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Abstract. Analysis of medical images, especially the extraction of anatomical 
structures, is a critical component of many medical applications: surgical 
planning and navigation, and population studies of anatomical shapes for 
tracking disease progression are two primary examples. We summarize recent 
trends in segmentation and analysis of shapes, highlighting how different 
sources of information have been factored into current approaches. 

1   Background and Motivation 

The application of computer vision techniques to detailed anatomical information 
from volumetric medical imaging is changing medical practice, in areas ranging from 
surgery to clinical assessment. Automated reconstruction of precise patient-specific 
models of anatomic structures from medical images is becoming de rigeur for many 
surgical procedures, disease studies, and clinical evaluation of therapy effectiveness. 

For example, neurosurgeons often use navigational aids linked to labeled imagery 
in order to localize targets. Even the registration to the patient of unprocessed 
volumetric imagery, such as MRI, is of value to the surgeon.  It allows her to see 
beneath exposed surfaces to localize nearby structures, and to track instruments 
during minimally invasive procedures, providing faster navigation through narrow 
openings. But raw imagery is often insufficient, since it is often cluttered and filled 
with subtle boundaries. By segmenting out distinct anatomical structures, by co-
registering functional, biomechanical, or other information to those segmented 
structures, and by relating all that information to the patient's position, the surgeon's 
ability to visualize the entire surgical space is greatly enhanced, as is her ability to 
avoid critical structures while ensuring that targeted tissue is fully excised. This 
allows surgeons to execute surgeries more quickly, and with less impact on 
neighboring tissues. Hence, extracting anatomical models from imagery is a key 
element of emerging surgical techniques.  An example is shown in Figure 1. 

Understanding healthy development and disease progression also can benefit from 
computational methods that extract precise models of anatomical substructures from 
volumetric imagery. For example, in studies of schizophrenia accurately measuring 
shapes of cortical and subcortical structures and identifying significant differences in 
shape between diseased and normal populations provides an invaluable tool for 
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understanding the disease's progression.  This is particularly true when shapes of 
structures also can be tracked over time.  In Alzheimer's disease, understanding the 
relationship between changes in shape and volume of neural structures in correlation 
with other factors, such as genetic markers or distributions of functional information 
during specific mental tasks, may provide neuroscientists with computational tools for 
deepening the understanding of the disease, and its progression. Hence, extracting 
anatomical models from imagery, especially group statistical properties of those 
models, is an essential component of emerging neuroscience techniques. 

 

Fig. 1. Example of segmented images in surgical navigation. Segmented structures are overlaid 
on cross-sectional views of an MRI scan (bottom). The position of a surgical probe is tracked 
relative to the patient and the segmented scans. 

To enhance surgical practice, and to extend neuroscientific understanding of 
diseases, we need models of shapes, and thus we need segmentation algorithms to 
extract structures from multi-modal images. These methods have evolved in 
capability, as increasingly sophisticated models of anatomy and of the image 
formation process have been embedded within them. Early methods simply relied 
intensity thresholds to separate structures. These methods fail when confronted with 
bias fields in the imagery, so approaches were developed that either model the field as 
a smooth function (e.g., a polynomial) or employ non-parametric techniques, (e.g., 
Expectation Maximization (EM)), to account for image acquisition artifacts and to 
create statistical models of tissue response. Because individual voxel responses can be 
consistent with several tissue types, especially in the presence of noise, Markov 
Random Field (MRF) methods have been added to impose local continuity. They 
capture the notion that nearby labels for tissue type should influence the labeling of a 
particular voxel, since tissue is generally locally continuous. Atlas-based methods 
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capture more global constraints, especially the expected position and spatial extent of 
structures, by providing spatial templates in which to interpret voxel intensities, either 
by defining prior probabilities on tissue type as a function of position, or by defining 
initial positions for boundaries of structures, which are then warped to best match the 
intensity data. 

Structural measurements in morphological studies have seen a parallel refinement. 
Early methods simply recorded volumes of structures, measurements that have 
improved in specificity as segmentation methods enabled increasingly detailed and 
accurate delineation of the structures of interest. However, volume alone is often 
insufficient to detect changes in a structure or to differentiate different populations.  
Often a difference in structure between two distinct populations is localized in 
specific components of that structure; or the progression of a disease will result in 
variations in a particular component of a structure.  

