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Abstract. The goal of this work is to develop an approach to shape
representation and classification that will allow us to detect and quantify
differences in shape of anatomical structures due to various disorders.
We used a robust version of skeletons for feature extraction and linear
discriminant analysis (the Fisher linear discriminant and the linear Sup-
port Vectors method) for classification. We propose a way to map the
classification results back into the image domain, interpreting shape dif-
ferences as a deformation required to bring a shape from one class to the
other. An example of analyzing corpus callosum shape in schizophrenia
is reported, as well as the results of the study of the statistical properties
of the classifier using cross validation techniques.

1 Introduction

Our goal is to build a framework for statistical shape analysis using classification
techniques applied to feature descriptors. We perform shape feature extraction
using skeletons. To make the process of skeleton extraction robust to noise and
quantization effects of segmentation, we have developed a new variation of the
traditional skeletons: fixed topology skeletons.

In this paper, we limit ourselves to linear discriminant analysis, comparing
performance of two different linear classification methods: the Fisher linear dis-
criminant and the linear Support Vectors methods. Then we present the shape
differences between the groups by constructing the shape deformation in the
image space that corresponds to the discriminant vector in the feature space.

We tested the approach on corpus callosum data for schizophrenia patients.
The results are reported in Sect. Bl

Related Work. Statistical shape modeling combines shape representation with
statistical information on how the features vary across population. Principal
Component Analysis (PCA) has been used by several authors for capturing sta-
tistical properties of the model [39]. It was well suited for applications in seg-
mentation and object localization, where the statistical properties of the model
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were used to restrict the space of possible deformations of the model. It has
also been used in shape analysis [4[8] to reduce the dimensionality of the model
and find a decision boundary between the classes. Bookstein [2] used the shape
features to align the outlines, but then the features (points along the outline)
were analyzed independently of each other. We attempt to use traditional clas-
sification methods directly (without going through the dimensionality reduction
step ) to find the decision boundary.

We use a novel approach to robust skeleton estimation for feature extraction.
Skeletons have been introduced in general computer vision several decades ago [1]
and have been used extensively for object recognition and localization. In medical
image analysis, a scale-space variation of skeletons was introduced and used in
various applications by Pizer and colleagues [0].

2 Shape Representation: Fixed Topology Skeletons

Skeletons provide a compact, intuitive representation of a shape that can be
used for segmentation, tracking, object recognition, etc. Their major drawback
is their high sensitivity to noise in the boundary. There have been proposed
many ways to stabilize the skeleton extraction, most of which concentrated on
heuristics for pruning the original, noisy skeleton.

For shape analysis of anatomical structures, the general shape of the object
is well known ahead of time and the deformations of interest are very small and
do not change the global shape of the structure. Fized topology skeletons take
advantage of this fact: we fix the structure of the skeleton graph (the skeleton
topology) and optimize for the accuracy of the original shape representation over
all skeletons of that fixed structure.

Skeleton extraction. For computing the fixed topology skeleton of a shape,
we use a distance map, a function that for every point in the image is equal to
the distance from the point to the closest point on the boundary of the object.
It can be shown that the skeleton is the set of ridge points of the distance map.

We use a snake-like approach for computing the fixed topology skeleton of a
shape. The set of skeleton points defines a continuous curve that represents the
skeleton. We initialize the snake at the end-points of the traditionally defined
skeleton [I6], and then use the distance map gradient to ”drive” the snake.
Additional regularization is required to keep the curve smooth. Formally, the
update rule is

x't = o(x* + VD(x)),

where x? is the set of point coordinates on the curve at time ¢, VD is the gradient
of the distance map computed at the locations corresponding to the points of
the curve, and o is the smoothing operator. The curve has to be resampled every
few iterations to maintain uniform distribution of the points along the curve. We
stop the iterations when the curve starts oscillating around the ridge.
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Fig. 1. Skeleton extraction. (a) and (b) show the distance map (darker color cor-
responds to higher distance from the boundary) and the skeleton extracted for two
different cases from the data set; (c) features used for classification: curvature angle
and shape width

To find the best skeleton, we estimate skeletons for different initial pairs of
points and chose the one that describes the shape the best ([7] contains more
details on the algorithm). Figs. D{a) and (b) show corpus callosum skeletons
computed for two different cases in our data set.

Feature extraction. Once the skeleton is computed, we sample the skeleton
curve uniformly by arc length and measure two values at every sample point
(Fig. Ik): the angle between two adjacent segments in the sampled skeleton and
the shape width at the sample point. These two features are invariant under rigid
transformations and are therefore well suited for shape description. The number
of sampling points on the skeleton determines the level of detail captured by the
feature vector.

3 Classification Results

Classification methods. We tested two different linear discriminant tech-
niques on the same data set, namely the Fisher discriminant function [5] and the
linear Support Vectors classifier [10]. Given two classes of feature vectors {x},
any linear learning method searches for weight vector w that maximizes ‘spread’
between the projected points © = w’x. The difference between different linear
techniques is in how they define spread, or separation, between the classes.

