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Abstract

We present a computational framework for image-based analysis and interpretation of statistical differences in anatomical shape

between populations. Applications of such analysis include understanding developmental and anatomical aspects of disorders when

comparing patients versus normal controls, studying morphological changes caused by aging, or even differences in normal anatomy,

for example, differences between genders. Once a quantitative description of organ shape is extracted from input images, the problem

of identifying differences between the two groups can be reduced to one of the classical questions in machine learning of constructing a

classifier function for assigning new examples to one of the two groups while making as few misclassifications as possible. The result-

ing classifier must be interpreted in terms of shape differences between the two groups back in the image domain. We demonstrate a

novel approach to such interpretation that allows us to argue about the identified shape differences in anatomically meaningful terms

of organ deformation. Given a classifier function in the feature space, we derive a deformation that corresponds to the differences

between the two classes while ignoring shape variability within each class. Based on this approach, we present a system for statistical

shape analysis using distance transforms for shape representation and the support vector machines learning algorithm for the optimal

classifier estimation and demonstrate it on artificially generated data sets, as well as real medical studies.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Anatomical shape, and its variation, remains an

important topic of medical research. Understanding
morphological changes caused by a particular disorder

can help to identify the time of onset of a disease, quan-

tify its development and potentially lead to better treat-

ment. Other examples of morphological studies include

investigating anatomical changes due to aging by com-

paring different age groups, and studies of anatomical

differences between genders. Originally, image-based

statistical studies of morphology were based on simple
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measurements of size, area and volume. Shape-based

analysis promises to provide much more detailed

descriptions of the anatomical changes due to the bio-

logical process of interest. In this paper, we present a
computational framework for performing statistical

comparison of populations based on complex shape

descriptors. The analysis considers the entire set of

shape features simultaneously and yields an assessment

of how much the shape of the organ differs between

the two populations, as well as a detailed description

of the identified differences.

Image-based shape analysis typically consists of three
main steps. First, quantitative measures of shape are ex-

tracted from each input image and are combined into a

feature vector that describes the input shape. The set of
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feature vectors is then used to construct either a genera-

tive model of shape variation within one population or a

discriminative model of shape differences between two

populations. This is followed by interpretation of the

statistical model in terms of the original shape and im-

age properties. Such interpretation is necessary for visu-
alization and improved understanding of detected shape

differences. In this section, we describe each of the three

stages of the analysis, provide a review of related work

and outline our approach.

1.1. Feature extraction

Shape analysis starts with extraction of shape fea-
tures from input images. A great number of shape

descriptors have been proposed for use in medical image

analysis. They can be classified into several broad fami-

lies, such as landmarks (Bookstein, 1997; Cootes et al.,

1992; Dryden and Mardia, 1998), dense surface meshes

(Brechbühler et al., 1995; Kelemen et al., 1998; Shenton

et al., 2002; Staib and Duncan, 1992; Székely et al.,

1996), skeleton-based representations (Bookstein, 1979;
Fritsch et al., 1994; Golland et al., 1999; Golland and

Grimson, 2000; Pizer et al., 1996), deformation fields

that define a warping of a standard template to a partic-

ular input shape (Christensen et al., 1993; Davatzikos

et al., 1996; Martin et al., 1994; Machado and Gee,

1998) and distance transforms that embed the outline

of the object in a higher dimensional distance function

over the image (Golland et al., 2000; Leventon et al.,
2000). The choice of shape representation depends cru-

cially on the application. For statistical modeling, the

two most important properties of a shape descriptor

are its sensitivity to noise in the input images and the

ease of registration of the input examples into a com-

mon coordinate frame. 1 These determine the amount

of noise in the training data, and therefore the quality

of the resulting statistical model. In this work, we choose
to use an existing approach based on distance trans-

forms for feature extraction, mainly because of its sim-

plicity and its smooth dependence on the noise in the

object�s boundary and its pose. The focus of this paper

is on the later steps of the analysis that produce an inter-

pretation of the statistical model, and not on the shape

representation per se. Section 6 offers a discussion on

employing other shape descriptors in conjunction with
the statistical analysis tools presented in this paper.

1.2. Statistical analysis

Once the features have been extracted from the

images, they are used to construct a statistical model
1 This step might include explicitly establishing correspondences

based on a discrete set of landmarks, or might produce implicit

correspondences across different subjects by aligning their anatomy.
of differences between the two groups of feature vectors.

One approach is to treat the features as independent var-

iables and to perform a simple hypothesis test on each

feature separately (Bookstein, 1997; Machado and

Gee, 1998; Yushkevich et al., 2001). If the features are

local (e.g., voxels or boundary segments), the interpreta-
tion of the resulting model becomes straightforward, as

we can create a mask in the image domain indicating the

features that were deemed significantly different in the

two groups. Unfortunately, it can be difficult to assess

the significance of the entire pattern from the individual

statistical tests. Moreover, if the features are global,

such as Fourier coefficients of the outline curve, the

interpretation of the detected differences becomes diffi-
cult. Alternatively, we can estimate a statistical model

based on the entire vectors and possible dependencies

among the features. In the generative case, this is typi-

cally done by applying principal component analysis

(PCA) to estimate the mean and the covariance struc-

ture of the training set (Cootes et al., 1992, 1999; Kele-

men et al., 1998). Earlier work on shape differences

between populations employed PCA for dimensionality
reduction, followed by training a simple (linear or quad-

ratic) classifier in the reduced space (Csernansky et al.,

1998; Martin et al., 1994). In this work, we use the sup-

port vector machines (SVMs) algorithm (Burges, 1998;

Vapnik, 1995, 1998) to estimate the optimal classifier

function directly in the original feature space while

explicitly controlling its complexity. In addition to the

theoretical reasons for its asymptotic optimality, Sup-
port Vector learning has been empirically demonstrated

to be robust to overfitting and to generalize well even for

small data sets. Furthermore, the algorithm provides a

principled way to explore a hierarchy of increasingly

complex classifier families, trading-off the training error

and the complexity of the model.

1.3. Model interpretation in the image domain

To be useful in the clinical context, the resulting sta-

tistical model (eigenmodes or a classifier function) must

be mapped back to the image domain, i.e., analyzed in

terms of the input shape or image properties in order

to generate a comprehensible description of the struc-

ture in the training data that was captured by the model.

In the generative case, this is often done by sampling the
implied Gaussian distribution with the mean and the

covariance estimated from the data or by varying one

principal component at a time. We previously used a

similar approach for interpretation of a linear classifier

by translating the original feature vector along the pro-

jection vector of the classifier function (Golland et al.,

1999). More commonly, however, the resulting classifier

is used only to establish statistical significance of mor-
phological differences between the classes, and the gen-

erative models based on PCA are employed for
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visualization of the shape variation within each group

(Csernansky et al., 1998; Gerig et al., 2001; Martin

et al., 1994), and approach that does not provide a direct

comparison of the populations based on the estimated

discriminative model.

1.4. Novel approach to model interpretation

In this paper, we demonstrate how to obtain a

description of shape differences captured by the classifier

function that was constructed in the analysis step. To

understand the differences implicitly represented by the

classification function, we study the function�s sensitivity
to changes in the input along different directions in the
feature space. For every input example, we solve for

the direction in the feature space that maximizes the

change in the classifiers value while introducing as little

irrelevant changes into the input vector as possible. We

derive the sensitivity analysis for a large family of

non-linear kernel-based classifiers. The results can be

represented in the image domain as deformations of

the original input shape, yielding both a quantitative
description of the morphological differences between

the classes and an intuitive visualization mechanism.

