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Abstract. Statistical analysis of anatomical shape differences between
two different populations can be reduced to a classification problem, i.e.,
learning a classifier function for assigning new examples to one of the
two groups while making as few mistakes as possible. In this framework,
feature vectors representing the shape of the organ are extracted from
the input images and are passed to the learning algorithm. The resulting
classifier then has to be interpreted in terms of shape differences between
the two groups back in the image domain. We propose and demonstrate
a general approach for such interpretation using deformations of out-
line meshes to represent shape differences. Given a classifier function in
the feature space, we derive a deformation that corresponds to the dif-
ferences between the two classes while ignoring shape variability within
each class. The algorithm essentially estimates the gradient of the classi-
fication function with respect to node displacements in the outline mesh
and constructs the deformation of the mesh that corresponds to moving
along the gradient vector. The advantages of the presented algorithm in-
clude its generality (we derive it for a wide class of non-linear classifiers)
as well as its flexibility in the choice of shape features used for classifi-
cation. It provides a link from the classifier in the feature space back to
the natural representation of the original shapes as surface meshes. We
demonstrate the algorithm on artificial examples, as well as a real data
set of the hippocampus-amygdala complex in schizophrenia patients and
normal controls.

1 Introduction

Statistical studies of anatomical shape in different populations are important
in understanding anatomical effects of diseases (comparing patients vs. normal
controls) or biological processes (for example, comparing different age groups).
Volume and area measurements were originally used for such studies, but re-
cently more sophisticated shape based techniques have been used to identify
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statistical differences in the shape of a particular organ in different subject
groups [16/7/89ITTIT3]. One of the important steps in the analysis is the inter-
pretation of the mathematical description of shape variation in terms of image
related quantities. It allows us to argue about the shape differences in biologically
meaningful terms of organ development and deformation.

Most work in constructing models of shape and its variation has been mo-
tivated by and used for segmentation tasks, where a generative model of shape
variation guides the search over the space of possible deformations of the “rep-
resentative” shape template, with the goal of matching it to a new input image.
Typically, this approach uses Principal Component Analysis (PCA) to build a
linear model of variation and compress it to a few principal modes of defor-
mation [S[I0JI2I18]. In this case, the shape variation within the population is
represented using these principal modes of deformation. In our previous work,
we extended this approach to linear discriminant analysis by visualizing the
shapes resulting from moving the input feature vectors along the vector normal
to the best separating hyperplane [§]. In this paper, we present a generalized ap-
proach to deriving the deformation that represents the differences between two
classes, where that deformation is deduced from a non-linear classifier learned
from training examples. Note that unlike pattern recognition, where the learned
classifier is used to label new examples, we are much more interested in the clas-
sifier’s spatial structure, from which we infer the shape differences in terms of
organ deformations.

The paper is organized as follows. In the next section, we discuss the problem
of statistical shape analysis and briefly outline our approach to learning the shape
differences that is described in detail elsewhere [9]. It is followed by the derivation
of the deformation that corresponds to differences in the shape represented by
the classifier function. The algorithm is then demonstrated on artificial examples,
as well as a real data set of the hippocampus-amygdala complex in schizophrenia
patients compared to a normal control group.

2 Background on Shape Based Classification

Shape Representation. The first step in shape based statistical analysis is ex-
traction of the shape parameters, or a shape descriptor. The wealth of shape de-
scriptors used in medical image analysis and computer vision include parametric
models: such as Fourier descriptors [I0/[I8] or spherical harmonic functions [2[10],
as well as a variety of non-parametric models: landmark based descriptors [15],
distance transforms [912], medial axes [8T4] and deformation fields obtained by
warping a template to each of the input shapes [6I7JTTIT3].

We choose to use distance transforms as shape descriptors. A distance trans-
form, or a distance map, is a function that for any point in the image is equal to
the distance from the point to the closest point on an outline. By first segment-
ing example images into structures of interest, we can then convert each example
into a distance map, based on the boundary of the segmented object. We then
sample points in the distance transform to form a feature vector, which captures
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the shape of the segmented object. Since the values of the distance transform
at neighboring voxels are highly correlated, using it as a shape descriptor pro-
vides the learning algorithm with redundant information on the structure of the
feature space. Moreover, the local nature of the distance transform’s sensitiv-
ity to noise in the object’s pose and segmentation makes it an attractive shape
representation for statistical analysis [9[12]. The shape information extraction
is an inherently noisy process, consisting of imaging, segmentation and feature
extraction, with every step introducing errors. The vectors in the training set
are therefore computed with uncertainty, and it is important that small errors
in any of the steps do not cause significant displacements of the resulting feature
vectors.
Thus, our feature extraction procedure consists of the following steps:

Example images are segmented into relevant structures;

These images are aligned by computing a distance map, then computing the
transformation that aligns the moments of the maps;

The aligned images are clipped to a common size;

The aligned and clipped 3D distance transforms are used as feature vectors,
with individual voxels being the vector components.

