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Abstract—We explore unsupervised, hypothesis-free meth-
ods for fMRI analysis in two different types of experiments.
First, we employ clustering to identify large-scale functionally
homogeneous systems. We formulate a generative mixture
model, derive the EM algorithm and apply it to delineate
functional systems. We also investigate spectral clustering
in application to this problem and demonstrate that both
methods give rise to similar partitions of the brain based
on resting state fMRI data. Second, we demonstrate how
to extend this approach to include information about the
experimental protocol. Specifically, we formulate a mixture
model in the space of possible profiles of brain response to
stimuli. In both applications, our methods confirm previously
known results in brain mapping and point to new research
directions for exploratory analysis of fMRI data.

I. INTRODUCTION
With advancements in the field of functional MRI

(fMRI), the functional imaging studies have moved from
simple questions of localizing brain regions strongly mod-
ulated by the experimental protocol to more complex
problems that call for novel analysis techniques. Here we
present our work in developing methods for exploratory
fMRI analysis. This paper provides an overview of several
different projects; we refer the readers to previously pub-
lished papers [16,22,31] for further details on the methods
and experimental validation.

A. Spatial Patterns of co-Activation

Functional connectivity analysis [4, 5, 9] is widely used
in fMRI studies to detect and characterize large networks
that co-activate with a user-selected ‘seed’ region of in-
terest. The method typically uses the Pierson correlation
coefficient as a measure of similarity between a time
course of an individual voxel and the mean time course of
the selected seed region. Since no alternative hypothesis
for correlation values is formulated, the user must select
a threshold, or significance level, for rejecting the null
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hypothesis that assumes zero correlation with the seed time
course. This approach is highly useful for analyzing co-
activation patterns in fMRI data. However, high variability
of inter-voxel correlation values across scans presents a
serious challenge for integrating results across different
runs or across subjects. Furthermore, in some studies it is
unclear how to select the seed region. Instead, we would
prefer to discover the interesting ‘seeds’ and the associated
networks in an unsupervised way. In this work, we formu-
late the problem of identifying functionally homogeneous
systems as clustering and explore mixture modeling and
spectral clustering in application to functional connectivity
analysis.
Our approach is based on a model that parcelates

the brain into disjoint sub-regions. Principal Component
Analysis (PCA) and Independent Component Analysis
(ICA) [3] provide an alternative model of functional con-
nectivity that treats the data as a linear combination of
spatial maps with associated time courses. ICA, PCA and
clustering have been extensively explored in the context of
regression-based detection [1, 2, 8, 10, 12, 17, 24, 26, 29], as
a way to identify and remove noise-induced components
of the data. Application of clustering in fMRI analysis
has traditionally focused on grouping voxels into small,
functionally homogeneous regions in paradigm-based stud-
ies [10, 17, 29]. Recently, clustering was also demonstrated
in application to full-brain scans in resting state fMRI
experiments [6, 30], revealing anatomically meaningful re-
gions of high functional coherency. In this work, we aim
to construct top-down representations of global patterns of
activation spanning the entire brain.

B. Activation Profiles in Multi-Category Experiments
One natural extension of the proposed method is to

incorporate the information about the experimental proto-
col into the analysis. Our motivation for this work comes
from fMRI studies of category selectivity in the visual
cortex where subjects are presented with images from
several categories of visual stimuli. Using hypothesis-
driven localization methods [14], investigators discovered
regions with specific category selectivity that consistently
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appear in most subjects. For instance, the well-known
fusiform face area (FFA) is associated with higher response
to faces when compared to other visual stimuli. In addition,
the parahippocampal place area (PPA), and extrastriate
body area (EBA) exhibit high selectivity for places, and
body parts, respectively [21].
With the increasing number of conditions or tasks,

the number of potential hypotheses grows exponentially.
To address this challenge, we demonstrate an exploratory
clustering method that operates in the space of all pos-
sible activation profiles and identifies robust patterns of
activation in experiments with a large number of stimulus
categories.
Spatial consistency of the localization maps across