Thus, in addition to the statistical descriptors, such as

test error and confidence bounds, we also provide a

mechanism for explicit visual interpretation of the de-

tected shape variation between the two populations.

The remainder of this paper is organized as follows. In

the next section, we explain our choice of the distance
transforms for extracting shape features and introduce

a local parameterization of the distance transform space

which allows us to represent and visualize changes in the

distance transform as deformations of the corresponding

boundary surface. This is followed by a brief review of the

Support Vector learning and a derivation of the discrim-

inative direction as a description of differences between

two classes captured by the classification function. We
then combine shape description with statistical analysis

and demonstrate the technique on a simple artificial

example, as well as real medical studies. The paper con-

cludes with a discussion of the lessons learned from the

presented experiments and future research directions.
2 To make the descriptor truly differentiable up to the order n, we

would have to raise the distance values to the nth power. The distance

transform itself, while continuous, is not differentiable at the skeleton

points. However, we felt that it provided a reasonable first approx-

imation that allowed us to carry on.
2. Shape representation

We chose to work with volumetric descriptors in or-

der to avoid the implementation difficulties associated

with establishing a common coordinate frame on the

surface of such relatively smooth objects as subcortical

structures. Our main interest lay in further developing

the interpretation step of the analysis that provides a

representation and visualization of the statistical model,
leading to a choice of a very simple shape descriptor.

And since the analysis assumes that the representation
gives rise to an analytical function (i.e., one that changes

smoothly as we slightly perturb the original shape), we

augmented the binary segmentations to avoid disconti-

nuities at the boundaries of the objects. Distance trans-

form provided a simple linearization of the binary

segmentation and therefore was chosen in this work.
However, the analysis presented in the following sec-

tions is applicable to other representations of the shape,

as we briefly discuss in Section 6.

2.1. Background: distance transforms

A distance transform, or distance map, is a function

that for each point in the image (2D or 3D) is equal to
the shortest distance from that point to the boundary

of the object. The boundary is modeled implicitly as a

zero level-set of the distance transform. We use a signed

variant of the distance transform that negates the values

of the distance transform outside the object, thus elimi-

nating the singularity at the boundary. The distance

transform is a piece-wise linear function, whose singu-

larity ridges form the object�s skeleton (Blum, 1967;
Kimmel et al., 1995; Leymarie and Levine, 1992). 2 Dis-

tance transforms have been used in medical image anal-

ysis for extracting a medial axis representation of a

shape (Fritsch et al., 1994; Golland et al., 1999; Pizer

et al., 1996), and more recently, directly as a shape

descriptor (Golland et al., 2000, 2001; Golland and

Grimson, 2000; Leventon et al., 2000).

For shape studies, one would like to use a descriptor
that is invariant under a family of rigid transformations,

as the object�s pose relative to the rest of the anatomy

and the scanner coordinate frame should not affect its

shape characteristics. Many volumetric representations

are not invariant under rigid transformations, which is

typically mitigated by aligning all shapes, or bringing

them into a ‘‘canonical’’ pose, before constructing the

descriptors. We align the shapes using moments of the
distance transform inside the shape. In contrast to

the moments of shape that weigh all points equally,

the moments of the distance transform assign weights

proportionally to the distance from the boundary,

reflecting our belief that the interior points of the dis-

tance transform are estimated more reliably than the

points close to the boundary of the object. This proce-

dure is identical to the one used in (Leventon et al.,
2000) when constructing a model of shape variation to

guide a level-set segmentation. As we show later in this

section, the errors in the resulting numerical descriptors

are bounded by the errors in the outline introduced in
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the segmentation and the alignment steps. This makes

the distance transform an attractive choice for shape

representation, as it guarantees stability in the presence

of noise and allows rigorous analysis of errors in the

training data.

The alignment also establishes implicit correspond-
ences among locations in different input images. The

problem of alignment, based on either the global func-

tions of the shape such as moments, or distinct land-

marks, has not been solved satisfactorily in the field of

shape analysis. One of the main obstacles is that it is

not clear what the ‘‘correct correspondence’’ between

two examples of an anatomical shape is. Most methods

use rigid alignment, operating under the premise that
the non-rigid differences among the examples are exactly

the shape differences we would like to model and study.

Since we cannot assume perfect alignment, it is important

to understand the descriptor�s behavior under noise in the
object�s pose. Solving the alignment problem is outside

the scope of this paper, but wewill come back to this ques-

tion in Section 6 when discussing the sensitivity of the

analysis to shape representation. In our experience,
the choice of representation influences the accuracy of

the detection much more than the alignment procedure.

2.2. Local parameterization using surface meshes

The sensitivity analysis of the classifier function pre-

sented in the next section produces a direction of change

in the input shapes that represents the differences be-
tween the two populations. In order to visualize or apply

this change, or deformation, we must be able to move in

the space of the distance transforms along a specified

direction. However, the distance transforms do not form

a linear vector space, but rather lie on a manifold in the

higher dimensional space of real-valued images. This

manifold is fully determined by the local constraints

on the distance transform, but unfortunately, it does
not have a global parametric description, which makes

such local analysis difficult. We solve this problem by

using a local parameterization of the manifold around

any particular shape example based on the object�s sur-
face mesh. In a 3D image, a mesh contains nodes, edges

and faces. In a 2D image, a mesh simplifies to a simple

loop defined by its nodes and edges. We use the mesh

node locations as features, similarly to the active shape
models (Cootes et al., 1992, 1999). Ease of generative

modeling based on fixed graph topology makes surface

meshes an attractive choice for representing a family

of possible deformations of the original shape. Here,

we present the preliminary derivations that will allow

us to investigate a small neighborhood of shapes around

a particular input example; the usefulness of this analy-

sis will become obvious in Section 3.
Formally, let x be a feature vector formed by concat-

enating the distance transform values at all voxels in the
image. Let s be a vector of node displacements in the

surface mesh of the same object: si is the displacement

of node i along the normal to the boundary at that node.

Since moving nodes along the surface of the shape does

not change the shape, we will only consider changes in

the node positions along the normal to the boundary,
arbitrarily choosing the positive direction of the normal

vector to point outwards. Zero vector s corresponds to

the original shape and its distance map x. We will say

that a point on the boundary influences a particular loca-

tion in the volume if it is the closest boundary point to

that location. Obviously, the value of the distance trans-

form at any voxel is equal to the distance from the voxel

to the point(s) on the boundary that influence that voxel.
Most voxels in the volume are influenced by one bound-

ary point each, with the exception of the skeleton voxels.

The distance transform feature vector x can be thought

of as a union of two sub-vectors: vector x̂ that contains

the distance transform values at the non-skeleton voxels,

and vector �x that contains the distance transform values

at the skeleton voxels.

Given an infinitesimal displacement vector ds that de-
fines a deformation of the original shape, the value of

the distance transform in any non-skeleton voxel

changes by the amount equal to the displacement of

the boundary point that influences it, which implies a lo-

cal linear parameterization of the distance transform

manifold around the original point x̂:

dx̂ ¼ Jx ds; ð1Þ
where Jx is the ‘‘influence matrix’’ that contains exactly

one non-zero element in every row and is also the Jaco-

bian of the parameterization:

Jxði; jÞ ¼
oxi
osj

¼
1; j 2 SðiÞ;
0; otherwise;

�
ð2Þ

where S(i) is a set of mesh nodes that influence voxel i.