2.1 Statistical Analysis

Once the feature vectors are extracted from the images, they are used to study
the statistical properties of two groups and to compare two populations, for
example, a population of normals and a population of schizophrenics. As men-
tioned in the introduction, statistical techniques have been extensively used to
build generative models of shape variation within a single population by com-
puting the principal modes of deformation [5JI0J12[14J18]. This approach has
been previously used to identify and visualize the differences between two popu-
lations by comparing generative models derived separately for each population,
for example by studying the first few principal modes of deformation in the two
groups [7/13]. In addition, several techniques have been demonstrated that are
based on learning the differences between the classes directly from the training
examples by either comparing individual landmarks [1l[7] or by actually training
a classifier to label new examples [6,11]. Our technique [BI9] belongs to this
last group and is based on the premise that in order to automatically detect
statistical shape differences between two populations, one should try to build
the best possible classifier for labeling new examples. In the optimal case, the
classifier function will exactly represent the important differences between the
two classes, while ignoring the intra-class variability.

We use the Support Vector Machines (SVM) learning algorithm to arrive at
a classification function. In additional to the sound theoretical foundations of

! In both papers, a classifier was learned from the training data. However, it was not
used to demonstrate the shape differences, but only to establish statistical signifi-
cance.
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SVMs, they have been demonstrated empirically to be quite robust and seem-
ingly free of the over-fitting problems to which other learning algorithms, such
as neural networks, are subject. Below, we state without proof the main facts
on SVMs that are necessary for derivation of our results. The reader is referred
to the original publications on SVMs [320] for more details on the method.

The Support Vector Machines algorithm exploits kernel functions for non-
linear classification. A kernel is a function K : R™ x R™ +— R, such that for some
mapping function ¥ : R™ — R™ from the original space to a higher dimensional
space (n < m), the value of the dot product in R™ can be computed by applying
K to vectors in R™:

K(u,v) = (¥(u)-¥(v)), Vu,veR" (1)

Thus, while mapping the points from the original space R™ to the higher di-
mensional space R™ and performing computations explicitly in R™ can be pro-
hibitive because of the dimensionality of the space, we can compute certain
quantities in R™ without ever computing the mapping if the answer depends
only on dot products of the vectors in R™.

Given a training set of [ pairs {(xx,yx)}}, where x; € R™ are observations
and yi € {—1,1} are corresponding labels, the SVM learning algorithm searches
for the optimal classification function

l

Fre(x) =D oy (P(x) - W(x)) +b =) ek (x,x5) +b (2)
k=1 k=1

that given a new example x assigns it a label §(x) = sign(f(x)). In the higher
dimensional space defined by the mapping ¥, the separation boundary is a hy-
perplane whose normal is a linear combination of ¥(xx)’s

l

w= Z aryr¥ (xx), (3)

k=1

but it can be an arbitrary complex surface in the original space. Training vec-
tors with non-zero a’s are called support vectors, as they define, or “support”,
the hyperplane. The optimal classifier (i.e., the optimal set of coefficients ay’s
and the threshold b) is found by maximizing the margin between the classes
with respect to the separating boundary, which can be reduced to a constrained
quadratic optimization problem defined in terms of the pairwise dot products of
WU (xk)’s, and can therefore be solved without explicitly computing the mapping
into the higher dimensional space.

For a linear kernel K (u,v) = (u-v), the mapping ¥ is the identity, and the
classifier is a linear function in the original space. Several non-linear kernels have
been also proposed. In this work, we use a family of Gaussian kernel functions

K(u,v) = e luvI?/7,

where the parameter v determines the width of the kernel. One of the important
properties of this family of classifiers is its locality: moving a support vector
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slightly affects the separation boundary close to the vector, but does not change
it in regions distant from the vector. Following the discussion in the previous
section, this is a desirable property in the presence of noise in the training
examples.