subjects has traditionally served as evidence for the va-
lidity of the corresponding hypothesis. Rather than rely
on spatial consistency, we employ functional consistency
across subjects to evaluate the robustness, and therefore
relevance, of the detected profiles. Thus, we obtain a fully
functional characterization of the data.
This work bridges the gap between exploratory methods

and hypothesis-driven localization approaches. Most ex-
ploratory techniques work on the raw fMRI time courses
and use clustering or ICA to decompose the data into a
set of distinct time courses of interest and their localization
maps. However, this framework offers no clear mechanism
to characterize the relationship between the multitude of
experimental conditions and the noisy representative time
courses identified through such analysis. Some exploratory
methods use the information on the experimental protocol
indirectly to define a measure of similarity between voxels,
effectively projecting the original high dimensional time
courses onto a low dimensional feature space. Clustering
is then performed in the new space [17, 18, 29]. However,
these methods mainly focus on identifying the “active”
voxels in simple experiments. In contrast, we employ
mixture modeling in the space of activation profiles that
explicitly capture the effects of the experimental protocol
on the observed fMRI time courses. This approach enables
hypothesis-free search for robust activation profiles.
Our experimental results confirm many different find-

ings previously established in fMRI studies. The results
also suggest future directions of research in exploratory
analysis of fMRI signals.

II. METHODS
Given fMRI time courses {y1, . . .yN} of N voxels,

our goal is to find a partition of the data set into K

functionally homogeneous sets. In this section, we review
two variants of clustering algorithms that achieve such
partitioning. We also present a modified algorithm that
incorporates information about the experimental protocol
into the clustering framework. Finally, we discuss our
approach to group analysis.

A. Mixture Modeling for Functional Connectivity

We model fMRI time courses as noisy instantiations of
one of the K representative hypotheses, or time courses,
m1, . . . mK . This assumption gives rise to the generative
mixture model [25]:

p(y) =

K∑
k=1

λkpk(y) =

K∑
k=1

λk N (y;mk, Σk), (1)

where pk(y) is the class-conditional likelihood of the
signal in system k, and λk is the prior probability that a
voxel belongs to system k. Following the commonly used
approach in fMRI analysis, we model the class-conditional
densities as normal distributions centered around the sys-
tem mean time course. The high dimensionality of the
fMRI data makes modeling a full covariance matrix im-
practical. We take a simpler approach of restricting the
covariance matrix to be diagonal, i.e., modeling variance
components only, and note that the mixture model esti-
mation can be straightforwardly extended to include more
sophisticated signal dynamics.
We use the EM algorithm[7] to estimate the model

parameters. We let p̂nk be the posterior probability that
voxel n belongs to system k and arrive at the familiar
update rules:
E-step:

p̂
(τ)
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λ
(τ)
k N (yn;m

(τ)
k , Σ

(τ)
k )∑

k′ λ
(τ)
k′ N (yn;m
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where T is the length of the time courses and{
p̂
(τ)
nk , λ

(τ)
k ,m

(τ)
k , Σ

(τ)
k

}
are the estimates at step τ of

the algorithm. We initialize the algorithm by randomly
selecting K time courses from the original data set as
an initial guess for the cluster means. To ensure that the
algorithm properly explores the non-convex space of the
solutions, we perform multiple runs of the algorithm using
different random initializations and select the solution that
achieves the maximum likelihood of the data. When the
algorithm converges, the estimates {p̂nk}N

n=1 represent
probabilistic segmentation for system k.
The well known k-means clustering algorithm replaces

the probabilistic assignments p̂nk with hard binary as-
signments in each step of the algorithm. This variant can
be shown to minimize the sum of L2 distances between
the time courses and their corresponding cluster means.
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Since for functional connectivity analysis, the time courses
are typically normalized to have zero mean and unit
variance, minimizing L2 distance is equivalent to maxi-
mizing correlation. The k-means algorithm can therefore
be viewed as a natural data-driven extension of the seed-
based connectivity analysis.

