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Abstract. We present a novel approach to statistical shape analysis of
anatomical structures based on small sample size learning techniques.
The high complexity of shape models used in medical image analysis,
combined with a typically small number of training examples, places the
problem outside the realm of classical statistics. This difficulty is tradi-
tionally overcome by first reducing dimensionality of the shape represen-
tation (e.g., using PCA) and then performing training and classification
in the reduced space defined by a few principal components. We propose
to learn the shape differences between the classes in the original high di-
mensional parameter space, while controlling the capacity (generalization
error) of the classifier. This approach makes significantly fewer assump-
tions on the properties and the distribution of the underlying data, which
can be advantageous in anatomical shape analysis where little is known
about the true nature of the input data. Support Vector Machines with
Radial Basis Function kernels are used as a training method and the VC
dimension is used for the theoretical analysis of the classifier capacity.
We demonstrate the method by applying it to shape classification of
the hippocampus-amygdala complex in a data set of 15 schizophrenia
patients and 15 normal controls. Using our technique, the separation
between the classes and the confidence intervals are improved over a
volume based analysis (63% to 73%). Thus exploiting techniques from
small sample size learning theory provides us with a principled way of
utilizing shape information in statistical analysis of the disorder effects
on the brain.

1 Introduction

Statistical shape analysis, or shape based classification, attempts to identify
statistical differences between two groups of images of the same organ based on
3D images of the organ. It can be used to study a disease (patients vs. normal
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controls) or changes caused by aging (different age groups). Size and volume
measurements have been widely used for this purpose, but they capture only a
small subset of organ shape differences. If utilized properly, shape information
can significantly improve our understanding of the anatomical changes due to a
particular disorder.

The first step in shape based statistical analysis is extraction of the shape
parameters, or a shape descriptor. Most work in constructing models of shape
and its variation has been motivated by and used for segmentation tasks, where
a generative model of shape variation guides the search over the space of possible
deformations of the “representative” shape template, with the goal of matching
it to a new input image. Several analytical models for shape variation have been
used in conjunction with different shape models [2,14], followed by introduc-
tion of a statistical approach by Cootes and Taylor [5]. They proposed to learn
the variation of the shape within a class of examples from the input data by
extracting a shape descriptor from every training example and using Principal
Component Analysis (PCA) to build a linear model of variation and compress
it to a few principal modes of deformation. This method was explored in the
domain of image segmentation by several authors using different shape mod-
els [9,11,15].

When applied to shape analysis, this approach employs PCA to reduce the
dimensionality of the shape parameter space and then performs the training in
the reduced, low dimensional space [6,8,10]. The main reason for dimensionality
reduction in shape analysis is the concern that robust parameter estimation is
infeasible in the original high dimensional space when only a small number of
examples is available. Underlying this concern is the assumption that in order to
reliably train a classifier, one has to estimate the density distribution of the data.
Using PCA for dimensionality reduction is essentially equivalent to assuming
that the examples are generated by a Gaussian distribution, and estimating its
parameters – mean and covariance – from the input data. An interesting question
then arises: what if the data are not generated by a Gaussian distribution? In
the generative case, the Law of Large Numbers justifies using this method for
estimating mean and covariance of the class. The estimates are unbiased and
as the number of examples grows, they become increasingly accurate. However,
the situation is different in the discriminative case. As the number of examples
grows, the class mean and covariance estimates converge to their true values,
but the Gaussian model based on the estimates does not describe the data more
accurately. As a result, a classifier derived from this model does not approach the
optimal solution. Since we have no evidence that the shape parameters for any
group of subjects (either patients or normal controls) follow a high dimensional
Gaussian distribution, it is desirable to avoid making this assumption in the
analysis of the data.

