ c)εi

]
,

where εi = 2I(xπ
i ∈ c0) − 1 = ±1 are Bernoulli random variables with P (εi =

1) = P (c0). Due to permutations the random variables (εi) depend on (xi) only
through the cardinality of {xi ∈ c0}. By lemma 1 we can construct a random
Bernoulli sequence (ε′i) that is independent of x and for which

Gl(π) ≤ sup
c∈C

[
1
l

l∑

i=1

I(xi ∈ c)ε′i

]
+

∣∣∣∣∣
1
l

l∑

i=1

εi −
1
l

l∑

i=1

ε′i

∣∣∣∣∣ .

We first control the second term
∣∣∣∣∣
1
l

l∑

i=1

εi −
1
l

l∑

i=1

ε′i

∣∣∣∣∣ ≤
∣∣∣∣∣
1
l

l∑

i=1

ε′i − (2P (c0) − 1)

∣∣∣∣∣ +

∣∣∣∣∣
1
l

l∑

i=1

εi − (2P (c0) − 1)

∣∣∣∣∣ ,

then using Chernoff’s inequality twice we get with probability 1 − 2e−t

∣∣∣∣∣
1
l

l∑

i=1

εi −
1
l

l∑

i=1

ε′i

∣∣∣∣∣ ≤ 2

√
2tP (c0)(1 − P (c0))

l
.
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We block concepts in C into levels

Cr =

{
c ∈ C :

1
l

l∑

i=1

I(xi ∈ c) ∈ (2−r−1, 2−r]

}

and denote µr = 2−r. We define the processes

R(r) = sup
c∈Cr

[
1
l

l∑

i=1

I(xi ∈ c)ε′i

]
,

and obtain

sup
c∈C

[
1
l

l∑

i=1

I(xi ∈ c)ε′i

]
≤ sup

r
R(r).

By Talagrand’s convex hull inequality on the two point space [17], we have for
each level r

IPε′

(
R(r) ≤ Eε′ sup

c∈Cr

[
1
l

l∑

i=1

I(xi ∈ c)ε′i

]
+

√
µrt

l

)
≥ 1 − Ke−t/K .

Note that for this inequality to hold, the random variables (ε′) need only be
independent, they do not need to be symmetric. This bound is conditioned on
a given {xi}l

i=1 and by taking the expectation w.r.t. {xi} we get,

IP

(
R(r) ≤ Eε′ sup

c∈Cr

[
1
l

l∑

i=1

I(xi ∈ c)ε′i

]
+

√
µrt

l

)
≥ 1 − Ke−t/K .

If, for each r, we set t → t + 2 log(r + 1), we can write

IP

(
∀r R(r) ≤ Eε′ sup

c∈Cr

[
1
l

l∑

i=1

I(xi ∈ c)ε′i

]
+

√
µr(t + 2 log(r + 1))

l

)

≥ 1 −
∞∑

r=0

1
(r + 1)2

e−t/4 ≥ 1 − 2e−t/4.

Using standard symmetrization techniques we add and subtract an independent
sequence ε′′i such that Eε′′i = Eε′i = (2P (c0) − 1):

Eε′ sup
c∈Cr

[
1
l

l∑

i=1

I(xi ∈ c)ε′i

]

≤ Eε′ sup
c∈Cr

[
1
l

l∑

i=1

I(xi ∈ c)ε′i−
1
l

l∑

i=1

I(xi ∈ c)Eε′′i +
1
l

l∑

i=1

I(xi ∈ c)(2P (c0) − 1)
]

≤ Eε′ ε′′ sup
c∈Cr

[
1
l

l∑

i=1

I(xi ∈ c)(ε′ − ε′′)
]
− (1 − 2P (c0)) inf

c∈Cr

(
1
l

l∑

i=1

I(xi ∈ c)

)

≤ 2Eηi
sup
c∈Cr

[
1
l

l∑

i=1

I(xi ∈ c)ηi

]
− µr(1 − 2P (c0))

2
,
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where ηi = (ε′i − ε′′i )/2 takes values {−1, 0, 1} with probability P (ηi = 1) =
P (ηi = −1). One can easily check that the random variables ηi are subgaussian,
i.e.

IP

(
l∑

i=1

ηiai > t

)
≤ e

− t2

2
∑l

i=1 a2
i ,

which is the only prerequisite for the chaining method. Thus, one can write
Dudley’s entropy integral bound, [18]

Eηi
sup
c∈Cr

[
1
l

l∑

i=1

I(xi ∈ c)ηi

]
≤ K

1√
l

∫ √
µr

0

√
logN (u, C)du.

We finally get

IP

(
∀r R(r) ≤ K

1√
l

∫ √
µr

0

√
logN (u, C)du +

√
µr(t + 2 log(r + 1))

l
− µr(1 − 2P (c0))

2

)

≥ 1 − 2e−t/4.

