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Abstract

In this report, I review Magnetic Resonance Imaging (MRI) principles and discuss two
recently developed techniques for fast MRI. Both methods reduce the imaging time by reducing
the number of encoding iterations required for image reconstruction. The first method, SVD
MRI, exploits a priori knowledge on the signal structure to reduce the number of measurements.
The second one, SMASH imaging, uses a partially parallel measurement scheme to recover
larger than usual portions of the measurements in every encoding iteration. In addition to
the analysis of the methods in the common framework of k-space sampling, their applicability
and implementation issues are discussed, error analysis for both methods and the improved
reconstruction technique for SMASH imaging are presented.

1 Introduction

Differences in induced magnetization in biological tissues in the presence of a magnetic field are
the source of image contrast in MRI. The signal measured by receiver coils is the integral of the
induced magnetization over the entire imaged volume, also called the field of view (FOV). In order
to reconstruct the original 3D distribution of magnetization, a spatially varying field pattern has to
be generated in the volume, so that voxels at different locations produce a signal that is “tagged”
with the information on the location. Most spatial encoding schemes trade off the quality of the
resulting image (spatial resolution and signal-to-noise ratio) against the time of acquisition. While
the standard techniques for spatial encoding in MRI produce high quality images, they require a
relatively long time to obtain an image (seconds to obtain a 2D image, up to several minutes for a 3D
image). The two MRI techniques reviewed in this report, SVD MRI [17, 19] and SMASH [12, 13],
are examples of fast MRI, aiming at imaging time reduction without sacrificing too much of the
image quality. Each method is represented by an early paper that introduces the algorithm and a
later paper that discusses the authors’ experience, provides more results, etc.

This report consists of two parts. The first part is a comprehensive overview of MRI principles
and relevant imaging techniques. It also contains a discussion on the need for fast MRI, as well as
existing methods for increasing the imaging speed. In the second part, the two fast MRI techniques
are introduced and discussed. My original contributions consist of the reconstruction error analysis
for both methods, as well as a proposed improved reconstruction algorithm based on SMASH
technique.

2 MRI Principles

This review is based on several general MRI textbooks [15, 3, 9], as well as on-line sources [7, 16].
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2.1 NMR phenomenon

Nuclear magnetic resonance (NMR) is a quantum mechanical phenomenon if considered on the
level of single atoms, but classical mechanics can still be used to describe the total magnetization
behavior in a volume. This section is based on the classical mechanical interpretation. The quantum
mechanical explanation of magnetic resonance (yielding, of course, the same general result) can be
found in [7] and [15], pp. 397-399.

Stationary field. Most MRI is based on magnetic resonance in hydrogen nuclei, i.e., single
protons. Consider a single proton with angular momentum I associated with its spin. The dipole
magnetic momentum associated with the proton is

µ = γI, (1)

where γ = e/2m is a gyro-magnetic ratio. If placed in a magnetic field B, the magnetic dipole will
experience torque causing change in the angular momentum:

dI
dt

= µ×B. (2)

Combining Eq. (1) and Eq. (2), we obtain the Larmor equation

dµ

dt
= γµ×B (3)

that describes precession of µ around B with angular velocity

ω = −γB, (4)

also called Larmor frequency (Fig. 1a). Note that the magnitude of the dipole magnetic momentum
remains the same.

The total magnetic momentum M of a sample, also called magnetization, is a vector sum of
magnetic momenta of individual nuclei. It is easy to show that M satisfies the Larmor equation (3)
as well. In the absence of an external magnetic field, the individual momentum orientation is
random over the volume, and the total magnetization is zero. This changes if an external magnetic
field B0 = B0ẑ is applied to the sample. A small fraction of dipoles (about one in 105) aligns
with the external field, creating a non-zero magnetization of the sample in the z-direction. Since
individual dipoles are out of phase, the transverse component Mxy of the total magnetization is
still zero.

Rf pulses. If a time-varying magnetic field B1 (a radio frequency (rf) pulse) is applied in the
plane perpendicular to B0,

B1 = B1 cos(ω1t)x̂ +B1 sin(ω1t)ŷ. (5)

the magnetization vector M tilts away from the z-axis. Precession of M as described by the Larmor
equation (3) creates a variable electro-magnetic field that induces current in the receiver coil.

The analysis of magnetic momentum M behavior in the presence of such field B1 is much
simpler in a rotating reference frame. Let’s consider a reference frame rotating around the z-axis
with angular velocity ω. In this reference frame, the Larmor equation (3) becomes

dM
dt

= γM×B− ω ×M, (6)
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Figure 1: NMR principles. (a) Larmor precession; (b) Effective magnetic field in the rotating
reference frame; (c) Magnetic resonance in the rotating reference frame; (d) Magnetic resonance in
the laboratory reference frame.

where the additive term −ω ×M represents the difference in motion of M between the rotating
reference frame and the laboratory reference frame. Substituting B = B1 + B0, we obtain

dM
dt

= γM× (B1 + B0 + ω/γ), (7)

i.e., in the rotating reference frame, the magnetic momentum M precesses around the effective
magnetic field (Fig. 1b)

Be = B1 + B0 + ω/γ = B1 + (B0 + ω/γ)ẑ′. (8)

If we choose the reference frame such that ω = ω1, then B1 = B1x̂′ and the effective field becomes

Be = B1x̂′ + (B0 + ω/γ)ẑ′ (9)

(Fig. 1b). Furthermore, if ω is equal to the Larmor frequency (4), then Be = B1i′ and the motion of
vector M in the rotating reference frame becomes rotation around the x′-axis (Fig. 1c). The amount
of this rotation is called the flip angle. The angular velocity of that rotation is ω′ = γBe = γB1.
In the laboratory reference frame, M spirals into xy-plane, as shown in Fig 1d.