We examine an approach to shape classification that makes much weaker
assumptions than the ones used by traditional methods. This work is based on
small sample size learning theory developed in the Machine Learning community.
All approaches to learning from examples share the following very important no-
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tion: the trade-off between generalization ability and training error determines
the optimal classifier function. The training error, which is equal to the number
of misclassified examples in the training set, can be reduced by using increasingly
complex classifier functions that can capture the differences between the classes
more easily. But the goal of learning is to optimize the classifier performance on
new, unseen examples. The expected error rate of the classifier on future exam-
ples is called test error, or generalization error. Unfortunately, as the complexity
of the classifier increases, its estimation from the training data becomes less ro-
bust, and as a result, the test error increases. The optimal classifier function
is the one that can capture the class differences in the training data set (low
training error) and generalize well the concept of the differences to the examples
that had not been seen in the training phase (low expectation of test error).
Traditionally, the classifier complexity has been associated with the number of
parameters defining it. But the relationship between the complexity, or capacity,
of the classifier and the number of parameters is not necessarily a monotonic one
(see [3,17] for examples). Vapnik [16] introduced a better measure of capacity,
called VC dimension, and derived theoretical bounds on the generalization error
of a classifier based on it. One of the most important observations made within
the theoretical analysis is that it is not necessary to solve the density estimation
problem as an intermediate step in the learning process. Instead, the optimal
classifier can and should be estimated directly from the input data. Based on
this theory, a new learning method, called Support Vector Machines (SVMs),
was proposed [16,17]. The main principle of the method is to train the classifier
using the input data, while controlling its VC dimension, rather than the number
of parameters. In this paper, we demonstrate a framework for statistical shape
analysis based on SVMs that for small data sets provides results comparable
to other techniques, and is guaranteed to converge to the optimal solution as
the number of examples increases. It makes no assumptions on the distribution
of the data, and can therefore be applied even when we do not have enough
knowledge to estimate the distribution that produced the input data.

SVMs have recently been used in computer vision for classification tasks
on grayscale images, such as character recognition [17], face detection [12] and
others. While there are similarities between these applications and the problem
of anatomical shape analysis, there are also significant differences. Among seri-
ous challenges in the general pattern recognition domain are non-linear imaging
effects, such as occlusions, or changes in pose and illumination, and creating
negative examples for object detections (e.g., a class of “non-faces” in face de-
tection). Moreover, these applications are characterized by a wealth (tens of
thousands) of training examples and therefore exploit asymptotic behavior of
the learning method, rather than its convergence properties.

The rest of the paper is organized as follows. In the next section, we review
Support Vector Machines and the capacity analysis based on VC dimension. It
is followed by discussion of shape representation using a distance transform and
the description of our algorithm for shape analysis based on SVMs. Section 4
reports the results of the method’s application to a data set of 30 examples (15
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schizophrenia patient and 15 matched controls) of the hippocampus-amygdala
complex and the comparison with a volume based analysis for the same data set.
We conclude with the discussion of the results and future research directions.

2 Small Sample Size Learning and Support Vector
Machines

In this section, we present a brief overview of Support Vector Machines (SVMs)
and the capacity analysis based on the VC dimension. The reader is referred
to the tutorial [3] for an extensive introduction and to the book [17] for more
details on the theoretical foundation and the proofs.

VC bound. Given a training set of l pairs {(xi, yi)}l
1, where xi ∈ Rn are

observations and yi ∈ {−1, 1} are corresponding labels, and a family of classifier
functions {fω(x)} parametrized by ω, the learning task is to select a member
of the family that assigns labels to new, unseen examples while making as few
errors as possible. Ideally, we would like to minimize the expectation of the test
error, also called expected risk,

R(ω) =
∫
1
2
|y − fω(x)|dP (x, y), (1)

where P (x, y) is the probability distribution that generates the observations. In
practice, however, it is difficult to implement, as P (x, y) is unknown. Instead,
the training error, also called empirical risk, can be computed:

Remp(ω) =
1
2l

l∑
i=1

|yi − fω(xi)|. (2)

One can show that for most families of classifier functions used in learning, the
minimum of empirical risk converges in probability to the minimum of expected
risk as the number of training examples increases. Furthermore, for any η (0 ≤
η ≤ 1), with probability at least 1 − η, the classifier fω∗(x) that minimizes
empirical risk Remp(ω) on the given training set satisfies

R(ω∗) ≤ Remp(ω∗) +

√
h

l

(
log

2l
h
+ 1

)
− 1

l
log

η

4
, (3)

where h is a quantity called VC dimension. The VC dimension of a family of
classifiers is a measure of the complexity of the space of all hypotheses they can
generate on any given training set. The right hand side of (3) is often referred
to as the VC bound and its second term is called VC confidence. Note that it is
a distribution-free bound, i.e., one does not need to know the distribution of the
input data to estimate the convergence rate of the learning algorithm. This also
implies that the bound is usually fairly loose for any particular distribution, and
tighter bounds could be derived if the data distribution function were known.



76 Polina Golland et al.

w

2D
2ρ

support 
vectors

Fig. 1. Linearly separable classes with margin ρ and bounding sphere of ra-
dius D.