B. Spectral Clustering for Functional Connectivity

To investigate the sensitivity of the resulting partitions
to the assumptions made by the generative model in
Equation (1), we also applied spectral clustering [27] to the
same data. For spectral clustering, we construct a pairwise
affinity matrix W ,

Wij = e−d2(yi,yj)/2σ2

(5)

where d2(yi,yj) is the distance between the time courses
yi and yj , and σ2 is the kernel width parameter. If we
use L2 distance, Equation (5) corresponds to the standard
Gaussian kernel often used in spectral clustering.
Given the affinity matrix W , spectral clustering seeks

a partitioning of the voxel set based on a spectral decom-
position of W . In this work, we use the Normalized Cut
variant of spectral clustering [28]. We construct a continu-
ous relaxation of the original combinatorial optimization,
which leads to the eigenvalue problem

D−1/2WD−1/2v = λv (6)

whereD is a diagonal matrix such that Dii =
∑

j Wij . We
define a vector of row sums d, i.e., di = Dii. The left and
right multiplications by D−1/2 in Equation (6) correspond
to a symmetric normalization of W where each entry Wij

is divided by
√

didj . To find the partition of the original
data, we cluster the rows of the matrix

V = [D−1/2v1 . . . D−1/2vK+1]. (7)

A typical fMRI data set contains hundreds of thousands
of voxels, leading to extremely large eigenvector problems
in spectral clustering. To overcome this difficulty, we adopt
the standard approximation of the leading eigenvalues
and eigenvectors of the matrix D−1/2WD−1/2 via the
Nyström Method [11].
Given a set of N time courses, we first select M � N

samples at random. The N ×N affinity matrix W can be
represented as

W =

[
A B

BT C

]
, (8)

where A is the M × M matrix of affinities between the
randomly selected samples, and B is the M × (N − M)
matrix of affinities between the random samples and the
remaining data points. C is a large (N − M) × (N −
M) matrix of remaining affinities that we want to avoid
computing.

We first normalize W by the matrix D−1/2. As shown
in [11], we can approximate the row sum vector d via

d̂ =

[
A1M + B1N−M

BT 1M + BT A−1B1N−M

]
(9)

where 1M denotes an all-ones vector of length M . The
normalized matrices Ã and B̃ are given by

Ãij =
Aij√
d̂id̂j

B̃ij =
Bij√

d̂id̂j+M

The Nyström Method approximates the eigenvectors
of W̃ = D−1/2WD−1/2 using Ã and B̃. Let UΛUT

denote the SVD of the M × M symmetric matrix Ã +
Ã−1/2B̃B̃T Ã−1/2. The M leading eigenvectors of W̃ are
then computed as

Ṽ =

[
Ã

B̃T

]
Ã−1/2UΛ−1/2 (10)

The data set partitioning is obtained by clustering rows of
the matrix D̂−1/2Ṽ .

C. Group Analysis of Spatial Patterns of co-Activation

Any permutation of cluster indices leaves the clustering
cost function unchanged. This symmetry leads to inherent
ambiguity in cluster label assignments. However, a corre-
spondence among labels assigned to each voxel across runs
is required for group-wise analysis of the cluster patterns.
Unfortunately, a naı̈ve approach reduces to a combinatorial
search over all possible labeling combinations. In this
work, we employ a greedy algorithm to match cluster
labels across subjects. Given two clusterings, we perform
an iterative label matching procedure. In each iteration,
we assign the next available cluster index to one cluster in
each clustering in such a way as to maximize the number
of consistently labeled voxels. We then remove the newly
labeled voxels from further consideration. The algorithm
stops when all voxels have been assigned a new cluster
index. While this approach may not yield the globally
optimal alignment across runs given arbitrary data, the
cluster patterns in our application are often similar enough
for this method to accurately match corresponding systems
across subjects and across experiments.