If the duration of the rf pulse is τ , the flip angle is

α = ω′τ = γB1τ, (10)

and the transverse magnetization immediately after the pulse is

Mxy = M sinα = M sin(γB1τ), (11)

where M is the magnitude of the magnetization M. This transverse magnetization induces current
in a receiver coil, producing the signal used in MRI. Flip angles of 90o are commonly used in MR
experiments by setting τ = π/(2γB1). For such pulses, all of the magnetization is flipped into
transverse plane, achieving the strongest possible signal.

Relaxation. Two different types of relaxation are observed in magnetic resonance experiments:
longitudinal, or spin-lattice, relaxation and transversal, or spin-spin, relaxation. The effects of
relaxation processes are usually negligible during a short rf pulse, but they govern the magnetization
behavior in the stationary magnetic field after an rf pulse is switched off.
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Spin-lattice relaxation is the process of the total magnetic momentum M aligning over time
with the stationary magnetic field B0:

Mz = M0(1− e−t/T1), (12)

where T1 is called the spin-lattice relaxation time, and M0 is the equilibrium magnetization that
depends on the proton density of the sample and the magnetic field strength B0. Spin-spin relax-
ation is due to interactions between spins in the sample. It causes exponential relaxation in the
transverse plane:

‖Mxy‖ = Mxy0e
−t/T2 , (13)

where T2 is called the spin-spin relaxation time, and Mxy0 is the transverse magnetization imme-
diately after the rf pulse, which is equal to M0 for the 90o rf pulse. Thus, the following equations
describe precession of the magnetization vector M after a single 90o rf pulse:

Mz(t) = M0(1− e−t/T1),
Mx(t) = M0e

−t/T2 cosωt, (14)
My(t) = M0e

−t/T2 sinωt,

where ω = γB0 is the Larmor frequency. The transverse magnetization is often described as a
single complex number:

Mxy(t) = M0e
−t/T2ejωt. (15)

If a sequence of 90o rf pulses with a period of TR (time of repetition) is used, then the longitudinal
component of magnetization does not recover to the equilibrium value M0 and Eq. (15) becomes

Mxy(t) = M0(1− e−TR/T1)e−t/T2ejωt. (16)

The time between the rf pulse and the time when the signal is measured in the receiver coil, is usually
denoted TE (time to echo). Ignoring the relaxation effects for the duration of the measurement,
the transverse magnetization during the measurement is then

Mxy(t) = M0(1− e−TR/T1)e−TE/T2ejωt = M̂xye
jωt, (17)

where M̂xy = M0(1− e−TR/T1)e−TE/T2 is the magnitude of magnetization, and is exactly what MRI
attempts to recover. This quantity captures magnetic properties of the material, such as proton
density and relaxation times T1 and T2. Proton density and relaxation times T1, T2 are different for
different tissues and are therefore the source of contrast in the images. An excellent discussion on
designing pulse sequences, i.e., determining TR and TE based on the properties of imaged tissues,
can be found in [3], pp. 485-493.

To summarize, magnetization of a sample can be measured by tilting its vector away from the
stationary magnetic field. If an rf pulse of Larmor frequency is applied to the sample, magnetic
resonance occurs, and the magnetization vector flips into the transverse plane. After the rf pulse
is turned off, relaxation processes cause decay of the transverse magnetization and recovery of the
longitudinal magnetization component to its original value.

The next section describes how the signal measured by the receiver coil can be used to recon-
struct the 3D distribution of M̂xy.

4



2.2 Spatial Encoding in MRI

If a receiver coil is placed along the object, the transverse magnetization induces current in the
coil. This signal is the integral of the magnetization over the entire volume:

S(t) =
∫ ∫ ∫

Mxy(x, y, z, t) dx dy dz =
∫ ∫ ∫

M̂xy(x, y, z, t)ej(ω(x,y,z,t)t+ϕ(x,y,z,t)) dx dy dz. (18)

The task of spatial encoding is to vary frequency ω(x, y, z, t) and phase ϕ(x, y, z, t) over the volume
for every measurement in such a way that the original distribution of magnetization M̂xy(x, y, z, t)
can be recovered from a set of integrals (18). This is achieved by applying a spatially variable
(stationary in time) magnetic field B′0(x, y, z) = B′0(x, y, z)ẑ that induces spatial distribution of
Larmor frequencies (4) over the volume.

Spatial derivatives of B′0(x, y, z) determine local resolution of the image. Since constant gra-
dients yield a uniform resolution over the volume, as well as optimal bandwidth characteristics of
the current pattern in the gradient coils, linear magnetic fields are commonly used in MRI. In the
remainder of this report, we denote the spatially constant derivatives of B′0(x, y, z) as (Gx, Gy , Gz).
Three different types of spatial encoding are commonly used in MRI: selective excitation, phase
encoding and frequency encoding.

Selective excitation. If a spatially varying magnetic field B′0 is followed an rf pulse that contains
a selected set of frequencies, magnetic resonance will occur only in a sub-volume whose Larmor
frequencies are included in the rf pulse. This technique is commonly used for slice selection in
MRI. In this case, B′0 = Gzzẑ, and the rf pulse contains a single frequency ω. Only spins in a slice
defined by

z =
ω

γGz
− B0

Gz
(19)

are affected by the rf pulse. It can be shown that the profile of the slice can be approximated by a
Fourier transform of the pulse function ([9], pp. 47-52). Thus to select a slice of uniform thickness,
sinc rf pulses are used. The signal generated after the pulse is an integration over the selected slice
(plane).