 
 

Fig. 2. An example segmentation from a neurosurgical case. Thirty-one different brain structures 
have been segmented using MRF-based voxel classification methods. The goals of the proposed 
project include improving on such segmentation by adding shape constraints. While these 
segmentations are a good start, there are residual errors near subtle boundaries that would be 
improved by adding shape information. 

Thus, we believe that a natural next stage in the evolution of segmentation methods 
and associated measurements of structures is the incorporation of shape information 
into the process. To do this, we need to learn the typical shapes of structures and their 
statistical variation across normal populations. We believe that this information can 
be extracted from sets of training images, and that the resulting statistical distributions 
on shape can be used to guide segmentation of new images. Moreover, if we can 
capture shape distributions, we can use them as a comparative too: to identify 
differences in shape between populations or to track changes in shape with time. 

We have suggested that capturing statistics of shape can aid in segmenting new 
scans. One clear application of this tool is in surgical planning and guidance. By 
providing the surgeon with a detailed reconstruction of the anatomy, she can plan 
access to the operative site, and by registering the model to the actual position of the 
patient, she can track the position of surgical instruments relative to structures in the  
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Fig. 3. Visualization of the shape differences in the right hippocampus between the schizophrenia 
group and the normal controls captured by a discriminative model learned from example images. 
Using the learned classifier based on the two groups, one can examine the amount of deformation, 
from blue (moving inwards) to red (moving outwards) needed to shift a normal example towards 
the schizophrenia group, and vice versa. 

reconstructed model. Figure 2 shows an example segmentation of a neuroimage into 
31 structures derived using atlas-based segmentation, followed by a MRF label 
regularization. 

Shape based methods can provide more than just better segmentation, however. 
The shape analysis methods also may improve the quantitative assessment of 
anatomical development during disease progression. In particular, we can create 
shape-based classifiers, using machine learning tools applied to our shape 
distributions, to distinguish between different populations.  Such classifiers not only 
provide a mechanism for assigning new instances to the appropriate class, they can be 
used to determine what parts of the shape change in significant ways between the two 
classes, as illustrated in Figure 3 for a study of hippocampal shape in schizophrenia. 
The colormap indicates the amount of deformation required to make the normal 
hippocampus shown here be likely to come from the schizophrenia group with respect 
to the trained classifier function. Such visualization techniques allow one to isolate 
shape changes to key elements of a structure.  

2   Classes of Segmentation Methods 

Segmentation is a central component in many medical image analysis applications. It 
provides a fundamental basis for surgical planning, surgical navigation, analysis of 
disease progression, and therapy evaluation in essence by extracting geometrically 
accurate, patient-specific reconstructions of anatomical structures, segmentation 
provides a foundation for understanding structural correlates with disease and for 
visualizing and planning interventions. Unfortunately, segmentation is inherently 
under-constrained: the image intensity alone is often insufficient to delineate 
anatomical structures. Human operators employ their knowledge of anatomy when 
they perform segmentation; thus incorporating such knowledge into the automatic 
methods has improved the quality of segmentation results. However, the problem of 
accurate automatic segmentation of neuroimages is not yet fully solved, and we 
believe that building computational mechanisms for modeling anatomical shape and 
its variability will significantly improve segmentation accuracy. 
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To understand the role of shape in segmentation, we find it useful to group image 
segmentation methods into three broad classes: voxel classification, atlas-based 
segmentation, and boundary localization. The output of the first class of algorithms is 
a volume in which each voxel is labeled with an associated tissue class. The second 
group infers segmentation through registering a previously segmented image (atlas) to 
a new input image. Algorithms in the third class are based on deformable contours 
that are evolved to explain the novel image. 