D. Mixture Modeling in the Space of Activation Profiles
We define an activation profile to be a vector whose

components describe selectivity to different categories.
Given a set of raw fMRI time courses, we apply a General
Linear Model (GLM) analysis [14] at each voxel and form
a vector containing the estimated regression coefficients
of the experiment stimuli. The norm of these vectors
is mainly a byproduct of irrelevant variables such as
distance from major vessels or the overall magnitude of
response to the type of stimuli used in the experiment.
Moreover, it is widely accepted that only relative values
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of responses are important in characterizing selectivity to
different stimuli. To remove the effect of the magnitude of
activation while preserving the relative strength of activa-
tion across categories, we normalize the activation profiles
to be unit length vectors. With D categories of visual
stimuli present in the experiment, our space of activation
profiles is a unit sphere SD−1 in a D-dimensional space.
When represented in the space of activation profiles, an
fMRI data set becomes a population of vectors on a unit
sphere. Naturally, the interesting patterns of selectivity in
this population correspond to the directions with highest
concentration of data points around them. It is easy to see
that finding these patterns can be thought of as clustering
the activation profiles and estimating the corresponding
cluster means.
In this case, our data {yn}N

n=1 is a set of activation
profiles from N voxels on a SD−1 sphere. We devise a
mixture model based on the inner product as the natural
measure of similarity for unit vectors. Here we choose
von Mises-Fisher distribution [23] to model the class-
conditional likelihood of the data:

pk(y) = CD(μ) eμ〈mk, y〉 (11)

where 〈·, ·〉 denotes the inner product of two vectors and
the normalizing constant

CD(μ) =
μD/2−1

(2π)D/2ID/2−1(μ)
(12)

is defined in terms of the γ-th order modified Bessel
function of the first kind Iγ . The concentration parameter
μ controls the concentration of the distribution around the
mean direction m. In general, mixture components can
have distinct concentration parameters but in this work,
we use the same parameter for all the clusters to ensure a
more robust estimation.
With a bit of algebra, we derive the EM algorithm for

this likelihood model:
E-step:

p̂
(τ)
nk ==

λ
(τ)
k eμ(τ)〈m

(τ)

k
, yn〉

∑
k′ λ

(τ)
k′ eμ(τ)〈m

(τ)

k′
, yn〉

(13)

M-step:

λ
(τ+1)
k =

1

N

∑
n

p̂
(τ)
nk , m

(τ+1)
k ∝

∑
n

p̂
(τ)
nk yn, (14)

μ(τ+1) :
ID/2(μ

(τ+1))

ID/2−1(μ(τ+1))
=

1

N

∑
n,k

p̂
(τ)
nk 〈m(τ)

k , yn〉. (15)

We normalize vectors m
(τ+1)
k in each step to unit length.

The nonlinear equation (15) for the estimation of μ(τ+1)

can be solved with a simple zero-finding algorithm.

E. Group Analysis in the Space of Activation Profiles
Since we aim to discover activation profiles that ro-

bustly appear in brain response to stimuli, it is reasonable
to assume that the space of activation profiles is shared
across subjects. For the group-wise analysis based on S

subjects, we let ys
n be the time course of voxel n in

the data from subject s, s ∈ {1, · · · , S}. We model
each voxel ys

n as an independent sample from the same
mixture distribution and combine the data from several
subjects to perform our analysis across subjects. Applying
clustering to the group data, the resulting posterior proba-
bilities {p̂s

nk}Ns

n=1 define the localization map of activation
profile k in subject s.
To assess the stability of the detected clusters across

subjects, we estimate the group-wise model for the pooled
data and the subject-specific model for each subject sepa-
rately. For each profile in the group-wise model, we find
the closest profile in each subject-specific model, using
correlation as a measure of similarity. We then use the
average correlation of the subject-specific profiles with
the group-wise profile as a consistency score for that
profile. The consistency score provides an indication of
how persistent the detected activation profile is in the
population, representing an initial step towards a fully
functional model of consistency across subjects that does
not assume perfect spatial alignment.

III. EXPERIMENTAL RESULTS
We demonstrate our approach in three different fMRI

studies. Each study focused on a different aspect of func-
tional organization of the brain and allowed us to explore
the potential of the algorithms described in the previous
section.