Phase encoding. After the excitation pulse, the distribution of transverse magnetization in the
sample is essentially 2D. If we apply a linear field of gradient Gy, the Larmor frequency distribution
will also be linear in y. This will cause variation in the phase of magnetization. After time τ , the
phase of point (x, y) is determined by

ϕ(x, y) = (ω(x, y) − ω0)τ = γGyyτ. (20)

After the gradient is switched off, the precession frequency returns to a constant value over the
plane, while the phase remains proportional to y.

Frequency encoding. If a constant gradient Gx is applied to the sample, the frequency of
precession will change linearly with location:

ω(x, y) = γGxx. (21)

If the signal is read off while this gradient is on, contributions of voxels at different locations will
have different frequencies.
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Figure 2: Pulse sequence example for the standard Fourier encoding scheme.

If three encoding steps are performed in a sequence as shown in Fig. 2, at time t after the
beginning of the frequency encoding pulse Gx the transverse magnetization of voxel (x, y) in the
excited plane is given by

Mxy(x, y, t) = M̂xy(x, y, t)ej(ω(x,y,t)t+ϕ(x,y,t)) = M̂xy(x, y, t)ej(γGxxt+γGyyτ), (22)

inducing a signal

S(t) =
∫ ∫

Mxy(x, y, t) dx dy =
∫ ∫

M̂xy(x, y, t)ej(γGxxt+γGyyτ) dx dy. (23)

If we denote
kx = −γGxt, ky = −γGyτ, (24)

then
S(t) = S(kx(t), ky) =

∫ ∫
M̂xy(x, y, t)e−j(kxx+kyy) dx dy = FM̂ (kx, ky), (25)

where FM̂ is the Fourier transform of the magnetization at time t. The phase and the frequency
encoding steps essentially “tag” every location in the excited slice with a distinct pair of a phase and
a frequency of the magnetization precession. The integral of this pattern is the Fourier transform
of the magnetization. The signal measured during one such iteration produces a row in the spatial
frequency space (kx, ky), also referred to as k-space in MRI literature. After repeating this process
several times for different values of Gy and completing matrix S(kx, ky), the image of transverse
magnetization can be recovered by applying the inverse discrete Fourier transform. This image is a
single slice in the volumetric MRI scan of the sample. To obtain all the slices, the process described
above has to be repeated for different values of the excitation frequency ω.

Image quality. Image quality is characterized by its resolution and its signal-to-noise ratio
(SNR). Image resolution is determined by the range of acquired frequencies. The Nyquist theorem
implies the following inequalities:

∆x ≤ 1/2Ωx, FOVx ≤ 1/2∆kx, (26)

where Ωx is the maximal spatial frequency kx contained in the image, and FOVx is the size of
the image (Fig. 3). Similar inequalities can be obtained for image height (y direction). Tradition-
ally, matrix S(kx, ky) is mapped from zero out to higher frequencies ky. The optimal number of
rows/columns measured in k-space is equal to the number of pixels in y/x direction of the image.
The optimal spacing in the frequency domain is

∆k∗x = 1/2FOVx, ∆k∗y = 1/2FOVy. (27)
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Figure 3: Spatial encoding. (a) Image domain, (b) k-space.

If the range of frequencies is reduced, the spatial resolution of the image will go down, i.e.,
the image will look blurred. If the spacing between the measured frequencies is increased, the
reconstructed image will suffer from wrapping effects: a smaller FOV determined by Ineq. (26) will
be replicated over the image space.

SNR is determined by the amount of measured magnetization relative to thermal noise in the
image. Transverse magnetization depends on the power and duration of the rf pulse, as defined
by Eq. (11), and on the time interval between excitation pulses TR (longer TR allows more of
the original magnetization to return to the z-component that can be flipped again in the next
cycle). There are several ways to improve SNR of the image: using stronger fields, increasing TR,
averaging over several shots. Many of the parameters are limited by physiological factors, and the
current techniques cannot increase the gradient strength or the rf power significantly, as it might
cause tissue damage. In addition, acquisition time is limited by motion effects. If a patient moves
during imaging, the resulting image will contain artifacts caused by a signal mismatch in consecutive
measurements. While motion can be somewhat reduced, it cannot be removed completely in certain
applications. Examples include motion due to breathing and cardiac motion. While the former can
be eliminated for a short time by a patient holding his breath, the latter hopefully does not stop
at any time. Therefore, fast MRI techniques that utilize novel approaches to image encoding to
reduce acquisition time, are of great value for medical imaging.

3 Two Fast MRI Techniques

In this part of the report, two different techniques for fast MRI, SVD MRI and SMASH, are
reviewed. Both methods modify the standard k-space sampling described in the previous section
to reduce the number of encoding steps, thus reducing the total image acquisition time. SVD
MRI could potentially improve the imaging time in situations where multiple images of the same
patient are acquired during some procedure, but the speedup offered by the technique is limited
by the differences between the images. A real time implementation hasn’t been demonstrated yet.
SMASH is a more mature method that is based on parallel image acquisition using several receiver
coils simultaneously. It has been demonstrated in practice with speedup factors up to 6 on cardiac
and other images. later in the paper, I propose an improvement to the reconstruction algorithm
used by SMASH that will eliminate certain reconstruction errors. For each technique, the details of
modified k-space sampling, implementation considerations and experimental results are presented,
followed by a discussion of the method.