Support Vector Machines. Let’s first consider a situation when the two
classes are linearly separable (Fig. 1), i.e., there exists a vector w and a constant
b such that

∀i : yi((w · xi) + b) ≥ 1, (4)

where (·) denotes a dot product of two vectors. The Support Vector learning
machine searches for a w that maximizes the margin between the two classes

ρ(w) =
1

2‖w‖(minyi=1
(w · xi)− max

yi=−1
(w · xi)), (5)

which can be shown to be equivalent to minimizing J(w) = ‖w‖2 subject to
constraints (4). Using Lagrange multipliers, the solution to this constrained
quadratic optimization problem is a linear combination of the training examples
w∗ =

∑
xi

αiyixi (αi ≥ 0) with only a few non-zero coefficients αi. Moreover,
the non-zero αi’s correspond to the training vectors that satisfy the inequality
constraint (4) with equality. These are called support vectors, as they “support”
the separating boundary between the classes (Fig. 1). The resulting classifier
f(x) = sign((w∗ · x) + b) = sign(

∑
αiyi(xi · x) + b) is a linear function of

dot products between the input vector x and the support vectors and defines a
hyperplane in Rn.

To extend this to a non-separable case, we introduce non-negative slack vari-
ables ξi that measure by how much each training example violates constraint (4).
The optimization problem is transformed to minimizing J(w) = ‖w‖2+C

∑
ξi

subject to constraints ∀i : yi((w ·xi)+ b) ≥ 1− ξi. The constant C determines
a trade-off between maximizing the margin and minimizing the number of er-
rors. The same techniques that were used in the separable case can be applied
to this optimization problem as well, and the optimal vector w∗ is still a linear
combination of a few support vectors.

This technique can also be extended to non-linear classification by observing
that we only use dot products of data vectors to perform training and classi-
fication. Consider a kernel function K : Rn × Rn �→ R, such that for some
function Ψ : Rn �→ Rm that maps the data into a higher dimensional space,
the value of the dot product in Rm can be computed by applying K to the
vectors in Rn: ∀u,v ∈ Rn K(u,v) = (Ψ(u) · Ψ(v)). We can effectively train
a linear classifier in the higher dimensional space Rm without explicitly evalu-
ating Ψ , but rather using K to compute the dot products in Rm. This clas-
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sifier produces a non-linear decision boundary back in the original space Rn:
f(x) = sign(

∑
αiyi(Ψ(xi) · Ψ(x)) + b) = sign(

∑
αiyiK(xi,x) + b).

Several different kernel functions have been proposed in the machine learning
community. In this work, we use a family of Gaussian kernel functions K(u,v) =
exp{−‖u− v‖2

/γ}, where the parameter γ determines the width of the kernel.
Classifier selection. It can be shown that the VC dimension of an optimal

hyperplane is bounded by

h ≤ min(D2/ρ2, n) + 1, (6)

where ρ is the margin of the classifier, D is the radius of the smallest sphere
that contains all the training examples, and n is the dimensionality of the space
(Fig. 1). This bound can also be computed in the non-linear case, as the radius
of the bounding sphere in the target space can be estimated using the kernel
function. This suggests a method for classifier selection: among optimal classifiers
obtained for a hierarchy of function families (e.g., of different kernel width γ),
choose the classifier that minimizes the VC bound (3), using the margin and the
radius of the bounding sphere to estimate the VC dimension of the classifier.

For problems with a small number of training examples, the VC bound might
be too loose to be helpful for classifier selection, and other methods, such as cross-
validation, are employed. The relationship between VC dimension and cross-
validation is discussed in detail in [17]. The traditional approach to estimating
the expected test error from the cross-validation results uses the Law of Large
Numbers and De Moivre - Laplace approximation to arrive at the following
bound: with probability at least 1− η

|R(ω∗)− R̂| ≤ Φ−1

(
1− η

2

) √
R̂(1− R̂)

l
, (7)

where R̂ is the error rate of the cross-validation and Φ(x) =
∫ x

0
1√
2π
exp−t2/2 dt

is the standard error function.

3 Distance Transforms as Shape Descriptors

Numerous models have been proposed for shape description, as discussed in the
introduction. In this section, we describe how we extract the shape informa-
tion from segmented (binary) images using a distance transform and use it for
classification.

A distance transform, or distance map, is a function that for any point inside
an object is equal to the distance from the point to the closest point on an
outline. Since the values of the distance transform at neighboring voxels are
highly correlated, using it as a shape descriptor provides the learning algorithm
with a lot of information on the structure of the feature space.