A. Spatial co-Activation Patterns in Diverse fMRI Data

This study of functional connectivity included 7 sub-
jects. We used previously collected fMRI scans in a large
set of visual experiments, from simple localizer tasks to
viewing continuous stimuli (movies), as well as a resting
state scan. The total amount of fMRI data per subject
was close to one hour. In the movie viewing experiments,
the traditional seed-based functional connectivity analysis
revealed two systems. The first system contained sensory-
motor cortices and was strongly correlated with the seed
region in the visual cortex. The second, ‘default’ system
showed little correlation with the visual seed, but exhibited
high intra-system correlation [15].
Figure 1a shows the 2-system partition determined

through clustering in each subject independently of all
others, based on all data available for the subjects. It
also displays the boundaries of the default system deter-
mined through the traditional seed selection, showing good
agreement between the two partitions. In contrast to the
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(a) 2-system segmentation, subject-specific maps

(b) 3-system segmentation, subject-specific maps

(c) group average of 2-system (d) group average of 2-system
subject-specific maps in (a) partition of the default system

Fig. 1. Functional segmentation examples. (a,b) Subject-specific
segmentation results for two and three systems respectively (flattened
view). Green: default system, blue: stimulus-driven cortex, red: visual
cortex. Solid lines show the boundaries of the default system determined
through seed selection. (c) Group average of the subject-specific 2-system
maps. Color shading shows the proportion of subjects whose clustering
agreed with the majority label. (d) Group average of the subject-specific
segmentation of the default system into two sub-systems. Only voxels
consistently labeled across subjects are shown.

difficulties associated with the subject-specific threshold
selection in group analysis within the standard functional
connectivity framework, the clustering-based decomposi-
tion produces highly repeatable maps that do not involve
subject-specific adjustments. Figure 1c shows a group-
level label map that summarizes the maps from Figure 1a,
further illustrating the stability of the decomposition. Sub-
sequent subdivision of the cortical gray matter into three
systems produced the results in Figure 1b. With the ex-
ception of one subject, the 3-system segmentation reveals
visual cortex. In subject 7, the visual cortex separated in
segmentation into 4 systems (shown in the figure). We also
performed a subdivision of just the default system in each
subject. This subdivision produced a stable partition across
subjects; the corresponding group-level map is shown
in Figure 1d. The overlap of the smaller sub-systems is
weaker than that of the default system itself, but it clearly
represents a coherent division of the default system.

Spectral K-means Seed-Based
Clustering Analysis

(a) Cluster 1, Slice 37 (b) Cluster 1, Slice 37 (c) PCC, Slice 37

(d) Cluster 1, Slice 55 (e) Cluster 1, Slice 55 (f) vACC, Slice 55

(g) Cluster 2, Slice 55 (h) Cluster 2, Slice 55 (i) Visual, Slice 55

(j) Cluster 3, Slice 31 (k) Cluster 3, Slice 31 (l) Motor, Slice 31

(m) Cluster 4, Slice 31 (n) Cluster 4, Slice 31 (o) IPS, Slice 31

(p) Cluster 5, Slice 47 (q) Cluster 5, Slice 47

Fig. 2. Clustering results across subjects. The brain is partitioned into 5
clusters using spectral clustering (left) and k-means (middle); various seed
are selected for seed-based analysis (right). Color indicates the proportion
of subjects for whom the voxel was included in the detected system.

B. Spatial Activation Patterns in Rest fMRI

In the second experiment, we further validated our
approach using resting state fMRI data obtained from 45
healthy young adults [20]. The main goal of this exper-
iment was to compare the performance of spectral clus-
tering and mixture-model clustering to that of seed-based
connectivity analysis. For seed-based analysis, we selected
five seeds, corresponding to the motor and visual cortices,
the ventral anterior cingulate cortex (vACC), the posterior
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cingulate cortex (PCC), and the intraparietal sulcus (IPS).
Only voxels whose correlation with the seed time course
exceeded 0.4 were included in the system for each subject.
We used the k-means implementation of the mixture model
and applied k-means and spectral clustering to partition the
brain into five systems.
Using random subsamples of the data, we investigated

the stability of the Nyström approximation for spectral
clustering. We observed that for Nyström sets of 2,000
voxels and above, the resulting partitions varied little
across runs. Specifically, the average difference in the
spatial map for each cluster was below 1% of the cluster
size. A set of 2,000 voxels represents 1% of the whole
brain in this data set, offering a dramatic reduction in com-
putational complexity of the spectral clustering algorithm.
Figure 2 illustrates the clusters identified by the three