To find an optimal number of features, we use cross-validation. Since our
data set is small, we had to resort to leave-one-out cross-validation: one case
was left out of the training set and then used as a test set. Repeated for all the
cases in the data set, this yields an estimate of the generalization accuracy of
the method. We report cross-validation results later in this section.

Data. We tested our approach on corpus callosum images for two groups:
schizophrenia patients and normal controls. We used two data sets, combined
into one in our experiments (see Acknowledgments for more info). The combined
data set contains scans of 30 schizophrenia patients (SZ) and of 36 normal con-
trols (NC). We also performed testing on those data sets separately with results
very similar to those obtained with the combined data set.
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Fig. 2. Classification results based on 20 feature points: (a) separation between the
two groups when projected onto w and (b) weights (components of w) for the features
along the curve, in the posterior-to-anterior order; (c) deformation implied by the
discriminant vector, applied to the mean of NC group (top) and to an individual case
(bottom). Black corresponds to the original shape, gray indicates the result of the
deformation

Classification results. Figure[Z(a) shows the results of Support Vectors clas-
sification using 20 points along the skeleton. We can see that for this number of
features, a perfect separation between the two classes was achieved. Figure[Z(b)
shows the weights corresponding to the angle features (ordered from posterior to
anterior). The weights change smoothly as we move along the skeleton, and most
of the weight is concentrated in the middle part of the skeleton. This suggests
that the middle ridge is where most of the shape differences take place in this
case.

We can also provide a direct interpretation of this result in the image domain.
Since projecting onto weight vector w separates the two classes, negating the
component of any feature vector x; from the original data set along w should
bring that vector over the threshold into the other class:

x=x, + (wi'x)w,
x=x; — (wix)w.

We can apply this operation to any data point x; in one of the classes and
then reconstruct the skeleton using the resulting feature vector x;. Thus linear
classification in the feature domain can be mapped into a shape deformation in
the image domain.

Figure 2l(c) shows the deformation applied to two different skeletons. The
first example (top) shows a ‘mean’ normal control skeleton. It was constructed
by averaging the features at the 20 points along the skeleton and reconstructing
a skeleton from the resulting feature vector. The second example (bottom) shows
a skeleton for one of the normal control subjects with the deformation implied
by the classifier. We can see that the corpus callosum shape is more ‘bent’ for
schizophrenia group. In other words, we would have to bend the normal corpus
callosum further to make it look more like corpus callosum of a schizophrenia
patient.

Cross-validation. Figure[Bl(a) shows learning accuracy, that is the classification
accuracy, when the test set was the same as the training set. We can see that
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Fig. 3. Cross-validation results

the Support Vectors method outperforms the Fisher linear discriminant, which
we believe is because it makes fewer assumptions on the underlying distributions
of the classes. As the number of feature points used for classification grows, the
data becomes more separable and the accuracy improves.

Cross-validation is used to find the optimal number of feature points for be
used for shape description of corpus callosum, as well as to test the generalization
power of the classifier. Figure B(b) shows the classification accuracy for leave-
one-out cross-validation experiment. The dotted line shows the ‘baseline’, or
the classification accuracy one would get by guessing. We can see that both
methods achieve better than guessing accuracy. The best accuracy was achieved
by Support Vectors method for 20 feature points. Thus that was reported as the
best number of points.

The classification accuracy for cross-validation is significantly lower than for
learning. There are several reasons for that. As the number of feature points
grows, the data becomes more sparse in the feature space, and thus it is easier
to separate between the classes, but we get poor generalization, as new examples
fall into previously empty regions of the feature space. Another reason for lower
testing accuracy could be that the classes are not truly separableﬁ.

Another question that should be addressed is the number of features. It seems
that the optimal number of features is comparable with the number of cases in
the data set. But it does not mean that we are fitting a model with that many
independent parameters to the data. In fact, the features highly correlate with
their neighbors along the skeleton. Another point to confirm this is the fact that
adjacent points on the skeleton get similar weights (Fig. 2b).

4 Conclusions & Acknowledgments

We presented an approach for shape based classification of anatomical struc-
tures. It uses statistical learning techniques for investigating the differences be-
tween two groups of examples of the same anatomical structure. In this work,

! Implying that one could not provide a reliable diagnosis of schizophrenia based on
the shape of corpus callosum alone, but only about 70% accurate estimate. But com-
bined with analysis of other structures, it might provide a significant improvement in
detecting and quantifying shape pathologies in the brain of schizophrenia patients.
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we limited ourselves to using linear classifiers. We tested two different linear
classification techniques: the Fisher linear discriminant and the linear Support
Vectors classification.

The shape representation is also a crucial component of the system. It maps
the images into points in the feature space in which the classification is per-
formed, and also provides an interpretation of the classification results in terms
of the shape deformation. We use skeletons for extracting the shape features.
They provide a robust, intuitive representation of the shape, and are capable of
capturing shape variations between the groups reported in the paper.

Based on the experimental results, we conclude that the shape of corpus
callosum is different in schizophrenia with higher curvature of the shape. The
cross-validation provided the optimal number of the feature points, as well as an
estimate of the classification accuracy on the new examples.
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