The change in the value of the distance transform in

any skeleton voxel is equal to the minimum of the

(signed) displacements of all the nodes that influence

that voxel:

d�xi ¼ min
j2SðiÞ

dsj; ð3Þ

exhibiting a sub-linear behavior bounded by the linear

model above.

Given an arbitrary infinitesimal displacement vector

dx of the original feature vector x, we can find the defor-

mation of the boundary that generates the closest on the

distance transform manifold to the resulting feature

vector:

ds � ðJT
xJxÞ�1JT

xdx̂; ð4Þ
where matrix ðJT

xJxÞ�1JT
x is the generalized inverse of the

Jacobian Jx. This projection operation is an approxima-

tion that ignores the value changes in the skeleton voxels
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and assumes that the deformation ds does not change

the set of skeleton voxels. We believe this is a reasonable

model for several reasons. First, the number of skele-

ton voxels is usually small compared to the total number

of voxels: in all our experiments, the number of skeleton

voxels was 4–6% of the total number of voxels in the
volume. In general, a skeleton of a shape is a surface

of one dimension lower than the dimensionality of the

image space (e.g., a skeleton of a 3D shape is a 2D sur-

face) and typically contains a negligible number of vox-

els compared to the shape itself. Second, the value

changes in these voxels are bounded by the linear model

and therefore cannot have extreme contributions to the

changes in the distance transform. And finally, we are
interested in the change of the values of the distance

transform voxels induced by the infinitesimal shape

deformation, not their membership in the skeleton set.

The approximation would become invalid if we were

interested in large deformations of the original shape,

as it would change not only the skeleton, but also the

influence sets of the non-skeleton voxels.

The resulting linear change in the distance transform
values at the non-skeleton voxels

dx̂o ¼ Jxds � JxðJT
xJxÞ�1JT

xdx̂ ð5Þ
can be extended to a full volume vector dxo by comput-

ing the change at the skeleton voxels as a minimum of

the displacements of the influencing nodes:

dxoi ¼
min
j2SðiÞ

dsj ; kSðiÞk > 1;

dx̂oi ; kSðiÞk ¼ 1:

(
ð6Þ

This operation projects the infinitesimal displacement

vector dx onto the distance transform manifold so that

the resulting change in the distance transform dxo de-

fines a valid deformation of the shape while minimizing

the distance between the two vectors. Fig. 1 illustrates

this operation for a simple shape example. We will use

this operation when analyzing changes in the original

shapes suggested by the statistical analysis in the next
section.

Before presenting the statistical analysis steps, let us

summarize the feature extraction procedure:

� example images are segmented into relevant

structures;
Fig. 1. Simple example of the distance transform parameterization. The imag

example of a displacement vector dx (b); the outline obtained by deforming

corresponding change in the distance transform dxo (c).
� these images are aligned by computing a distance

map, then computing the transformation that aligns

the moments of the maps;

� the aligned images are clipped to a common size;

� the aligned and clipped 3D distance transforms are

used as feature vectors, with individual voxels being
the vector components.
3. Statistical analysis

Once feature vectors have been extracted from the in-

put images, they are used to construct a classifier for dis-
tinguishing between the two example groups. We use the

SVMs learning algorithm to estimate the optimal classi-

fier function. The classifier function constructed during

the training phase implicitly encodes the differences in

data between the two classes and we are interested in

understanding the nature of the these differences. If ex-

pressed in terms of the original images or shapes, this

information can provide an insight into the anatomical
implications of detected shape differences. The analysis

presented in this section addresses exactly this problem.

We introduce and derive a discriminative direction at

every point in the feature space (e.g., the space of dis-

tance transforms) with respect to a given classifier.

Informally speaking, the discriminative direction tells

us how to change any input example to make it look

more like an example from another class without intro-
ducing any irrelevant changes that possibly make it

more similar to other examples from the same class. It

allows us to characterize shape differences captured by

the classifier and to express them as deformations of

the original shapes. And while we present the analysis

for the classifier functions trained using the SVM algo-

rithm, it can be extended to other classifiers that can

be expressed as analytical functions.

3.1. Background: statistical modeling using support vector

machines

Below, we state without proof the main facts on

SVMs that are necessary for derivation of our results.

The reader is referred to the original publications on
es show an example outline and its signed distance transform x (a); an

the original boundary by the estimated deformation vector ds and the
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SVMs (Burges, 1998; Vapnik, 1998) for more details on

the method.

Given a training set of l pairs fðxk; ykÞg
l
k¼1, where

xk 2 Rn are observations and yk 2 {�1,1} are corre-

sponding labels, the SVMs learning algorithm con-

structs a linear classifier

f ðxÞ ¼ hx � wi þ b ð7Þ
that maximizes the margin between the classes with re-

spect to the separating hyperplane. It can be shown that

the projection vector that maximizes the margin is equal

to a linear combination of the training examples,

w� ¼
Xl

k¼1

akykxk; ð8Þ

where the non-negative coefficients ak are determined by

solving a constrained quadratic optimization problem.
The vectors with non-zero coefficients are called support

vectors, as they define, or ‘‘support’’, the boundary. The

optimization problem of estimating the coefficients ak
and the resulting classifier

f ðxÞ ¼
Xl

k¼1

akykhx � xki þ b ð9Þ

can be expressed entirely in terms of dot products of the

training data, suggesting a natural extension of the tech-

nique to non-linear classifiers through use of kernel

functions.

Function K : Rn � Rn 7!R is called a kernel if there ex-
ists a mapping function WK : Rn 7!F from the original

space to an arbitrary higher dimensional space F (for

example, Rm; m P n) such that the dot products of im-

age vectors WK(x) in the space F can be computed by

applying K to the original vectors in Rn:

Kðu; vÞ ¼ hWKðuÞ �WKðvÞi 8u; v 2 Rn: ð10Þ
While mapping the points from the original space Rn to

the higher dimensional space F and performing compu-

tations explicitly in Fmight be prohibitive because of the
w

Ψ

(a) (b)

Fig. 2. Geometry of the kernel mapping and the discriminative
dimensionality of the space, we can compute certain

quantities in F without ever computing the mapping if

the answer depends only on dot products of the vectors

in F (Fig. 2(a)). Thus, substituting the values of the ker-

nel function instead of the dot products into the original

optimization problem yields a non-linear classifier

fKðxÞ ¼
Xl

k¼1

akykKðx; xkÞ þ b ð11Þ

that defines a separating hyperplane in the higher
dimensional space F whose normal is a linear combina-

tion of the support vector images WK(xk)�s:

w ¼
Xl

k¼1

akykWKðxkÞ: ð12Þ

However, the separating boundary in the original space

can be an arbitrarily complex surface defined by the ker-

nel function K and the support vector coefficients ak.
For the linear kernel K(u,v) = Æu Æ væ, the mapping WK

is the identity, and the classifier is a linear function in the

original space. Several non-linear kernels have been also

proposed. In this work, we use a family of Gaussian ra-
dial basis function (RBF) kernels

Kðu; vÞ ¼ e�ku�vk2=c; ð13Þ
where the parameter c determines the width of the ker-

nel. One of the important properties of this family of

classifiers is its locality: moving a support vector slightly
affects the separating boundary close to the vector, but

does not change it in regions distant from the vector.