7



3.1 SVD MRI

K-space sampling. This method is based on the observation that the Fourier basis, although
complete, is not necessarily the optimal basis in terms of the number of encodes, or vectors needed
to span the space of rows of S(kx, ky). The authors propose using the principal components of the
space of image rows for that purpose. Let

S = UΣV T (28)

be the singular value decomposition (SVD) of the N × N matrix S. U and V are orthonormal
matrices, and Σ is a diagonal matrix of singular values, ordered in the descending order of their
magnitude: σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

N . In the following derivations, sk denotes the kth column of
matrix S, and sk denotes the kth row of matrix S.

It is easy to show that the columns of V span the space defined by the rows of S:

si =
N∑
k=1

σkuk(i)vTk , (29)

or, in matrix notation,

S =
N∑
k=1

σkukv
T
k . (30)

If we want to reduce the number of components ukvTk used to encode S while keeping the sum-of-
squares truncation error as small as possible, we have to choose the largest (in magnitude) singular
values:

S̃ =
K∑
k=1

σkukv
T
k . (31)

Thus an N × K matrix Ũ of the first K columns of U defines the coefficients of the optimal
approximation of S using basis {σkvTk }

K
k=1.

The main assumption used by the method is that the magnitude of singular values falls off
very quickly for images, and a small number of encodes σkvTk is needed to reconstruct S with very
small error. Suppose S is a previously taken image and S′ = U ′Σ′V ′T is the next image. If S′ is
close to S, then the same encodes should provide a near-optimal reconstruction of S′ as well. The
algorithm measures Ŝ′ that is effectively equal to ŨTS′, as explained later in the implementation
section. This matrix is then left-multiplied by Ũ to produce the output approximation of S′. If
S′ = S, Ũ ŨT Ŝ′ is the optimal approximation of S′(= S) obtained from using the first K singular
values. To see that, note that the rows of the measured matrix in this case Ŝ′ = ŨTS′ = ŨTS are
exactly equal to {σkvTk }

K
k=1.

To summarize, this method measures an approximation of the optimal basis {σ′kv′Tk }
K

k=1 and

uses {uTk }
K
k=1 from the previous image as an approximation of the optimal set of coefficients {u′Tk }

K

k=1

for the reconstruction of S′. The full reconstruction method is actually symmetric, i.e., the result
matrix Ŝ′ is an average of the row encoding described above and the column encoding that can be
obtained by using columns of U to span the space of columns of S.

In the second paper [19], the authors suggest using several other decompositions that are ap-
proximations of SVD that might be preferred in this application for computational reasons. SVD
is difficult to parallelize, and real-time dynamic imaging poses time constraints on the processing
performed between image acquisitions. Suggested approximations require more encodes to achieve
the same precision, but their implementation is better suited for parallel computation.
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Implementation. The phase encoding step of the standard k-space sampling is replaced by an
SVD encoding step. The method uses low flip angle (less than 30o) rf pulses. For small flip angles,
Eq. (11) can be approximated by a linear function

Mxy = M0 sin(γB1∆t) ≈M0γB1∆t. (32)

In addition, the longitudinal magnetization after the pulse is non zero:

Mz = M0 cos(γB1∆t) ≈M0. (33)

Low flip angle techniques were introduced by Haase et al. [5] for fast MRI and have been exten-
sively used in the field. The advantage of this approach is that there is no need to wait for the
longitudinal magnetization to recover, as a large amount of magnetization stays parallel to the
stationary magnetic field B0. However, it requires a stronger field to achieve good SNR, as only a
small portion of the total magnetization is used for imaging in every iteration.

The encoding is done in iterations. In one iteration, one row of matrix Ŝ′ is computed. To
create a spatial distribution of phase, a train of low flip angle rf pulses is used simultaneously with
a gradient pulse Gy during the SVD encoding step as shown in Fig. 4. Unlike selective excitation
pulses, each rf pulse in the train is wide enough to excite the entire slice plane. The duration of each
pulse is ∆t, the number of pulses in the train is equal to N. The intensity of pulse n in encoding
iteration k is equal to Bn = uk(n). The time from the end of the pulse n to the end of the gradient
pulse is τn = n∆t. Similarly to the derivation in the previous section, the phase accumulated by
the magnetization vector flipped by pulse n is equal to

ϕn(x, y) = γGyyτn = γGyyn∆t. (34)

Compare to Eq. (20) and (24) to see that if we set

Gy = ∆Gyτ/∆t, (35)

where τ is the duration of the standard phase encoding step and ∆Gy is the increment in gradient
between two consecutive phase encoding steps, then the accumulated phase is identical to the one
in the standard phase encoding step that corresponds to kny = −γn∆Gyτ .

The total magnetization after the SVD encoding step is

Mxy(x, y, t) =
N∑
n=1

Mn
xy(x, y, t) (36)
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≈
N∑
n=1

Mn−1
z (x, y)e−t/T2γBn∆tej(ω(x,y,t)t+ϕn(x,y)) (37)

≈
N∑
n=1

M0(x, y)e−t/T2γuk(n)∆tej(ω(x,y,t)t−kny y) (38)

= M̂(x, y, t)
N∑
n=1

uk(n)ej(ωt−k
n
y y), (39)

where M̂(x, y, t) = M0(x, y)γ∆te−t/T2 is the magnetization image we want to recover (scaled by a
constant γ∆t). Similarly to our derivations in Section 2.2, the resulting signal during the frequency
encoding step is

Ŝ′(t) =
∫ ∫

Mxy(x, y, t) dx dy (40)