Interpretation of the Analysis in the Image Domain. Once the mathematical de-
scription of the shape variation is obtained, it needs to be mapped back into the
image domain for visualization and anatomical interpretation. In the generative
case, this is traditionally done by visualizing the first few principal modes of
deformation derived from PCA [GJ10J12/T§]. Since the model is linear, this step
is particularly simple and intuitive. This technique can also be used in linear dis-
crimination by noting that for a linear classifier, the deformation that represents
the differences between the two classes is fully determined by the normal to the
separating hyperplane and can be used for visualization in the image domain [§].
In fact, this is a special case of the general solution presented in the next section.

Recently, a non-linear kernel based version of PCA was proposed in [19], fol-
lowing the approach of kernel based SVMs. It was utilized in [I5] for constructing
a non-linear model of shape variation of face contours for a wide range of the
viewing angles. In this application, the generative linear model in the higher
dimensional space had to be mapped back into the image domain for sampling
new examples of face contours. The analysis presented in the next section derives
an analogous result for the discriminative case.

3 From a Classifier to Shape Differences

In this section, we first analyze the classification function in the original feature
space and derive the direction that corresponds to the maximal change in the
classifier output while minimizing displacement within the class. Then we note
that the shape descriptors used for classification are not necessarily the optimal
representation for modeling shape differences in the image domain and show how
to express the “optimal direction” in terms of deformations of the outline mesh
of the segmented object, which is a more appropriate representation.

3.1 Shape Differences in the Feature Space

Eq. @) and Eq. @) imply that the classification function f(x) is directly propor-
tional to the signed distance from the input point to the separating boundary
computed in the higher dimensional space defined by the mapping ¥. It there-
fore depends only on the projection of the vector ¥(x) onto the normal to the
hyperplane w, while ignoring the component of ¥(x) that is perpendicular to w.
This suggests that in order to create a displacement of ¥(x) that corresponds to
the difference between the two classes, one should change the vector’s projection
onto w while keeping its perpendicular component constant. Below, we derive
the displacement of x in the original space that achieves the desired displacement
of ¥(x).
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As we move from x to x + dx in the original space, the corresponding vector
in the range of ¥ moves from z = ¥(x) to z+ dz = ¥(x + dx). The deviation of
the displacement vector dz from the direction of the classification vector w

2 2
||e||2Hdz (2= w) |7y g2 — 120 )
Wl wl

can be expressed as a function of dot products in the range of ¥ as shown here:

lw||? = ;awkwxw 2 (5)

= kz Yk (k) P (X)) (6)

_ ;akamykymK(xk, o), ™)

(dz - w) = ; gk ((x + dx) — ¥ (x)) - ¥ (x5)) )
_ ; apyr (K (x + dx, xp,) — K(x, X)) 9)
XD A . (10)

= Vf(x)dx, (11)

where u; denotes the i-th component of vector u, and

ldz|” = 1@ (x + dx) — ¥(x)|” (12)
= K(x + dx, X+dX)+K(X,X)72K(X+dX,X) (13)

1 9°K(u,u) 0?K(u,v)
= _ZonY Cdr; (14
Z 2 3u18u] _ 311,1'3’[1,]‘ (u=x,v=x) dml dx] ( )
= Z o2 K(u,v) dx; dx; (15)

aulav] (u=x,v=x)

= Z Hy(i,j) do; dxj = dx” Hydx, (16)

2%

where matrix Hy is the upper right quarter of the Hessian of the kernel func-
tion K evaluated at (x,x).
Substituting into Eq. ), we obtain

lell* = dx™ (H — [ wl| >V T (x)V £(x)) dx. (17)
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This is a quadratic form that defines the deviation of the displacement dz from
w as a function of the displacement dx in the original feature space. The error
is minimized when dx is aligned with the smallest eigenvector of matrix

Qx = Hy — [W]| * VT (x)V £(x). (18)

We call this direction principal deformation, in analogy to the principal modes of
variation in the generative case. We can compute ()x in the original space using
Eq. (M), Eq. (I0), and Eq. (I3) to compute |w||, V f(x) and Hy respectively. Note
that since the mapping ¥ is non-linear, the principal deformation is generally
not spatially uniform and has to be determined for every input feature vector x
separately.