Following the discussion in the previous section, this is

a desirable property in the presence of noise in the train-

ing examples.

In order to select an optimal setting of the kernel

parameters (e.g., the kernel width c for the Gaussian

RBF kernels), cross-validation techniques are often em-
ployed (Efron, 1982). In this work, we use leave-one-out

cross-validation to estimate the expected accuracy of the

resulting classifier and the traditional approach to esti-
d
x

x

e

w

F

n

dzz

R

Ψ

direction. (a) Kernel mapping, (b) discriminative direction.
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mating the confidence intervals based on the Law of

Large Numbers and De Moivre–Laplace approxima-

tion: with probability at least 1 � g

jR� R̂j 6 U�1 1� g
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̂ð1� R̂Þ

l

s
; ð14Þ

where R is the expected error of the trained classifier, R̂
is the cross-validation error and

UðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z x

0

e�t2=2 dt ð15Þ

is the standard error function.

3.2. Discriminative direction

Eqs. (11) and (12) imply that the classifier function
depends only on the projection of vector WK(x) onto

the vector w and it completely ignores the component

of WK(x) that is perpendicular to w. This suggests that

in order to create a displacement of WK(x) that corre-

sponds to the differences between the two classes, one

should change the vector�s projection onto w while keep-

ing its perpendicular component the same. In the linear

case, we can easily perform this operation, since we have
access to the image vectors, WK(x) = x. This is similar to

visualization techniques typically used in linear genera-

tive modeling, where the data variation is captured using

PCA, and new samples are generated by changing a sin-

gle principal component at a time. However, this ap-

proach is infeasible in the non-linear case, because we

do not have access to the image vectors WK(x)�s. Our

solution is to search for the direction around the feature
vector x in the original space that minimizes the diver-

gence of its image WK(x) from the direction of the pro-

jection vector w (Fig. 2(b)). We call it a discriminative

direction, as it represents the direction that affects the

output of the classifier while introducing as little irrele-

vant change as possible into the input vector. Note that

it might be impossible to move exactly along w as the

image vectors do not populate the entire space F, but
rather form a manifold of lower dimensionality.

Formally, as we move from x to x + dx in Rn, the im-

age vector in space F changes by

dz ¼ WKðxþ dxÞ �WKðxÞ; ð16Þ
creating a deviation from w:

e ¼ dz� hdz � wi
kwk

w

kwk ¼ dz� hdz � wi
hw � wi w: ð17Þ

Thus, the following constrained optimization prob-

lem defines the discriminative direction:

minimize EðdxÞ ¼ kek2 ¼ hdz � dzi � hdz � wi2

hw � wi ð18Þ

s:t: kdxk2 ¼ �: ð19Þ
Since the cost function depends only on dot products

of vectors in the space F, it can be computed using the

kernel function K. Substituting expressions for w and

dz from Eqs. (12) and (16), respectively, and using the

kernel function to evaluate dot products, we obtain

hw � wi ¼
X
k;m

akamykymKðxk; xmÞ; ð20Þ

hdz � wi ¼
X

k
akykðKðxþ dx; xkÞ � Kðx;xkÞÞ

¼
X

k
akyk

X
i

oKðu; vÞ
oui

���� u ¼ x
v ¼ xk

dxi ð21Þ

¼rfKðxÞdx; ð22Þ

hdz � dzi ¼Kðxþ dx; xþ dxÞ � 2Kðxþ dx; xÞ þ Kðx; xÞ

¼
X

i;j

o2Kðu; vÞ
ouiovj

���� u ¼ x
v ¼ x

dxi dxj ð23Þ

¼dxTHKðxÞdx; ð24Þ
where row-vector $fK(x) is the gradient of the classifier

function fK evaluated at x, and matrix HK(x) is one of

the (equivalent) off-diagonal quarters of the Hessian of

the kernel function K, evaluated at (x,x). The discrimi-

native direction is therefore defined by the following
optimization problem:

minimize EðdxÞ¼dxT HKðxÞ�kwk�2rf T
k ðxÞrfkðxÞ

� �
dx

ð25Þ
s:t: kdxk2¼�: ð26Þ

The solution is the eigenvector of matrix

QKðxÞ ¼ HKðxÞ � kwk�2rf T
k ðxÞrfkðxÞ ð27Þ

that corresponds to the smallest eigenvalue. Note that,

with the exception of the linear case, the matrix QK(x)

and its smallest eigenvector are not the same for differ-

ent points in the original space, and need to be estimated

for every input vector x. Furthermore, each solution de-

fines two opposite directions in the input space, corre-
sponding to the positive and the negative projections

onto w. We want to deform the input example towards

the opposite class and therefore assign the direction of

increasing function value to the examples with label

�1 and the direction of the decreasing function to the

examples with label 1.

3.2.1. Special cases: analytical solution

Obtaining a closed-form solution of this minimiza-

tion problem could be desired, or even necessary, if

the dimensionality of the feature space is high and com-

puting the smallest eigenvector is computationally

expensive. Here we show that an analytical solution ex-

ists for a large family of kernel functions, including the

linear kernel and the Gaussian RBF kernels we use in

this work.
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We observe that the second component of the right

hand side of Eq. (27) is a matrix of rank one whose only

non-zero eigenvalue is equal to

kwk�2krfkðxÞk2 ð28Þ
with the corresponding eigenvector rf T

k ðxÞ. The rest of

the eigenvectors span the null-space of the matrix

rf T
k ðxÞrfkðxÞ. Therefore, if the matrix HK(x) is a mul-

tiple of the identity matrix, HK(x) = cI, the smallest

eigenvector of matrix QK(x) is equal to the largest eigen-
vector of the matrix rf T

k ðxÞrfkðxÞ, and the discrimina-

tive direction is equal to the gradient of the classifier

function:

dx� ¼ rf T
k ðxÞ; ð29Þ

Eðdx�Þ ¼ c� kwk�2krf T
k ðxÞk

2
: ð30Þ

It is well known that to achieve the fastest change in

the value of a function, one should move along its gra-

dient, but in this case, the gradient also corresponds to

the direction that distinguishes between the two classes

while minimizing inter-class variability.

We can easily verify that both for the linear and,

more surprisingly, for the Gaussian RBF kernels we
use in this work, the matrix HK(x) is of the right form

to yield the solution outlined above. For the linear

kernel,

o2Kðu; vÞ
ouiovj

���� u ¼ x

v ¼ x

¼ dij; ð31Þ

and therefore HK(x) = I for all x. The discriminative

direction is defined as

dx� ¼ rf T
k ðxÞ ¼ w ¼

X
akykxk; ð32Þ

Eðdx�Þ ¼ 0: ð33Þ

This is not entirely surprising, as the classifier is a lin-

ear function in the original space and we can move pre-
cisely along w. For the Gaussian RBF kernels,

o
2Kðu; vÞ
ouiovj

���� u ¼ x

v ¼ x

¼ � 2

c
dij; ð34Þ

which yields a closed form solution for the discrimina-

tive direction:

dx� ¼ � 2

c

X
k

akyk e
�kx�xkk2

c ðx� xkÞ

¼
X
k

akykKðx; xkÞðx� xkÞ; ð35Þ

Eðdx�Þ ¼ 2

c
� kwk�2krf T

k ðxÞk
2
: ð36Þ
Unlike the linear case, we cannot achieve zero error,

and the discriminative direction is only an approxima-

tion. The exact solution is unattainable in this case, as

it has no corresponding direction in the original space.