Another important property of the distance transform is what we call a
continuity of mapping. The shape information extraction is an inherently noisy
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Fig. 2. Data example: an example sagittal slice with the hippocampus-amygdala
complex segmented (left), a 3D surface model of the hippocampus-amygdala
complex (middle), and a slice of the 3D distance transform (right).

process, consisting of imaging, segmentation and feature extraction, with every
step introducing errors. Small changes in the input image (rigid transformation,
errors in segmentation, etc.) cause the corresponding feature vector to change
as well. The vectors in the training set are therefore computed with uncertainty,
and it is important that small errors in any of the steps do not cause significant
displacements of the resulting feature vectors. Since the gradient magnitude of
the distance map is bounded by 1 everywhere in the image, and changes in the
outline have only local effect on the distance map, the distance between the new
and the old feature vectors in the feature space is bounded by the “magnitude
of transformation” in the image space.

Finally, there is a question of establishing correspondence between the com-
ponents of different feature vectors, or alignment. We use moments of the dis-
tance transform to align the images into a canonical representation, and other
techniques, e.g., rigid registration, can further improve the initial alignment of
the shapes. This step must use rigid transformations, as the non-rigid defor-
mation of the shape is exactly what should be captured and generalized by the
learning algorithm. Moments of the distance map place higher weights on interior
points than on points that are closer to the boundary, which reflects our belief
that the interior points of the distance transform are estimated more reliably
than the outline points. The images are also scaled to be of the same volume, as
we consider shape properties independently of the volume.

To summarize, our algorithm takes segmented images, computes a distance
transform and its moments, aligns and scales the images so that the object
volume and the center of gravity of the distance transform is the same for all ex-
ample shapes, and the principal axes of the distance transform coincide with the
volume sampling directions. Then the distance transform can be either resam-
pled using the same transformation or recomputed using the aligned images. To
minimize resampling errors, we perform all of the operations on a sub-voxel level.
The resulting distance maps are sampled uniformly in 3D and stored as vectors
to be used for learning. Each component of the feature vector corresponds to a
particular location in space and is equal to the value of the distance map in that
location. Each anatomical structure is processed separately, and the resulting
feature vector is a concatenation of the vectors for each structure of interest.
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Structure Right hippocampus Left hippocampus

Descriptor volume shape volume shape

Training accuracy(%) 60.0 83.3 63.3 83.3
Cross-validation(%) 60.0 ± 17.5 66.7 ± 16.9 63.3 ± 17.2 60.0± 17.5

Structure Both hippocampi

Descriptor volume shape shape & volume shape & rel. vol.

Training accuracy(%) 66.7 86.7 83.3 83.3
Cross-validation(%) 63.3 ± 17.2 70.0 ± 16.4 73.3 ± 15.8 70.0± 16.4

Table 1. Training and cross-validation accuracy for volume and shape. The
results for cross-validation consist of estimated expected error, as well as 95%
confidence interval, computed based on Eq. (7). The training accuracy is reported
for the parameter setting that yielded the best cross-validation results.

4 Experimental Results

In this section, we report the results of the method applied to a data set that con-
tains MRI scans of 15 schizophrenia patients and 15 matched controls. In each
scan, the hippocampus-amygdala complex was manually segmented (Fig. 2a,b).
More details on the subject selection and data acquisition can be found in [13].
The same paper reports statistically significant differences in left anterior hip-
pocampus based on relative volume measurements (the volume of the structure
normalized by the total volume of intracranial cavity or ICC). For each of the
experiments reported in this paper, we systematically explore the space of pa-
rameters (the kernel width γ and the soft margin constant C) by sampling it
on a logarithmic scale, training a Gaussian kernel classifier and estimate its VC
dimension as described in Section 2, and also performing leave-one-out cross-
validation. Table 1 contains the summary of training and the cross-validation
accuracy for all our experiments.

In order to compare the shape based analysis to the volume based analysis,
we first trained a classifier and performed leave-one-out cross-validation based
on the relative volume measurements only1. We then repeat the experiment with
the shape descriptors (distance maps). Fig. 3a,b shows the accuracy sampling
for different parameter settings for shape classification, and Table 1 contains
the training and the cross-validation accuracy for the best classifier selected
based on the cross-validation results. If used on a single side of hippocampus,
the shape based results are not significantly different from the volume based
result, but there is a significant improvement (63% to 70%) when the two sides
are considered together. This suggests that the disease might affect the shape
of both hippocampi, and it is the combined shape that is the best indicator of
those differences.
1 Note that for volume based classification, the cross-validation accuracy does not
differ significantly from the training accuracy, because removing a single training
example can only affect the training result if the example is close to the threshold
(i.e., it’s a support vector), and there could only be very few of those in the low-
dimensional space.
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Fig. 3. Learning results for different parameter settings using both hippocampi.