=
∫ ∫

M̂(x, y, t)
N∑
n=1

uk(n)ej(ω(x,y,t)t−kny y) dx dy (41)

=
N∑
n=1

uk(n)
∫ ∫

M̂(x, y, t)e−j(kx(t)x+kny y) dx dy (42)

=
N∑
n=1

uk(n)S′(kx(t), kny ), (43)

or, in a matrix notation,
ŝ′k = uTk S

′, (44)

i.e., in a single SVD encoding step, we measure a linear combination of the rows of the original
k-space. After K steps, we obtain

Ŝ′ = ŨTS′, (45)

which needs to be left-multiplied by Ũ to obtain the near-optimal approximation of S′.
The standard slice selection mechanism cannot be used in conjunction with this technique, as

the excitation rf pulses are used for SVD encoding, and cannot be used for slice selection. The
first paper [17] proposed to use an additional re-focusing rf pulse for slice selection, but it is not
as sharp a selection mechanism as the standard selective excitation step. In fact, this problem was
pointer out later by the authors and several methods to fix it were proposed in [10]. The most
recent paper on this method [19] still considered only 2D encoding. To the best of my knowledge,
no robust 3D encoding scheme with high spatial resolution has been implemented yet.

Experimental Results. Simulations and phantom images were demonstrated in several pa-
pers [10, 17, 18, 19]. In these experiments, the reference image was acquired using Fourier encoding,
excitation pulse profiles were computed off-line and used for SVD encoding of the next acquired
image. While the first paper [17] showed images with wrapping artifacts, one of the later papers [10]
demonstrated images with no visible artifacts. The group is currently working on hardware imple-
mentation of the method that will enable its testing in a real-time situation, as well as extending
this approach into 3D.
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Figure 5: Four images used in the experiments to quantify the relationship between the number of
encodes used for imaging and the reconstruction error.

Discussion. The speedup offered by this technique is inversely proportional to the number of
encodes used for image acquisition. On the other hand, the reconstruction error increases mono-
tonically as the number of encodes goes down. This section contains a discussion on the authors’
analysis of errors and the tests I performed on example brain MRI images to study the trade-off
between the error and the speedup.

The two types of errors in the presented technique, a truncation error and a projection error,
are caused by different factors and will be considered separately. The truncation error is caused by
using only a few principal components to encode the information about the estimated image S. If
S′ = S, the reconstruction error is equal to the truncation error

ēt(K) =

√√√√ 1
N2

∑
i

∑
j

(S(i, j) − S̃(i, j))2 =
1
N

√√√√ N∑
k=K+1

σ2
k. (46)

The authors reference extensive empirical evidence of fast convergence of the truncation error
from the field of image processing. However, the nature of the analysis commonly done in computer
vision and image processing using SVD is different from the presented technique. Typically, the
whole image is considered as a vector, and SVD is used to find principal components that span
the space of example images (many examples are usually available at this stage). Then the K
largest principal components are selected to reduce dimensionality of the representation. In this
case, truncation error ēt(K) represents the error of representation of the image examples using the
selected principal components. In fact, Cao and Levin [1] proposed using this approach for MRI.
They used information on the principal components of the medical image database to reduce the
number of phase encoding steps in the standard Fourier encoding. They did not modify the image
encoding scheme, but only tried to select “principal frequencies” from the Fourier basis.

In contrast, SVD MRI computes principal components of the space of the rows of S and uses a
subset of those for representing the rows. Truncation error ēt(K) is computed for a single image.
While there is strong empirical evidence that natural images span a much lower dimensional space
than their number of pixels (N2 dimensional space), this does not immediately imply that the
same is true about rows of a single image matrix (N dimensional space). One can argue that this
is true for any slowly varying function, but the quantitative analysis of the rate of convergence is
crucial in my opinion. It determines the relationship between the number of encodes, the error of
reconstruction and the speedup obtained as a result of applying this technique to MRI.

For this purpose, I ran experiments on several brain images, performing SVD and checking
truncation error for different numbers K of encodes. Fig. 5 shows four images used in this test.
They were obtained in the open magnet MRI system at Brigham and Women’s Hospital, Boston.
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The four images are of the same patient obtained during a tumor removal operation. These images
simulate the proposed application for SVD MRI fairly well. Fig. 6a shows average truncation
error ēt as a function of the number of principal components used for the image encoding for these
four images. The graphs are in log-scale. We can see that the relationship between the number of
significant bits lost in encoding and the number of encodes is almost linear.

The second type of error is what the authors call a projection error. If S′ is different from S
(which is a more interesting and practical case), the use of {vk}Kk=1 as an approximation of {v′k}Kk=1

introduces additional error into the reconstruction:

ē(K) =
1
N

√∑
i

∑
j

(S′(i, j) − [Ũ Ũ ′S′](i, j))2. (47)

This is related to a question extensively studied in linear algebra: how well can a linear subspace
basis represent vectors from another linear subspace? In [18], the authors proposed studying a
distribution of the sines of the principal angles between the two images to answer this question.
The nth principal angle is defined as the smallest angle between the nth basis vector in the first
subspace and any vector in the second subspace that is orthogonal the n − 1 previously selected
vectors. The sine of a principal angle determines the length of projection error for the corresponding
basis vector. Distribution of the sines of the principal angles between two subspaces is used in linear
algebra as a measure of similarity between two bases [4].