To gain a better intuition about the solution pre-

sented above, let us consider the geometry of the prob-
lem. We perform the search in the original space by

considering all points on an infinitesimally small sphere

centered at the original input vector x. In the range

space of the mapping function WK, the images of points

x + dx form an ellipsoid defined by the quadratic form

dzT dz ¼ dxTHKðxÞdx: ð37Þ
For HK(x) � I, the ellipsoid becomes a sphere, all dz�s
are of the same length, and the minimum of error in

the displacement vector dz corresponds to the maximum
of the projection of dz onto w. Therefore, the discrimi-

native direction is parallel to the gradient of the classifier

function. If HK(x) is of any other form, the length of the

displacement vector dz changes as we vary dx, and the

minimum of the error in the displacement is not neces-

sarily aligned with the direction that maximizes the

projection.

Ideally, if we could access vectors in F directly, we
would move the input vector WK(x) along the projection

vector w and study the change in x introduced by this

process. However, we cannot explicitly manipulate ele-

ments of the space F, but must explore it through search

in the original space, effectively constraining the search

to the manifold of the image vectors WK(x). This corre-

sponds to projecting w onto the manifold and moving

along the projection vector. There are various ways to
perform such projection, and in this work we chose to

minimize the error between the approximation vector

and the exact solution. We also note that different meas-

ures (e.g., the length of the projection of the resulting

displacement vector onto w) might be more appropriate

for other applications.

3.3. Selecting inputs

Given any input example, we can compute the dis-

criminative direction that represents the differences be-

tween the two classes captured by the classifier in the

neighborhood of the example. But how should we

choose the input examples for which to compute the dis-

criminative direction? We argue that in order to study

the differences between the classes, one has to examine
the input vectors that are close to the separating bound-

ary, namely, the support vectors. Note that this ap-

proach is significantly different from generative

modeling, where a ‘‘typical’’ representative, often con-

structed by computing the mean of the training data,

is used for analysis and visualization (e.g., to compare

two different classes, one would compare their typical

representatives (Csernansky et al., 1998; Machado and



Fig. 3. Simple artificial study. Six example shapes from both classes are shown.
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Gee, 1998)). In the discriminative framework, we are

more interested in the examples that lie close to the

opposite class, as they define the differences between

the two classes and the optimal separating boundary.

Support vectors define a margin corridor whose

shape is determined by the kernel type used for training.

We can estimate the distance from any support vector to

the separating boundary by examining the gradient of
the classification function for that vector. A large gradi-

ent indicates that the support vector is close to the sep-

arating boundary and therefore can provide more

information on the spatial structure of the boundary.

This provides a natural heuristic for assigning impor-

tance weighting to different support vectors in the anal-

ysis of the discriminative direction.

To summarize, we presented an approach to quanti-
fying the classifier�s behavior with respect to small

changes in the input vectors, trying to answer the follow-

ing question: what changes would make the original in-

put look more like an example from the other class

without introducing irrelevant changes? We introduced

the notion of the discriminative direction, which corre-

sponds to the maximum changes in the classifier�s re-

sponse while minimizing irrelevant changes in the
input. In our application, this can be used to interpret

the differences between the two classes as deformations

of the original input shapes, as explained in the next

section.
3 We employ an artificial example in this section for illustration

purposes only, to demonstrate how the shape differences detected in

the training phase are expressed and visualized using the concept of

the discriminative direction. We chose such a simple shape to make the

visualization easier for the readers to interpret before we proceed to the

real medical studies.
4. System overview: a simple example

Before presenting the experimental results for the real

medical studies, we explain how the components of the

analysis described in the previous sections are combined

into a system. We will illustrate the steps of the algo-

rithm on a simple simulated shape study that contains

30 volumetric images of ellipsoidal shapes of varying

sizes. The width, height and thickness of the shapes were

sampled uniformly out of a ±10 voxel range centered at
20, 30 and 40 voxels, respectively. We randomly divided

the data set into two classes of 10 and 20 examples,

respectively, and added a spherical bump to the shapes

in the first class. The bump location was sampled out
of a ±3 voxel range centered on the side of the main

ellipsoid. 3 Fig. 3 illustrates both types of shapes.

Knowledge of the shape differences between the groups

in this simulated experiment makes it relatively easy to

assess the effectiveness of the analysis. Evaluation of

the results is more difficult in the real medical studies,

where the true shape differences, if they exist, are

unknown.

4.1. Feature extraction

For every input scan, we compute the distance trans-

form and use its moments to establish a new coordinate

system in the volume, placing the origin at the center of

mass and aligning the coordinate frame with the princi-

pal axes of inertia. The values of the distance transform
are then sampled along the new axes at uniform inter-

vals and are concatenated into a feature vector. This

step creates the training set fðxk; ykÞg
l
k¼1, where xk are

the feature vectors obtained by sampling the distance

transforms, and yk 2 {�1,1} are the corresponding la-

bels defining the membership in one of the two

populations.

4.2. Training a classifier

The training feature vectors and their labels are used

by the Support Vector Machines learning algorithm to

construct a classifier function f(x) for labeling new

examples. In each experiment, we trained a linear and

a Gaussian RBF classifier. To determine the best setting

of the kernel width c for the non-linear classifier, we sys-
tematically explore the range of possible values, and for

each setting of the parameter c, train a classifier and per-

form leave-one-out cross-validation to estimate its gen-

eralization performance. We then select the classifier

with the highest cross-validation accuracy.
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The shapes in our simple example were easily separa-

ble using a linear classification function, but we also

trained a non-linear classifier for comparison. Both clas-

sifiers separate the data perfectly. The cross-validation

accuracy is 100% as well.

4.3. From the classifier to shape differences

Once the classifier has been constructed, we proceed

to estimate the discriminative direction, which is equal

to the gradient of the classification function for both

the linear and the Gaussian kernels. We compute the

discriminative direction dx* at the support vectors iden-

tified in the training phase and use the magnitude of the
classifier gradient to rank the vectors� importance. The

next step is to compute the deformation of the support

vectors ds that corresponds to the discriminative direc-

tion dx* by projecting the vector dx* onto the space

of infinitesimal changes of the distance transform. Note

that while the gradient of the classifier function has an

analytical form, the corresponding deformation must

be computed individually for every shape using Eq. (4).
Fig. 4 shows the estimated deformation ds for the six

support vectors of the linear classifier. The color coding

is used to indicate the direction and the magnitude of the

deformation, changing from blue (inwards) to green (no

deformation) to red (outwards). The same colormap will

be used in all other figures depicting the discriminative

direction. The shape differences defined by the deforma-

tion ds are localized to the area of the bump. The sup-
port vectors are redundant, representing almost

identical deformations. We encountered similar redun-

dancy in all our experiments, even in the non-linear case.