2.1   Voxel Classification 

The original methods in this class used intensity information at a specific voxel to 
decide on the tissue type enclosed by that voxel [1,2,3,4]. These methods measured 
intensity responses for different tissue classes from training data (such as voxels 
selected by a user based on uniqueness of tissue type) and derived a set of optimal 
thresholds for assigning a tissue class to each voxel. This approach has been refined 
by our group and other researchers to deal with non-linear gain (bias) artifacts by 
simultaneously solving for a smooth spatially variant gain field and the identification 
of tissues at voxels [5,6,7]. To handle noise and uncertainty in the intensity 
information, the next group of algorithms in this class incorporated local geometric 
information by employing Markov Random Field (MRF) models [8,9]. The idea is to 
use information about tissue likelihoods at neighboring voxels to influence the 
assignment of a tissue label at a specific voxel.  The original formulation has been 
refined by several groups, including ours, to include local estimation of individual and 
pairwise priors from a set of scans previously segmented by an expert and registered 
together to form an atlas. This probabilistic atlas is then registered to a new scan to 
transform the likelihoods into appropriate locations [10,11].  

Algorithms in this class provide excellent quality segmentation for gross voxel 
assignment into three large classes: white matter, gray matter, and cerebrospinal fluid 
(CSF). The results can be used for analysis of overall (total volume) tissue changes in 
an individual or a population, but since the methods operate on an implicit 
representation of the anatomy as a discrete map of tissue labels, they do not produce 
an explicit representation of the structure boundaries. Instead, an additional step of 
extracting the boundary surfaces is required if we are to utilize the results of voxel 
classification in visualization for surgical planning and navigation, or population 
studies focusing on anatomical shape. Moreover, explicit shape models that involve 
global descriptors do not easily fit within this intrinsically local framework.  Recent 
work focuses on more detailed segmentation into individual subcortical structures and 
cortical parcelation by constructing location-specific Markov priors for every 
structure [10,12] effectively reducing the representation of the anatomy to the level of 
individual voxels and voxel neighborhoods. 

2.2   Atlas-Based Segmentation 

The methods in this class seek to induce a segmentation of a new scan by deforming a 
given segmented atlas image to the novel grayscale image and by applying the 
estimated transformation, or warp, to the label map of the atlas. The atlas generally 
includes at least one scan that has been carefully annotated, perhaps along with 
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likelihoods used to describe the variance seen across a population. If the atlas can be 
successfully matched to a novel scan, then all information present in the atlas, such as 
the tissue labels, is known with respect to the new image. The registration process is 
often reduced to an optimization of a weighted sum of two terms: the quality of the 
image fit, i.e., how well the atlas grayscale image matches the novel scan, and a 
penalty term on the amount of deformation between the atlas and the image. The 
deformations required to adequately match the atlas to novel scans are typically 
sufficiently high-dimensional, requiring a substantial amount of regularization. 
Examples of regularization methods include representing the deformation field as a 
sum of basis vectors, which allows for a coarse to fine solution [13,14], or 
representing the large deformation as a concatenation of a set of small deformations 
that more efficiently fit into the optimization framework [15] or employing a cascade 
of similarity groups beginning with rigid transformations, and subsequently allowing 
more flexible warps, such as piece-wise affine [16,17] or elastic [18,19]. Tissue 
deformation models can also assist in regularizing the deformation field when dealing 
with anatomy containing very different structures such as bone, muscle, and CSF 
[20,21]. Depending on the image properties, the quality of the fit is evaluated using 
image intensity, its gradient, texture measures, or discrete landmark points. A 
comprehensive survey of relevant registration techniques can be found in [22]. 

The algorithms in this class have also been used to map tissue class priors onto a 
new scan as an initialization step in voxel classification methods that further refine the 
initial segmentation by evoking MRF-based segmentation [10,11]. Like the voxel 
classification algorithms, these methods operate on the implicit voxel-based 
representation of anatomy and thus take little advantage of information on anatomical 
shape variability. They typically rely on the intensity information and the inherent 
geometric properties of the mapping (continuity, smoothness, etc.) to guide 
registration. Active Appearance Models [23,24] are a notable exception, as they 
achieve registration of a template to a novel image based on the shape variability 
model.  However, we group this particular method with the boundary detection 
algorithms, as it manipulates an explicit boundary representation both for shape 
modeling and for registration. 

2.3   Boundary Detection 

Rather than label each voxel by tissue type, the methods in this group search for 
boundaries between different tissue types. Standard methods use deformable contours, 
or ``snakes'' [25]: they evolve a contour (or a surface in 3D), typically by shrinking or 
expanding it in proportion to its local curvature, until it reaches a strong intensity 
boundary. Robust variants that use regularization to reduce the sensitivity to noise 
include balloons [26], t-snakes [27], and pedal snakes [28]. 