In [18], the authors empirically tested the technique in several simulated scenarios, using dif-
ferent estimated images S for reconstruction of the same real image S′ and varying the number of
encodes used for the reconstruction. The estimated images S used in the experiments ranged from a
slice in the same scan to white noise. The experiments demonstrated that as the number of encodes
increases, a fair quality reconstruction can be achieved. The sine distributions of principal angles
were constructed for these different scenarios as well. Similarly to the truncation error analysis, my
main concern is the tradeoff between the reconstruction error and the speedup. While [18] contains
a lot of qualitative data, it does not provide a quantitative analysis of this tradeoff. Fig 6b shows six
graphs obtained by using a different pair of images for every graph as S and S′ (the order between
the images was preserved, i.e., the images used as S proceeded S′). The graphs demonstrate that
actually the subspaces formed by the image rows vary quite a bit between any two different images.
To get a mean square error of less than 8 (loosing 3 out of 8 significant bits), one would have to
use approximately half of the encodes.

Cao and Levin published a critique of SVD MRI [2], claiming that no new objects will be
captured by this technique, especially if the changes correspond to the spatial frequencies not
contained in the original image. This claim is not entirely valid, as the principal component basis
can represent the entire sub-space, rather than a single image, and for medical images specifically,
the changes tend to occur at the boundaries of the objects, corresponding to spatial frequencies
contained in the original image. However, this paper raised a point of a similar nature to the
questions discussed above, namely, how well can the K largest principal components of one image
represent a new image? The space of the image rows is of such high dimensionality that even if
the images are perceptually close, their SVD bases can be significantly different. The test results
on the brain images shown in Fig 6b demonstrate this point clearly. One cannot expect a speedup
of more than 2 if fair quality images are desired. Similar tests have to be run for every type of
image before an optimal tradeoff between the reconstruction error and the speedup is determined.
Studying the statistics of the distribution from more than one image can help to capture the
principal components of the space better. Encodes derived from a set of images would be more
stable than the ones derived from a single image. Ideally, SVD MRI and the technique proposed by
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Figure 6: Reconstruction error. All graphs show an average sum-squares reconstruction error (log-
scale) as a function of the number of encodes used. The data is 8bit (256 grayscale levels). (a)
Truncation error ēt, S′ = S. (b) Reconstruction error ē, S′ 6= S.

Cao and Levin [1] should be combined to yield a significant improvement over the standard MRI
methods. The principal components of the space are to be derived based on more than one image,
and then used as a basis for encoding of the next image as proposed by the authors of SVD MRI.

3.2 SMASH Imaging

Most conventional MRI techniques assume that the spatial sensitivity of the receiving coil is uniform
over the entire FOV. In fact, a lot of effort goes into making such coils. Parallel imaging techniques
exploit spatially varying coil sensitivity to create the encoding pattern. Taking into account the
spatial distribution of the coil sensitivity C(x, y, z), Eq. (18) becomes

S(t) =
∫ ∫ ∫

Mxy(x, y, z, t)C(x, y, z) dx dy dz (48)

=
∫ ∫ ∫

M̂xy(x, y, z, t)C(x, y, z)ej(ω(x,y,z,t)t+ϕ(x,y,z,t)) dx dy dz,

and similarly to Eq. (25), for standard Fourier encoding schemes

S(t) =
∫ ∫

M̂xy(x, y, t)C(x, y)e−j(kxx+kyy) dx dy. (49)

Using K receiver coils with different sensitivity distributions yields K integrals of the magnetization
with different spatial patterns superimposed on the volume in one phase encoding step. This could
potentially lead to reduced imaging time or higher SNR, depending on how the measurements from
the receiver coils are combined together.

While many parallel techniques have been proposed over the years, most of them have not
been implemented in practice. SMASH is the first parallel technique that was demonstrated on
real images. SMASH modifies the phase encoding step of the standard Fourier encoding scheme
to sample several rows of k-space in a single iteration. Since this is done after the slice excitation
step, the analysis in the remainder of this section is essentially 2D.

K-space sampling. Let’s consider a coil whose sensitivity C(x, y) is a harmonic function of the
phase encoded coordinate:

Cm(x, y) = ejm∆kyy, (50)
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where m is the order of the harmonic, and ∆ky is the spacing between the rows in k-space (Fig. 3b).
In the phase encoding step that corresponds to row ky in k-space, such a coil will receive signal

Ŝ(t) =
∫ ∫

Mxy(x, y, t)Cm(x, y) dx dy

=
∫ ∫

M̂xy(x, y, t)ejm∆kyye−j(kxx+kyy) dx dy (51)

=
∫ ∫

M̂xy(x, y, t)e−j(kxx+(ky−m∆ky)y) dx dy = S(kx, ky −m∆ky),

is equal exactly to a line in k-space that is m lines away from the originally “targeted” line ky. If we
had M coils with sensitivity functions defined by Eq. (50) (m = 0,±1,±2, . . .), we could measure
M rows of k-space in a single phase-encoding step, achieving a speedup of M over the standard
imaging techniques. This process is illustrated in Fig. 7a.

Coil Sensitivity. Coil sensitivity is usually far from being a harmonic function. More often, a
Gaussian function is a better approximation for the coil sensitivity (Fig. 7b). The authors use
the least squares fit to approximate each harmonic as a linear combination of the real sensitivity
functions {Dk(x, y)}Kk=1:

C̃m(x, y) =
K∑
k=1

amk Dk(x, y). (52)

Eq. (49), which describes the signal formation process, is linear in the coil sensitivity function.
Therefore the images that would have been measured by the virtual coils with sensitivities {C̃m}

M

m=1

are linear combinations of the images measured by the real coils with weights amk . These “virtual
coils” can be combined according to Eq. (51) to reconstruct S.