We also note that the deformation of the boundary is

fairly smooth, even though we did not augment the

learning algorithm with any explicit information on

the type of dependencies or spatial variation in the fea-

tures. The resulting hypothesis of differences is consist-
ent with the smooth nature of the shape representation

we used in this work.
Fig. 4. Discriminative direction expressed as deformation ds for the three sup

each shape are shown. The color coding is used to indicate the direction an

green (no deformation) to red (outwards).
As discussed in Section 3.3, our approach of seeking

an explicit interpretation of the classifier function in

the original domain of the anatomical shape differs

from the more commonly used technique of identifying

the mean of the population as a representative shape

and visualizing the differences between the two means,
possibly adjusted for the covariance structure, as an

illustration of the differences between the two popula-

tions. In the case of linear classification, the discrimina-

tive direction is the same everywhere in the space of

input shapes, and our solution is essentially equivalent

to the traditional approach, as the discriminative direc-

tion can be displayed on the surface of the representa-

tive example from each population, such as the mean
shape. But once we accept the possibility that the sep-

arating boundary between the two populations can be

an arbitrarily complex surface in the feature space, it

behooves us to analyze the boundary and understand

what it represents in terms of the original shapes.

The resulting deformation might be dramatically differ-

ent in different parts of the space, which could lead us

to conclude that at least one of the populations is com-
posed of several distinct groups, or to attempt to find a

representation that yields a relatively flat separating

surface between the populations. However, this infor-

mation on the nature of shape differences cannot be

conveyed by the traditional approach that reduces such

differences to a single deformation between the popula-

tion means.

The surface-based representation of the shape differ-
ences between the two classes is significantly easier to

interpret than the volumetric results (not shown here).

This advantage becomes even more apparent when we

work with real anatomical shapes and use non-linear

classifiers that yield a different volumetric discriminative

direction for every support vector. In order to infer a

top-level description of shape differences from the

changes in the distance transform, one has to argue
about shape differences in a way that effectively reduces

the volumetric representation to a surface-based defor-
port vectors from each group in the simple shape study. Two views of

d the magnitude of the deformation, changing from blue (inwards) to



Table 1

Training and cross-validation accuracy (with 95% confidence intervals) for the hippocampus in schizophrenia study

Accuracy (%) Volume Shape, linear Shape, RBF

Right Left Right Left Right Left

Training 60.0 63.3 100 100 100 100

Cross-validation 60.0 ± 17.5 63.3 ± 17.2 53.3 ± 17.8 56.7 ± 17.6 76.7 ± 15.1 70.0 ± 16.3
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mation description. Our analysis presented in Section

2.2 effectively formalizes this line of argument.

4.4. Scaling

Volume and area measurements are extensively used

in statistical studies of anatomical organs. In morpho-

logical studies, volume differences might be indicative
of shape differences. However, using volume measure-

ments by themselves has been questioned repeatedly in

the medical research community because of wide varia-

tion in size among subjects. This problem is mitigated by

normalizing the volume measurements with respect to

some measure of the global scale (for example, the size

of the brain can be used to normalize the hippocampus

volume). Whether the scale is part of the object�s shape
is a controversy of its own. One could argue that scaling

the object uniformly does not change its shape. In this

work, we scale the shapes to the same volume. Such scal-

ing can be easily incorporated into the feature extraction

step. In the next section, unless specified otherwise, the

training shapes are normalized with respect to their

volume.
4 Note that the cross-validation accuracy for volume-based descrip-

tors is close to the training accuracy. Removing a single training

example can only affect the training result if the example is close to the

threshold, i.e., it is a support vector, and there could be only few such

vectors in the low-dimensional space. However, it is not surprising that

the training accuracy in shape-based experiments is 100%, as the space

is so high-dimensional that we would expect the data to be easily

separable.
5. Experimental results

In this section, we consider studies of two different

anatomical organs: the hippocampus–amygdala com-

plex in schizophrenia and corpus callosum in the first

episode affective disorder. The hippocampus study in-

cludes two separate studies, as we compare the right
and the left hippocampus separately.

5.1. Hippocampus in schizophrenia

In this study, we compared the shape of hippocam-

pus–amygdala complex using MRI scans of 15 schizo-

phrenia patients and 15 matched controls. In each

scan, the hippocampus–amygdala complex was manu-
ally segmented. Details on the subject selection and data

acquisition can be found in (Shenton et al., 1992). The

same paper reports statistically significant reduction in

the volume of the left hippocampus, which suggests that

shape differences might also be present in this study.

Table 1 contains the summary of performance esti-

mates for this study. In order to present and compare

the results of different experiments in a uniform fashion,
we first trained a classifier based on the volume measure-

ments of the structure. The standard t-test employed in

the volumetric studies can be used only if the feature

space is one-dimensional and is therefore not applicable

to the case of multi-dimensional shape descriptors.

Treating the one-dimensional volume descriptor simi-

larly to the shape descriptors allows us to compare them

directly. The confidence interval for the cross-validation
results were estimated for 95% confidence level

(g = 0.05) for all experiments in this work. Note that sta-

tistical significance does not necessarily mean perfect

separation: the volume-based leave-one-out cross-vali-

dation accuracy for the left hippocampus is 63.3%

(±17.2%). 4 By visually inspecting the shape of the hip-

pocampus, we could see no distinct features that would

guarantee 100% classification accuracy. This is common
in the medical studies, where the global anatomical

shape is similar in both groups, and the small deforma-

tions due to a particular disorder, if such exist, are of

interest.

While the volume-based differences are more promi-

nent in the left hippocampus in this study, the shape-

based performance estimates for the left hippocampus

are lower than those for its right counterpart. But since
we scaled the structures to an identical volume, thus sep-

arating shape from size, we would not expect the vol-

ume-based results and the shape-based finding to be

perfectly correlated. Here, we present the discriminative

direction for the best RBF classifier both for the right

and the left hippocampus, followed by the discussion

on both structures, on the significance of the findings

and the issues this experiment highlighted for the future
extensions of the current analysis framework.

5.1.1. Shape differences

Fig. 5 shows three support vectors from the normal

control group and the schizophrenia group. Four views

(front, center-out, back, outside-in) are shown for each

shape. These shapes were chosen from the list of the sup-

port vectors sorted in the descending order of the mag-



Fig. 5. Discriminative direction for the right hippocampus shown as deformations of three support vectors from the patient group. Four views of

each shape are shown (one row per subject). (a) Normal controls; (b) patients. The color coding is used to indicate the direction and the magnitude of

the deformation, changing from blue (inwards) to green (no deformation) to red (outwards).
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nitude of the classifier gradient. Similarly to the artificial

example in the previous section, the algorithm produces

several support vectors for the same type of deforma-
tion. We omit support vectors with very similar defor-

mations to the ones shown in the figures. As a result,

the shapes displayed in Fig. 5 are support vectors 1, 3

and 6 from the normal control group and support vec-

tors 1, 3 and 5 from the schizophrenia group.

We can see that the deformations identified by the

analysis are smooth and localized. Furthermore, the

protrusions are separated from indentations by areas
where no deformation is required. 5 We also note that
5 A series of small changes of opposite sign close to each other

would raise a concern that the structure captured by the classifier does

not correspond to the smooth way the anatomical shapes deform and

is induced by noise and errors in the boundary.
the support vectors from different classes define defor-

mations of very similar nature, but of opposite signs.

We believe that such pairs of support vectors ‘‘oppose
each other’’ across the separating boundary, but a more

precise definition and analysis of this notion has to be

developed before we can characterize it quantitatively.