Interestingly, an analytical solution of this problem exists for a wide family
of kernel functions, including the linear kernel (K(u,v) = (u-v)), as well as
all kernel functions that depend only on the distance between the two input
vectors (K (u,v) = k(]Jju — v||)). For these functions, Hx = cI, where ¢ is a
constant and [ is an identity matrix, and the principal deformation vector is
parallel to the largest eigenvector of the matrix ||w| >V 7 (x)V f(x), which is
the gradient of the classification function V7 (x). It is a well known fact that
in order to achieve the fastest change in f(x), one moves along the gradient
of the function. In our case, the gradient of the function also corresponds to
the smallest distortion of the feature vector along irrelevant dimensions. For the
linear kernel, Hy is the identity matrix (¢ = 1), and the principal deformation
is equal to the classification vector (the distortion is zero). For the Gaussian
kernel, ¢ = 2, and while the principal deformation is parallel to the function
gradient, it does not achieve the classification direction precisely. One example
of commonly used kernel functions for which Hy is not diagonal, and therefore
the general eigenvalue problem has to be solved, is the polynomial kernel family:

K(u,v)=(1+ (u-v))% (19)

where d is the degree of the polynomial.

3.2 From Shape Differences to Deformation

If the feature vectors extracted from the input images can be used successfully
by a generative model of shape variation, the result derived above is sufficient:
in order to visualize shape differences between the classes, one should estimate
the principal deformation and then generate examples in the image domain that
demonstrate the changes that the shape undergoes as its feature vector moves
along the principal deformation direction. However, many shape representations
that are well suited for classification do not lend themselves naturally to this
approach. The distance transform is one such representations. Distance trans-
forms do not form a linear vector space — a linear combination of two distance
transforms is not always a valid distance transform — and therefore cannot be
used directly for generating new examples of the shape. Some representations
do not provide an easy way to model deformations locally, which could be a
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desired property. In this section, we demonstrate how one can use two different
representations for classification and visualization and still obtain the optimal
reconstruction.

We choose to use surface meshes extracted from the segmented images to
model shape deformation. By selectively changing locations of the mesh nodes,
this representation can be used very effectively for modeling local deformations
of the shape. Furthermore, if we form a feature vector by concatenating node
positions in the image, we can change the values of the vector components arbi-
trarily and still represent a particular shape in the image domain. However, this
representation is unsuitable for classification purposes, mainly because the fea-
ture vector length could be different for different example shapes, and moreover,
it is difficult to establish correspondences between nodes in different meshes. A
finite set of points, often manually selected landmarks, can be used as a shape
descriptor [1J5], but we are interested in a dense representation that can be
extracted fully automatically from the segmented images.

Once the classifier function has been learned in the original feature space
(distance transforms in our example), we can perform the search for the princi-
pal deformation direction as described in the previous section. But instead, we
transfer the search into the space of node displacements in the original surface
mesh by computing a local Jacobian of the distance transform components with
respect to the displacements of the mesh nodes. We restrict the node motion to
the direction of the normal to the outline at each node, combining the displace-
ments into a new feature vector s. For the distance transform descriptors, each
voxel is only affected by the closest node in the outline mesh?. We can express
infinitesimal changes in the distance transform feature vectors dx as a function
of the displacements of the points on the outline of the shape ds:

. Oz; 1, node j is the closest node to voxel ¢

Ju(i:3) = 8_5] - {O, otherwise ’ (20)

or, in matrix notation, dx = Jxds. Substituting into Eq. (8], we can see that

the principal deformation in the space of node displacements s is the smallest
eigenvector of the matrix

Qs = JE(H — |w|| *V T (x)V (x)) Jx. (21)

Note that Jx is very sparse, and in fact, only one element in every row is non-zero
(or a few, for the skeleton voxels), and that the dimensionality of the new space
is significantly lower than the dimensionality of the distance transform feature
vectors, which simplifies the computation.

2 For most voxels, there is only one such node, but for voxels that belong to a skeleton
of a shape there are at least two closest nodes. However, the number of skeleton
voxels is typically small (5-8% in our experiments) and they do not affect the results
significantly. We ignore the skeleton voxels in the derivation, but our experiments
demonstrated that the resulting deformations do not change almost at all if we
incorporate the skeleton voxels into the analysis.
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In the case of linear or Gaussian kernels, the principal deformation in the
space of the mesh deformations can be computed explicitly:

s' = L VT (x), (22)

or equivalently, for node 7, the optimal displacement is

R L D SR €

Li

i, such that node j is the
closest node to voxel 4

To summarize, we use deformations of the original shapes to demonstrate
shape differences learned from example images. The shape descriptors used for
classification are linked to the node displacements in the outline mesh through a
linear model, which allows searching for the principal deformation in the space
that is particularly well suited for deformation representation. This approach
can be applied to a variety of shape descriptors, as long as one can establish
local dependence of the descriptor components on the displacements of the mesh
nodes.