To measure coil sensitivity functions, the authors originally used phantoms of uniform density.
The image of a uniform density phantom is equal to the Fourier transform of the sensitivity function,
as can be seen from Eq. (49). In addition to phantoms, the authors suggest using real images in
areas of relatively uniform proton density (e.g., spine) to calibrate the system. The advantage of
using real images is that the calibration is performed under conditions that are much closer to the
coil array configuration during image acquisition, and therefore the estimates approximate the real
sensitivity function more accurately.

To summarize, SMASH imaging consists of three steps. First, K coil sensitivity functions
{Dk(x, y)}Kk=1 are estimated from phantom images or images of biological tissue of relatively uniform
proton density. Then these functions are used to construct approximations {C̃m}

M

m=1 of the first
M harmonics over the FOV using linear combinations of the real sensitivity functions. These two
steps are performed once for a particular coil configuration. The third step is the imaging process
and the reconstruction itself. K images are acquired simultaneously using the original K coils, with
a step of M∆ky in the phase encoding direction. Since only every Mth row in k-space is measured,
the speedup factor is M . In every phase encoding iteration, M rows in the matrix S(kx, ky) are
reconstructed using virtual coils of sensitivities {C̃m}

M

m=1.

Implementation. A standard linear coil array of six elements was used for the experiments
reported in the first paper [12]. Later papers mention arrays of eight and ten coils for cardiac
imaging. No special hardware is needed for this method.

Interestingly enough, linear coil arrays have been used in MRI for many years to extend the
FOV and to increase SNR of the image. This approach was first proposed by Roemer et al. [11],
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Figure 7: SMASH MRI. (a) SMASH k-space sampling using three harmonics: rows of the same
color are sampled simultaneously. (b) Linear three-element coil array and simulated coil sensitivity
functions.

who suggested using multiple coils to obtain more signal per pixel and thus increase SNR. SMASH
uses the same coils to reduce acquisition time.

Experimental Results. This was the first fast MRI technique based on parallel imaging demon-
strated on real medical images. The first paper included torso images obtained with a speedup fac-
tor of two, which reduced the imaging time (and therefore breath-hold time) from 22sec to 11sec.
Speedup factors up to six have been reported.

Since then, the technique has been applied to cardiac imaging [14]. Cardiac imaging can benefit
greatly from imaging speedup, as many of the motion artifacts are eliminated by a faster imaging
technique. An imaging rate of 42slices/sec was demonstrated for cardiac imaging.

It has been demonstrated empirically that SMASH does not reduce SNR significantly compared
to the standard techniques. In most cases, SNR of SMASH images is reduced by less than 10%
relative to the standard image. And in cardiac imaging, the quality of the images is improved due
to removal of motion artifacts.

The main limiting factor for greater speedup is the physical dimensions of the coils. As more coils
are placed within the same FOV, the overlap of their sensitivity function increases, and therefore
the number of harmonics that can be represented reliably does not grow as fast as the number of
coils. The authors mention a speedup factor of 4 using six- and eight-element coils.

Discussion. This is a very promising technique that has already produced significant improve-
ments in cardiac imaging. Two factors are crucial for successful implementation of this method:
coil sensitivity estimation and approximation of the first harmonics using the sensitivity functions.

The authors discuss the problem of coil sensitivity estimation in details in the second paper [13].
The main concern is that the coil sensitivity changes between the experiments, as the arrays are
usually made to be flexible and fit the imaged body part. In order to overcome this problem,
the authors proposed and demonstrated a technique called AUTO-SMASH [8] that samples extra
rows in the k-space during image acquisition and estimates the coefficients amk from the extra data
obtained in the same configuration as the rest of the image.

The second important factor is the accuracy in approximating the harmonic sensitivity functions
of the virtual coils. The authors point out in [8, 13] that errors in this step cause reconstruction
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errors in the imaging step, because Eq. (51) is not satisfied perfectly. I propose a modification of
the method that eliminates reconstruction errors due to an imperfect fit of the harmonics. The
main idea is to combine the two steps into one estimation problem using the error in the images,
rather than the error in the sensitivity functions, as a measure of the reconstruction quality.

Since only the phase encoding direction is affected by the proposed modifications, the analysis
below is done in 1D. This simplifies the derivation, and the second dimension can be added later
by using the standard frequency encoding. Thus an image s is represented by a 1D vector of N
pixels, and a sensitivity function D can be thought of as a 1D function D(y). Fourier basis is a
complete basis that can be used to represent any sensitivity function:

Dk(y) =
∑
m

bkmCm(y). (53)

Theoretically, this sum is infinite, but in practice, the sensitivity function is estimated on a dis-
crete grid, and can therefore be represented as a finite vector. The highest spatial harmonics are
determined by the Nyquist theorem (see Section 2.2). Using matrix notation, we represent the coil
sensitivity functions as row vectors. In this notation,

D = BC, (54)

where D is a K×L matrix of K coil sensitivity vectors (L is the number of samples used to represent
the sensitivity functions), B is a K×L0 matrix of coefficients (L0 is the number of harmonics used
for representing the sensitivity functions, Nyquist defines the relationship between L and L0), and
C is a L0 × L matrix whose rows represent the first L0 harmonics. Since the imaging process is
linear, the images obtained by the coils are linear combinations of the images that would have been
obtained by the “virtual coils” with sensitivities that are equal to the pure harmonics:

ŝk(i) =
∑
m

bkms(i−m) =
∑
m

bkm[J i1J0s]m = bk(J i1J0)s, (55)

where J0 is a matrix that inverts the order of the elements in a vector, and J1 is a matrix that
shifts elements in a vector by one position. The output image values are equal to the convolution
of the row vector bk with the original image s shifted appropriately. Matrices J0 and J1 allow us to
represent this operation as matrix multiplication, rather than convolution. If we combine the row
vectors of the images into a single matrix Ŝ, its columns satisfy