A significant amount of deformation is localized in

the anterior region of the structure, which indicates that

the bulbous ‘‘head’’ of the amygdala is curved-in, or

tucked-in, relative to the main body in normal controls

more than in schizophrenia patients. This deformation is
prominent in the first two support vectors from each

group. In normal controls, there is a significant defor-

mation inward in the inner part of the amygdala and a

corresponding expansion on the outside part of it. The

second interesting shape difference is located in the pos-

terior part of the hippocampus and is represented by the
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third support vector in the figures. It seems that the

‘‘tail’’ is thinner and possibly shorter in schizophrenics

in the region of the shape space close to this support

vector.

Figs. 6 and 7 show the discriminative direction for the

left hippocampus as a deformation of the top support
vectors from the normal control group and the schizo-

phrenia group, respectively. The first two support vec-

tors in each group indicate that the posterior ‘‘tail’’ of

the structure is folded-in, or curved, in normal controls

more than in schizophrenics. In addition, the last three

support vectors contain a deformation in the anterior

part of the structure. The support vectors in the normal

control group contain a slight deformation inward and a
protrusion of a higher magnitude in the anterior part.

This deformation is of a similar nature for the three sup-

port vectors, but it is localized in different parts of the

bulbous head. Besides the obvious explanation that the

location of this deformation is not fixed in the popula-

tion, this could also correspond to a general enlargement

of the anterior part relative to the whole structure in

schizophrenics. Slight misalignments of the structures
in the feature extraction step can cause such size differ-

ences to be detected in different areas of the affected sur-

face. Since statistically significant volume reduction was

detected in the left hippocampus, this could mean that
Fig. 6. Discriminative direction for the left hippocampus shown as deformati

of each shape are shown (one row per subject). The color coding is used to i

from blue (inwards) to green (no deformation) to red (outwards).
the posterior part of the structure is affected by the vol-

ume reduction in a more significant way than the ante-

rior part.

5.1.2. Notes

This section demonstrates our technique on the real
medical data. We obtained a detailed description of

the shape differences between the schizophrenia group

and the normal control group expressed as deformations

of the example shapes in the two groups. While the med-

ical significance of these findings has to be further inves-

tigated, such visualizations can clearly facilitate

exploration of the shape differences in organs affected

by the disease.
Note that the shape differences found in the two hip-

pocampi are asymmetric. We considered the two struc-

tures independently of each other, but studying the

relationship between the two sides of the brain could

help us understand the effects of a disorder better. An

even higher cross-validation accuracy (87%) was re-

cently reported on the same data set in (Gerig et al.,

2001) based on the average distance between the aligned
surfaces of the left hippocampus and a mirror image of

the right hippocampus as an asymmetry measure.

Unfortunately, such global asymmetry measures are

too specific to be generally applicable, and furthermore,
ons of four support vectors from the normal control group. Four views

ndicate the direction and the magnitude of the deformation, changing



Fig. 7. Discriminative direction for the left hippocampus shown as deformations of four support vectors from the patient group. Four views of each

shape are shown (one row per subject). The color coding is used to indicate the direction and the magnitude of the deformation, changing from blue

(inwards) to green (no deformation) to red (outwards).
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they do not provide information on the details of the

shape differences. In this work, we concentrated on a
single structure at a time and provided the analysis

and the detailed interpretation of shape differences

based on general descriptors. The separation between

the classes could be improved by combining information

from different structures, up to building a description of

the differences for the entire sub-cortical region.

The results reported in this section indicate that the

training data set is too small to provide accurate esti-
mates of the generalization performance of the classifier.

Wide confidence intervals indicate that more data is

needed to guarantee that the resulting classifier and

the detected shape variation reflect the true differences

in the population. Unfortunately, the ground truth,

i.e., the true differences between the classes, or even

whether such differences exist, is not known for the med-

ical studies we are working with. Anatomical shape
analysis is a relatively new field, and not much is known

about the deformations caused by the disorders of inter-

est. We therefore believe that developing principled

algorithms for investigating morphology of the organs,

along with thorough data collection and analysis, can

have a significant impact on the field.

In the next section, we demonstrate our method on

the study of the corpus callosum shape in first episode
affective disorder patients. Our findings in the study

indicate differences between the groups, with a similar
concern about the size of the training data set as for

the hippocampus study.

5.2. Corpus callosum in affective disorder

Corpus callosum is a bundle of white matter fibers

connecting the two hemispheres of the brain. The two-

dimensional cross-section of the bundle is actually what
is studied in the medical research. To ensure consistency,

all the scans in the study have been aligned manually by

trained physicians so that the cross-section is indeed per-

pendicular to the bundle. For every scan in the study,

the physician drew three lines on the coronal view that,

based on pre-specified anatomical landmarks, defined

the best mid-sagittal slice, followed by the drawing of

three lines defining the mid-sagittal slice on the axial
view of the same scan. The scan was then rotated and

resampled using the least-squares fit to the specified lines

as a mid-sagittal slice and the AC-PC line as the normal

to the coronal direction. Further details on the data col-

lection and scan alignment can be found in (Frumin

et al., 2002). In this study, we compared 18 affective dis-

order patients with 20 normal controls. Table 2 summa-

rizes the performance estimates for the linear and the
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Gaussian RBF classification on this data set. The gap

between performance estimates for the linear and the

non-linear classification is not as wide as in the hippo-

campus study, but it is still substantial. The 95% confi-

dence interval for the linear classification touches the

50% baseline, while the confidence interval for the best
RBF classifier is well above it.

Fig. 8 shows the detected shape differences as defor-

mations of the first six support vectors from each group.

Since the shape of interest in this study is two-dimen-

sional, one view is sufficient to visualize the shape. The

colormap used in Fig. 8 is identical to the previous fig-

ures, but the color now indicates motion along the nor-
Table 2

Training and cross-validation accuracy (with 95% confidence intervals)

for the corpus callosum in the affective disorder study

Accuracy (%) Linear RBF

Train 100 100

Cross-validate 65.8 ± 15.0 73.7 ± 13.9

Fig. 8. Discriminative direction for corpus callosum in the affective disorder

(a) Normal controls; (b) patients. The color coding is used to indicate the

(inwards) to green (no deformation) to red (outwards).
mal to the 2D outline in the mid-sagittal plane. Thus

blue corresponds to a local ‘‘contraction’’ in the white

matter and red corresponds to the local ‘‘swelling’’. Sim-

ilarly to the hippocampus study, there is a lot of redun-

dancy in the deformation represented by the support

vectors. The most prominent difference captured by
the classifier is the deformation in the anterior part of

the structure (the left end of corpus callosum in the

images). We observe a significant amount of horizontal

expansion and vertical contraction in the anterior part

in the patient group and the deformation of the opposite

sign in the normal control group. The amount of defor-

mation varies across the shapes, but it is present in al-

most all of them. This deformation corresponds to the
anterior of the corpus callosum being ‘‘squashed’’ hori-

zontally and elongated vertically in the affective disorder

patients compared to the normal control group.

Vectors #2, #3 in the normal control group and vec-

tors #5, #6 in the patient group indicate that for some of

the cases, the width of the middle part of the corpus

callosum is wider in the affective disorder patient: there
study shown as deformations of six support vectors from each group.

direction and the magnitude of the deformation, changing from blue
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is a consistent contraction associated with the patient

examples and expansion associated with the normal

controls.