methods. Only voxels assigned to the respective system in
at least half of the participants are shown for each method.
Figure 2 shows clearly that both spectral clustering and
mixture model can identify well-known structures such
as the default network (a-f), the visual cortex (g-i), the
motor cortex (j-l), and the dorsal attention system (m-o).
Spectral clustering and mixture model also identified white
matter (p-q). In general, one would not attempt to delineate
this region using seed-based analysis. Since we regress
out the white matter signal during the preprocessing, we
would not expect seed-based analysis to isolate white
matter as a system. In our experiments, spectral clustering
and mixture modeling achieve similar clustering results
across participants. Furthermore, both methods identify the
same functional systems as seed-based analysis without
requiring a priori knowledge about the brain.

C. Activation Profiles in Visual Experiments

We use a visual fMRI study to demonstrate the appli-
cation of our mixture modeling in the space of activation
profiles. In this experiment, six subjects viewed images
from eight categories of visual stimuli. To construct the
space of activation profiles, we estimated the regression
coefficients for all eight categories based on the General
Linear Model [14]. We excluded from the analysis all
voxels that did not pass a stimulus-versus-fixation contrast
at a significance level α = 10−4.
Figure 3a illustrates an application of our method to this

data for K = 10. The plots show the relative strength
of response to each category for the activation profiles
detected by the algorithm, sorted in the decreasing order of
consistency across subjects. These results clearly contain
previously identified category-selective profiles. For exam-
ple, profiles #1 and #4 correspond to the place-selective
voxels (PPA), while the profiles #5 and #8 correspond to
the face-selective voxels (FFA). To study the sensitivity of
the method to the number of distinct categories and the

(a) 1 repetition

(b) 2 repetitions

Fig. 3. Ten representative activation profiles (cluster means) detected by
the algorithm. The profiles are sorted in the decreasing order of functional
consistency across subjects. For each profile, the plot shows the relative
strength of activation for each category, the consistency score (CS) and
the weight (λ). (a) All stimuli from the same category were used with the
same category label in the estimation procedure. (b) The stimuli within
each category were divided into two artificial categories. Blue and black
show the level of activation for each “virtual” category.
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Fig. 4. Spatial maps of the face selective regions found by the statistical test (red) and the mixture model (blue). The mask of visually responsive
voxels is shown in yellow in the background to help the visual comparison.

number of presentations for each category, we separated
presentations for each original category into two new
“virtual” categories, creating a total of 16 categories. On
this data set, the algorithm was forced to identify the
most stable activation profiles of length 16. Figure 3b
displays the detected activation profiles by overlaying the
activation level for matching “virtual” categories in two
different colors. The top activation profiles clearly exhibit
nearly identical values for the two category duplicates.
We also observe that as the functional consistency across
subjects decreases, so does the consistency across category
duplicates.
Figure 4 visually compares the spatial map of face-

selective locations identified by our method and the
face-selective FFA area identified through the traditional
hypothesis-driven method for one of the subjects in the
study, demonstrating fairly good agreement. To create the
traditional FFA map, we applied the t-test comparing the
response for faces to the response for objects (shoes, tools,
vases), at α = 10−4. For our algorithm’s results, we
first identified all profiles whose component for faces was
at least 1.5 times higher than all other components. We
then assigned each voxel to its corresponding MAP cluster
label to construct a binary map. We also observed similar
agreement for other well known areas, such as PPA and
EBA, in all subjects in the study.
In this experiment, increasing the number of clusters

resulted only in the split of previously detected clusters,
and did not significantly alter the pattern of the discovered
profiles.

IV. CONCLUSIONS
In this work, we demonstrated that clustering can

be effectively used for finding structure in fMRI data.
Specifically, we employed mixture modeling and spectral
clustering to identify spatial patterns of co-activation on
the cortex. We also used mixture modeling to detect
and characterize stable activation profiles in experiments
with multiple stimulus categories. Group-wise analysis
promises to yield comprehensive models of functional
organization of the brain across subjects, and represents
an interesting direction for future research.
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