ŝi = BJ i1J0s. (56)

Suppose a speedup factor of M is used. Then the real images are subsampled to N/M pixels,
defining K × N/M equations with N unknowns. If M ≤ K, this system is over-constrained and
can be solved using least squares fit:

sout =

(∑
i

(BJ i1J0)T (BJ i1J0)

)+∑
i

BJ i1J0ŝi, (57)

where X+ denotes a left pseudo inverse of matrix X:

X+X = I. (58)

Note that we minimize the error in the measured images Ŝ, rather than the error in the sensitivity
functions C̃.
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Figure 8: Artificial example. (a) Original image S in k-space. (b) Six sensitivity functions. (c)
Images obtained by these coils. Color coding is identical to (b). In this plot, the images are shown
at full resolution (no subsampling).
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Figure 9: SMASH reconstruction of the artificial example. (a) Least squares fit approximation
of the first 5 harmonic functions. The approximations are shown in blue, the true harmonics are
shown in red. (b) SMASH reconstruction, no speedup. (c) Speedup of 3. (d) Speedup of 5.

Setting up the problem this way allows us to analyze the reconstruction errors that occur in
SMASH imaging due to imperfect fit of the first M harmonics. Using the representation of Eq. (53),
Eq. (52) can be re-written as

C̃ = AD = ABC. (59)

The solution is the first M rows of B+ = (BT+)T , a right pseudo inverse of B:

BB+ = I. (60)

By performing this step, SMASH limits how much a particular real image can influence the recon-
structed image. A pixel in the reconstructed image is affected only by pixels in the real images
that are in in the M neighboring locations. Therefore, the influence of any pixel in the real image
is limited to the M neighborhood of the pixel position. In the modified approach, any pixel in the
real image is allowed to contribute to any pixel in the reconstructed image based on the values of
the sensitivity function at those two pixels.

To demonstrate this, I created a simple artificial example. Fig 8 shows the original image s
of N = 100 pixels in 1D k-space, six coil sensitivity functions and the images obtained by the
coils that were computed using L0 = 201 harmonics. Fig 9 shows SMASH reconstruction for
different speedup factors. One can see that the reconstruction errors grow as the speedup factor
M (subsampling of Ŝ) increases. For comparison, Fig 10a shows the reconstruction obtained from
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Figure 10: Reconstruction results using the direct method: (a) Speedup of 6, using 101 harmonics.
(b) Speedup of 7, using 101 harmonics. (c) Speedup of 6, using 21 harmonics. (d) Speedup of 6,
using 11 harmonics.

Eq. 57. The reconstruction was done for speedup factor M = 6, i.e., only every sixth element in
each ŝk was used for reconstruction. For all speedup factors up to 6, the reconstruction is precise.
Fig 10b shows the reconstruction for a speedup factor of 7. In this case, some of the original data
was missing in the images used for reconstruction. Since we only use 6 coils, we cannot expect to
get more information using 6 coils than 6 times the information from one coil. To simulate discrete
sensitivity measurements, Fig 10(c,d) show the reconstruction results based on fewer harmonics
than what was used for image simulation. The errors appear and grow as the sensitivity estimates
get worse. This reinforces the importance of measuring the coil sensitivity with high resolution
(and accuracy).

To summarize, the method proposed here can eliminate reconstruction errors due to an im-
perfect fit of harmonics. This could improve the overall quality of the image reconstruction. The
coil sensitivity estimation remains a very important and sensitive part of the algorithm. Better
sensitivity estimates will enable further improvements in both the quality of the images and the
imaging time, as the reconstruction algorithm will be able to extract more information from the
same amount of measurements using better knowledge of the coil sensitivities.

4 Finale

In addition to the general review of MRI principles, two fast MRI techniques have been discussed
in the report. They use different approaches to reducing the number of phase encoding steps, and
thus reducing the imaging time. While SVD MRI is at an earlier stage and has not been fully
implemented yet, SMASH is a mature project that has demonstrated significant improvements for
cardiac imaging. I summarized the most important characteristics of both techniques in Table 1.
The table includes major implementation features, as well as practical aspects of each method. The
original contribution in this report is the error analysis for both methods, which also resulted in a
modification of SMASH imaging with reduced reconstruction errors.
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Property SVD MRI SMASH

k-space
sampling

Linear combinations of rows that repre-
sent a few largest principal components.

Several adjacent rows simultaneously.

Implementation Special excitation pulses.
Can be used with any standard imaging
method, need to estimate the coil sensi-
tivity functions.

Hardware
Standard rf coils, but need to implement
real time pulse profile generation.

Standard linear coil array.

Speedup Depends on the number of encodes,
around 2.

Depends on the number of coils, 2-6.

Speedup
limiting factors

Complexity of the images, differences be-
tween the estimated image and the real
one.

Number of coils that fit along FOV and
their sensitivity overlap.

Experimental
results

Phantoms and simulations of medical im-
ages.

Phantoms and medical scans. Cardiac
imaging at 42frames/sec, 2D.

My
contribution

Quantitative analysis of the error rate of
convergence as a function the number of
encodes. Important for picking the opti-
mal number of encodes.

Improvement of the reconstruction qual-
ity by using higher order harmonics in
computing each coil’s contribution to the
resulting image.

Table 1: Summary of important characteristics of SVD MRI and SMASH.
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