Vectors #2 and #3 in the patient group indicate some

amount of deformation in the posterior part of the

structure. Interestingly, this deformation is not repre-
sented at all in the normal control group. We noted ear-

lier that many support vectors have a matching

counterpart from the other class that represents a defor-

mation of opposite sign, but of very similar nature. This

is an example when there seems to be a ‘‘gap’’ in the

boundary support on the normal control side. This is

an interesting phenomenon that needs further investiga-

tion. Potentially, one might be able to construct
‘‘virtual’’ support vectors by artificially reflecting the

existing support vectors across the boundary.

To summarize, there is a consistent deformation of

the anterior part of the structure that corresponds to

horizontal narrowing and vertical extension of the ante-

rior part of the corpus callosum in the affective disorder

patients. In addition to that, the middle part is widened

in some of the patients compared to normal controls.
Similarly to the hippocampus study, more data will have

to be collected for validation of these results.
6. Discussion

In this section, we reflect on our experience with the

technique, unexpected problems that arose in the exper-
iments and the insights they provided into the nature of

the statistical shape analysis.

6.1. Morphological differences as deformations

The visualized shape differences contain detailed mor-

phological information which can be correlated with

functional information on the organ of interest, hope-
fully leading to a better understanding of the disease

and its development. The representation of morpholog-

ical differences as deformations of the original input

shapes is significantly more detailed, localized and

informative than the global measurements traditionally

used in the medical research, such as volume changes.

Note that the deformation maps can also be viewed as

maps of local volume changes. Deformation of the ob-
ject boundary causes local changes in the volume, and

the total change of the object volume is an integral of

the local deformation. Thus shape analysis represents

a natural extension of the commonly used volumetric

studies.

6.2. Detection and significance

The experiments highlighted the importance of statis-

tical testing of the resulting hypothesis. While the train-
ing algorithm will produce a classifier which can be

analyzed for discriminative direction for any two sets

of examples, the shape differences found in the training

set are useful for understanding the phenomenon in

question only if they accurately reflect the morphologi-

cal differences in the entire population. Therefore, accu-
rately estimating the expected performance of the

resulting classifier and the statistical significance of the

morphological variability it represents is a crucial com-

ponent of the analysis which requires further develop-

ment. The cross-validation procedure provides an

unbiased estimate of the expected accuracy of the result-

ing classifier function, but for a small number of exam-

ples, the variance of this estimator might lead to a
substantial difference in the estimated accuracy and the

true one. Furthermore, since we used the cross-

validation to select the kernel parameters, a more prin-

cipled approach would be to test the resulting settings

on a separate large hold-out set. As the number of avail-

able examples in out studies increases, such thorough

testing will allow a more accurate estimation of the ex-

pected accuracy. We are currently investigating an open
question of how to convert the testing accuracy esti-

mates to the statistical significance indicators that are

traditionally used in the clinical studies. The problem

arises since we are using a non-parametric approach of

fitting the classifier function to the training data without

assuming a strong model that would allow defining the

corresponding probability distribution under the null

hypothesis.

6.3. Shape representation

We also note that the training algorithm and the dis-

criminative direction can be used as a very effective tool

for investigating the power of different shape descriptors

for representing morphological variability. Our ap-

proach to classification and further interpretation of
the results allows us to compare the descriptors empiri-

cally based on their performance in shape-based statisti-

cal tests. More often than not, the shape analysis

methodology is presented in the literature as a mono-

lithic structure where the shape description and the sta-

tistical analysis are inseparable. In reality, these two

components can be improved independently of each

other. For example, we are currently applying the same
statistical analysis methodology to a different shape

descriptor on the same data sets (Timoner et al., 2002;

Timoner, 2003). In that work, we use the deformation

field produced as part of matching a template to each

of the input shapes as a shape descriptor. And while

the detected differences are qualitatively very similar to

the ones demonstrated in this study, the cross-validation

accuracy on the same data sets is improved substantially
by changing the representation. Moreover, we tested dif-

ferent alignment techniques, from moments of the shape
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to elastic registration (Timoner et al., 2002). Our empir-

ical experience suggests that the alignment procedure

has a smaller effect on the statistical indicators

(�2�3% improvement in the cross-validation accuracy)

than the choice of the representation (�15% improve-

ment in the cross-validation accuracy). We believe that
shape representation does and should depend on the or-

gan of interest (we would not expect the same descriptor

work equally well for the hippocampus and for the cor-

tical folds), while the statistical analysis can be easily

adapted to work with a large family of descriptors. It

can therefore be used as a test-bed for various shape

representations.

6.4. Studies with no shape differences found

While our method identified significant differences

between the groups in the experiments reported in the

previous sections, it failed to do so in several other stud-

ies. However, the experiments that failed to produce

statistically significant differences between the two

classes can still help us to better understand the prob-
lem and potentially improve the technique. In such

experiments, different statistical indicators, such as the

cross-validation accuracy, are very sensitive to the set-

tings of the kernel parameters, often predicting close

to 50% baseline classification accuracy on new exam-

ples. Alternatively, the predicted performance could be

higher than the baseline, but the confidence intervals

might be too wide to allow us to make any claims on
how well the differences detected in the training set rep-

resent the situation in the whole population. We have

observed some of these warning signs in a study of cor-

pus callosum in the first episode schizophrenia that we

performed in parallel with the reported corpus callosum

study in affective disorder (Frumin et al., 2002). We

compared the shape of the corpus callosum between

16 patients and 20 normal controls, with the best
cross-validation accuracy of 69.4 ± 15.0%. Moreover,

the cross-validation results were significantly more sen-

sitive to the settings of the kernel parameters than in the

studies reported above. And while we can visualize the

differences between the classes represented by the classi-

fier, our concern is that such low indicators of the gen-

eralized performance cast doubts in the robustness of

the detected differences.
Such experiments bring up an interesting general

question of when one should stop the search for shape

differences. Any morphological study starts with a

hypothesis of shape differences which is to be confirmed

by the empirical evidence from the collected images. We

could get statistically unsatisfactory results described

above either because our representation and analysis

cannot capture the shape differences present in the pop-
ulation, or because such differences do not exist. In the

former case, we can improve the technique for shape
representation and statistical analysis to include more

complex models of morphology and its variability and

collect more data to reduce the confidence intervals.

But the fundamental question remains, when should

we abandon the search for better analysis techniques

and more training data and declare that there are no dif-
ferences between the two populations? This problem is

common in many fields of research, as the current theo-

retical framework provides us only with tools for estab-

lishing the fact of existence of a particular phenomenon.

It is nearly impossible, at least with our current system

of reasoning, to prove the absence of the hypothesized

effect.
7. Conclusions

The focus of this paper is the interpretation of the

classifier function constructed to distinguish between

two populations. We present a novel technique for clas-

sifier analysis in terms of the input features in the gen-

eral context of the statistical learning theory and
instantiate the technique for shape analysis by establish-

ing a locally linear parameterization of the distance

transform space using deformations of the correspond-

ing boundary surface. Such parameterization yields a

representation of the shape differences captured by the

classifier as deformations of the input shapes relative

to the examples from the opposite class. We demon-

strate the method on both artificial examples that illus-
trate the approach and the real medical studies.

Experimental studies suggested several directions of fu-

ture work from refining the analysis technique for inter-

pretation of shape differences to collecting more data for

strengthening the statistical confidence indicators. The

analysis generates a detailed description of shape

changes due to diseases and can facilitate the studies

of the disorders through understanding of the induced
anatomical changes.
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