This completes the proof of Lemma 2. �
Proof of Theorem 1. For a class with VC dimension V , it is well known
that [18]

1√
l

∫ √
µr

0

√
logN (u, C)du ≤ K

√
V µr log 2

µr

l
.

Since without loss of generality we only need to consider µr > 1/l, it remains to
apply lemma 2 and notice that

sup
r

[
K

√
V µr log l

l
− µr

2
(1 − 2P (c0))

]
≤ K min

(√
V log l

l
,

V log l

l(1 − 2P (c0))2

)
.

All other terms that do not depend on the VC dimension V can be combined to
give

√
Kt/l. �

4.2 Relating p-Values to Concentration and the Leave-One-Out
Error as the Permutation Statistic

The result of the previous section states that for VC classes the training error
concentrates around q = min{P (y = 1), P (y = −1)}.

We can relate this concentration result to the p-value computed by the per-
mutation procedure. The purpose of this is to give a theoretical justification for
the empirical procedure outlined in section 2. We do not recommend replacing
the empirical procedure with the theoretical bound in practical applications. We
assume the statistic used in the permutation procedure is the training error

τ =
1
l

l∑

i=1

I(fS(xi) �= yi),
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and fS is the function obtained by the classification algorithm given the dataset
S. If we were given the distribution of the training errors over random draws and
random label permutations we would have the distribution under the null hy-
pothesis Pnull(ξ) and the p-value of the statistic τ would simply be Pnull(ξ ≤ τ).
In the empirical procedure outlined in section 2 we used an empirical estimate
P̂ (ξ) to computed the p-value.

The results of section 4.1 give us a bound of the deviation of the training
error of the permuted data from P (c0) under the null hypothesis, namely,

IP (|el(π) − P (c0)| ≥ ε) ≤ Ke−ε2O(l), (3)

where O(l) ignores log l terms. We assume that we know P (c0), otherwise it can
be accurately estimated by a frequency count of y = ±1. We can bound the
p-value by setting |t − P (c0)| = ε and computing Ke−ε2O(l).

The difference between the p-value computed using the inequality (3) and
that outlined in section 2 is the later is a one-sided test and is based upon
empirical approximations rather than bounds. A one-sided test can be derived
from the results in section 4.1 in a similar fashion as the two-sided test.

We can also use the leave-one-out error as the statistic used in the permuta-
tion procedure

τ =
1
l

l∑

i=1

I(fSi(xi) �= yi),

where Si is the dataset with the ith sample removed and fSi is the function
obtained by the classification algorithm given the dataset Si. In this case, for
certain algorithms we can make the same theoretical arguments for the leave-
one-out estimator as we did for the training error since with high probability the
training error is close to the leave-one-out error.

Proposition 1. If independent of measure µ(x, y) with probability greater than
1 − Ke−t/K

∣∣∣∣∣
1
l

l∑

i=1

I(fSi(xi) �= yi) −
1
l

l∑

i=1

I(fS(xi) �= yi)

∣∣∣∣∣ ≤ K

√
t log l

l
,

then the leave-one-out estimate on the permuted data will concentrate around
P (c0) with the same rates of convergence as the training error.

The proof is obvious in that if the deviation between the leave-one-out esti-
mator and the training error is of the same order as that of the deviation between
the training error and P (c0) and both hold with exponential probability then we
can simply replace the leave-one-out error with the training error and maintain
the same rate of convergence.

The condition in Proposition 1 holds for empirical risk minimization on a VC
class in the realizable setting [11] and for Tikhonov regularization with Lipschitz
loss functions [1].



514 P. Golland et al.

4.3 A Necessary and Sufficient Condition for the Concentration of
the Permutation Procedure

In this section we note that for a class of classifiers finite VC dimension is a
necessary and sufficient condition for the concentration of the training error on
the permuted data.

The proof of lemma 2 makes no assumptions of the class C except that it is
a class of indicator functions and the bounds used in the proof are tight in that
the equality can be achieved under certain distributions. A step in the proof
of the lemma involved upper-bounding the Rademacher process by Dudley’s
entropy integral. The assumptions on the class C are introduced to control the
Rademacher process in the inequality in lemma 2. For finite VC dimension the

process can be upper bounded by O
(√

1
l

)
using Dudley’s entropy integral which

proves sufficiency. The Rademacher process can also be lower bounded by a
function of the metric entropy by Sudakov minorization [18]. If C has infinite VC
dimension this lower bound is a constant and the process does not concentrate
which proves necessity.

5 Open Problems

The following is a list of open problems related to this methodology:

1. Leave-one-out error and training error. In the theoretical motivation, we
relate the leave-one-out error to the training error for certain algorithms.
The result would be stronger if proposition 1 held for VC classes in the
nonrealizable setting.

2. Feature selection. Both in neuroimaging studies and in DNA microarray
analysis, finding the features which most accurately classify the data is very
important. Permutation procedures similar to the one described in this paper
have been used to address this problem [7, 16, 14]. It would be very interesting
to extend the type of analysis here to the feature selection problem.
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