Given the results reported so far, the natural question to ask is what hap-
pens if we combine shape information with volume measurements? If they are
decorrelated, better estimates could potentially be obtained by using both. In
order to investigate this question, we re-ran the experiment with a slightly mod-
ified feature extraction procedure. In the first experiment we kept the volume
of the structure unchanged, and then ran the experiment again while scaling
the images so that the resulting volume for every image is proportional to the
relative volume as reported in the original paper [13]. The results of these exper-
iments are also shown in Table 1. We can see that combining volume and shape
information yields additional improvement (cross-validation accuracy 73%).

In order to perform the capacity analysis of the classifier, we estimated VC
dimension for each one of the parameter settings and computed the VC bound (3)
for the shape based experiment (see Fig. 3). Unfortunately, the bound is too
loose to be helpful for classifier selection (it is greater than 1), and we have
to resort to cross-validation. Examining the graphs in Fig. 3, we observe that
empirical risk Remp and the estimated VC dimension behave in opposite ways:
one increases when the other goes down. But when they are combined in (3),
the VC confidence dominates the empirical risk term and the sum does not have
a distinct minimum. As the number of input examples increases, the estimates
of the VC dimension will become more accurate, and the bound can be useful
in investigating the functional behavior of the generalization error for different
setting of parameters γ and C.
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5 Discussion and Conclusion

We have proposed and demonstrated a novel approach to statistical shape anal-
ysis of anatomical structures. Our technique is based on the body of knowledge
developed in machine learning for situations when the distribution of the data is
unknown and the number of examples is limited. It makes no assumptions on the
distribution of the data and moreover, is guaranteed to converge to the optimal
solution (minimizing the expected error on future examples) as the number of
training examples increases. It provides a principled way to attack a problem
of modeling statistical shape differences in the medical domain. When applied
to the hippocampus study in schizophrenia, shape information allowed us to
improve over a purely volume based approach. The results are comparable to
the traditional approach (e.g., Csernansky et al [6] report 80% accuracy in cross-
validation using deformation fields as a shape model and PCA for dimensionality
reduction), and if more examples are available, can potentially tighten the bound
on the test error.

We used distance maps as shape descriptors in this work, but the learning
techniques presented here are applicable to other shape models as well. The
main contribution of this paper is in the way we perform learning on the shape
features. Comparison between different shape representations and their perfor-
mance when combined with our analysis is an interesting question that needs to
be investigated in the future.

There are several other topics that we would like to explore next, and the
most important one is the interpretation of the learning results in terms of
shape deformation. Linear models provide a very intuitive interpretation of the
parameters as weights assigned to the corresponding vectors (e.g., modes of
deformation), but it cannot be extended in a straightforward manner to any
family of non-linear models. Finding methods for mapping a non-linear classifier
function back into the image domain and providing an interpretation of the
results for the medical researches is our current interest.

Another important direction of research in this framework is incorporating
invariants into the learning process. To enable efficient learning, information on
the structure of the feature space has to be provided to the training algorithm.
Some of this is achieved by selecting a good representation. Invariants are impor-
tant constraints on the feature space that often cannot be explicitly modeled by
the shape representation. In some cases, a family of classifiers can be changed to
guarantee that the resulting function satisfies the invariance constraint (see [4],
for example), or artificial examples can be generated using the invariants and
added to the original training set [1]. We plan to explore this direction as a way
of further restricting the classifier family and thus improving the accuracy.

To summarize, recent advances in statistical learning theory enabled a new
approach to statistical analysis of high dimensional data. As the results presented
in this paper demonstrate, the field of statistical shape analysis, and medical re-
search in general, can benefit from these techniques. While there are still many
open questions on interpretation of the results and incorporation of prior knowl-
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edge into the method, it is a promising direction of research that can help medical
researches to get a better insight into various anatomical phenomena.
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15. G. Székely et al. Segmentation of 2D and 3D objects from MRI volume data using
constrained elastic deformations of flexible Fourier contour and surface models.
Medical Image Analysis, 1(1):19-34, 1996.

16. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
17. V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.


	Introduction
	Small Sample Size Learning and Support Vector Machines
	Distance Transforms as Shape Descriptors
	Experimental Results
	Discussion and Conclusion