Boundary evolution techniques explicitly manipulate the object boundary surface 
and therefore lend themselves naturally to shape-based extensions. The Active Shape 
Models method [29,30] extracts a set of corresponding points on the outline of every 
training example and employs Principal Component Analysis (PCA) to build a linear 
model of variation, typically keeping only a few principal components. The resulting 
probabilistic model is then used to constrain the space of deformations of the 
``representative'' example (mean shape) when matching it to a new image. In addition 
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to the variance of point positions, Active Appearance Models [23,24] include the 
intensity distributions over the object. The model fitting stage searches over the eigen-
coefficients with the goal of matching the grayscale values of the model and the 
image. This framework has also been extended to multi-shape segmentation, where 
the statistical model captures shape of several structures, as well as their relative 
position and orientation, helping to overcome poor local intensity contrast [31]. 
Variants of this approach have been demonstrated that manipulate parametric 
representations of the boundary -- the Fourier descriptors in 2D [32, 33] and the 
spherical harmonics in 3D [34] -- by transferring the problem of modeling and 
template matching into the space of the representation coefficients instead of the 
boundary points. 

The level-set implementation of curve evolution [35,36] overcomes several 
shortcomings of the traditional snakes. It is more robust to initialization, allows 
topology changes, and is more stable numerically as it operates on the volumetric 
grid, thus eliminating the need for re-parameterization of the snake. Similarly to the 
original snakes, the level-set implementation can be augmented to include prior shape 
information in steering the evolving boundary towards the ``typical'' shape. Examples 
of application-specific shape constraints include coupled evolution of two surfaces for 
cortical segmentation [37], or topology preservation of the resulting surface through 
local constraints [38,39]. We demonstrated a level-set counterpart of the Active Shape 
Models by applying PCA to the signed distance transforms of the training examples 
and by introducing a term into the evolution dynamics that ``pulls'' the evolving 
distance transform towards the most likely shape under the probability distribution 
obtained through PCA [40,41,42]. A multi-shape segmentation based on this principle 
has recently been demonstrated by our and other groups [43,44]. 

3   Next Steps in Segmentation 

To summarize, segmentation methods have seen a series of developments, each stage 
incorporating additional information.  Thus, early methods simply relied on intensity 
thresholds to separate structures. These methods fail when confronted with bias fields 
in the imagery, so approaches were developed that either model the field as a smooth 
function or employ non-parametric techniques to account for image acquisition 
artifacts and to create statistical models of tissue response. Because individual voxel 
responses can be consistent with several tissue types, especially in the presence of 
noise, Markov Random Field (MRF) methods have been added to impose local 
continuity. They capture the notion that nearby labels for tissue type should influence 
the labeling of a particular voxel, since tissue is generally locally continuous. Atlas-
based methods capture more global constraints, especially the expected position and 
spatial extent of structures, by providing spatial templates in which to interpret voxel 
intensities, either by defining prior probabilities on tissue type as a function of 
position, or by defining initial positions for boundaries of structures, which are then 
warped to best match the intensity data.  Finally, template-based segmentation has 
served as a basis for most methods that incorporate prior shape information into 
segmentation. Both the original deformable contour methods and the more recent 
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level-set implementations have been augmented with probabilistic shape models that 
modify the evolution of the boundary.  

Although considerable progress has been made in creating sophisticated 
segmentation algorithms and in analyzing populations of segmented structures to 
capture statistical models of variation, important challenges remain. Key among these 
are as follows:  

• methods that robustly leverage shape information to enhance segmentation; 
• a demonstration that shape information significantly improves the quality of 

segmentation; 
• a demonstration that such improved segmentation provides an added value 

in surgical planning and navigation;  
• methods that capture statistical variations in distributions of shape 

information;  
• a demonstration that these statistical models can be used to create classifiers 

that distinguish between diseased and normal populations; 
• a demonstration that classifiers based on shape differences are more 

accurate than simple volumetric measures;  
• methods that use these classifiers to visualize differences in shapes of 

populations; and 
• using the results of the statistical analysis to find correlations between 

disease states and changes in shapes of structures. 
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