4 Experimental Results

In this section, we demonstrate the method on two data sets. The first one is
an artificially constructed example, for which the shape differences are known in
advance. The second example is a real medical data set.

In the artificial example, we generated 30 examples of ellipsoidal shapes of
varying sizes. The width, height and thickness of the shapes were sampled out
of a £10 voxel variation range centered at 20, 30 and 40 voxels respectively. The
10 first examples were chosen to be the first class and had a spherical bump
added to them. Fig. Th shows example shapes from each class. We extracted the
distance transforms (Fig.[Ib), performed the classification and constructed the
optimal deformation both in the distance transform space (Fig. [lc) and in the
space of the mesh node displacements (Fig. [2). We can see that the classifier
successfully identified the area of the bump as the area of the highest differences
between the two groups. Fig. Bl shows several frames in the deformation process
for two different input shapes.

We also report the results of the method applied to a data set that contains
MRI scans of 15 schizophrenia patients and 15 matched controls. In each scan,
the hippocampus-amygdala complex was manually segmented. More details on
the subject selection and data acquisition can be found in [16]. The same pa-
per reports statistically significant differences in the left hippocampus based on
relative volume measurements (the volume of the structure normalized by the
total volume of intracranial cavity). We previously showed statistically signifi-
cant differences between the groups based on SVM classification using distance
transforms as feature vectors [9]. Here, we present the deformations that cor-
respond to the learned differences. Fig. @l and Fig. [l show two examples of the
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(a) Three example shapes from each class.

) Several slices of the distance transform for the top left shape.

I B I B

) Several slices of the principal deformation for the top left shape. The values are lin-
early scaled so that dark regions correspond to negative values, bright areas correspond
to positive values.

Fig. 1. Artificial data set. Example shapes are shown for each class, as well as
the distance transform and the principal deformation for the top left shape.

most prominent deformations identified for normal controls and schizophrenia
patients respectively. These examples were among those selected as support vec-
tors (a total of seven support vectors was selected, other vectors represent similar
deformations to shown here) by the algorithm and each represents a different
region in the feature space and the corresponding deformation. We can see that
the deformation is well localized, and that the hippocampus in the schizophrenia
group seems to be thinner and shorter than the normal one. While this result
and its physiological implications need further validation, it demonstrates our
approach. We are currently working on validating the technique on several other
data sets.

5 Conclusions

In this paper, we have demonstrated a general technique for deriving the de-
formation representing statistical differences between two classes of anatomical
shapes. We identify the differences by training a classifier in the space of feature
vectors (distance transforms). Then the classifier is analyzed to arrive at the
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a) Principal deformation in the mesh space.

l ofe]e
100

(b) Two more views of the principal deformation.

Fig. 2. Example shapes from Fig [la with the principal deformation values
painted on. Colors are used to indicate the direction and the magnitude of the
deformation, varying from blue (moving inward) to green (zero deformation) to
red (moving outwards).

surface based representation of the deformation. We use kernel based classifica-
tion technique (SVMs), but this approach can be extended to other classification
methods that express the classification function analytically in terms of the train-
ing data. In order to derive the deformation, we compute the derivative of our
representation with respect to small displacements of the points on the outline
and use it to express the changes in the classification function in terms of the
deformations of the outline.

Surface based representations are excellent for expressing deformations, which
could be easy and intuitive to interpret in anatomical terms. However, these rep-
resentations are usually difficult to use as feature vectors, mostly because it is
difficult to reliably establish correspondences between the points on the meshes
that represent example shapes. Our approach overcomes this problem by per-
forming classification using volume based feature vectors and then mapping them
back to the surface based representation for every individual shape example.

The proposed technique can provide the currently missing step of detailed
interpretation and visualization of a mathematical model of the statistical dif-
ferences in the anatomical shape detected from example images.

Acknowledgments. Quadratic optimization was performed using PR_-LOQO op-
timizer written by Alex Smola.
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Fig. 3. Several frames in the deformation process for the first example shape in
each group in Fig. [[h. Note how the shape of the protrusion changes as we vary
the amount of deformation.
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(a) Schizophrenia patient #1. (b) Schizophrenia patient #2.
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lateral respectively). The color-coding scheme is identical to Fig. 2
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