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Abstract

In this thesis, we present a system for visualizing hierarchical, multi-dimensional,
memory-intensive datasets. Specifically, we designed an interactive system to visual-
ize data collected by high-throughput microscopy and processed by CellProfiler, an
open-source system jointly developed by researchers at MIT CSAIL and the White-
head Institute.
A typical high-throughput microscopy experiment produces thousands of images, with
thousands of objects in each image. CellProfiler then measures hundreds of features
for each cell, nuclei, and cytoplasm. In contrast to previously demonstrated visual-
ization software, our system visualizes datasets that are on the order of hundreds of
gigabytes, datasets too large to store in physical memory. We also implement tools
to link the dataset to available resources such as online genetic databases and the
actual images acquired by the microscope. Finally, we demonstrate how the system
was used to highlight interesting genes for more detailed analysis in real biological
studies.

Thesis Supervisor: Polina Golland
Title: Assistant Professor, Department of Electrical Engineering and Computer Sci-
ence
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Chapter 1

Introduction

Biologists have been analyzing cells using microscopes to study cellular function for

centuries. Recent advances in automated microscopes have enabled biologists to ac-

quire thousands of high-resolution images, each representing a different gene knockout

experiment, in a relatively short amount of time. With the development of creative

new delivery techniques, full genome-scale RNAi-based screens can be performed in

a few days [15]. As shown in Figure 1-1, these high-throughput microscopy screens

require software to both analyze the images and visualization tools to explore the

results. CellProfiler, developed through the collaborative efforts between The White-

head Institute for Biomedical Research and MIT Computer Science and Artificial

Intelligence Laboratory (CSAIL), is an example of a system designed to quantify the

information captured in microscopy images [2]. CellProfiler examines each image and

stores the measurements in a database.

However, a bottleneck exists once the measurements are stored in a database.

Currently, there is no effective way to extract meaningful information from these

measurements. There is no system in place to visualize this information nor a way

to interface these measurements to other outside resources. Interactive, user-friendly,

visualization software is necessary to make these measurements meaningful and useful

to biologists for exploratory analysis of high-throughput data. Since this software is

intended for the average biologist to use, it is important that the system be available

on both the Windows and the Macintosh platforms and be functional on a personal
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Figure 1-1: Biologists acquire thousands of images using a high-throughput mi-
croscope. CellProfiler performs quantitative measurement based on the images.
CellVisualizer is then used to interactively explore and analyze the data.

computer with typical amounts of memory.

1.1 Applications of Visualization Software

Visualization of image and cell measurements from high-throughput experiments is

important for many reasons such as validating that the images were taken correctly

- the image may be corrupted for a variety of reasons, validating that the image seg-

mentation algorithms work as expected, excluding errors due to incorrectly measured

objects, verifying results for known controls, and allowing users to interactively ex-

plore the data, leading to the discovery of previously unknown gene functions, as well

as unexpected relationships in the data.

1.1.1 Validation of Images

The preparation of samples and the acquisition of images is an automated process.

The image data is often corrupted because of errors in these steps. Common errors

include the presence of fibers or, as shown in Figure 1-2, blobs of dye in the image.
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Figure 1-2: CellVisualizer allows scientists to check whether the measurements are
correct or due to errors in the sample preparation or imaging process. Here is an
example where a blob of dye occludes much of the image.

Such abnormalities distort the measurements in the image because they tend to be

much bigger and brighter than the cells being measured. Abnormalities in an image

not only occludes legitimate cells but typically also cause the segmentation algorithm

to fail, thereby producing incorrect measurements.

1.1.2 Validation of Segmentation Algorithms

Cell measurement data can also be inaccurate because the segmentation algorithm

may have performed poorly. Since automatic segmentation of cells remains a dif-

ficult problem [9], the users need to validate that interesting points in the dataset

correspond to actual cells in images and not to errors in a complex segmentation

algorithm. As before, a visualization tool that links to external resources, such as

images showing the cells outlined by the segmentation algorithm, provides a much

higher level of confidence in the quality of measurements.
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Figure 1-3: Scatterplots of the same experiment including and excluding errors such
as blobs of dye. We determine which datapoints have errors by opening images that
were measured to have significantly high actin intensity (x-axis) or large cell size
(y-axis) and checking to see if these images have any abnormalities. The blue lines
indicate which data points are above or below two standard deviations from the mean.

1.1.3 Excluding Artifacts

Since it is nearly impossible to produce a completely error-free dataset, it is important

to recognize and exclude errors when examining the data. It is possible that errors

in a handful of samples do not necessarily compromise the integrity of the entire

experiment. Allowing the users to identify and exclude errors and concentrate on the

data that has not been corrupted is crucial to the data discovery process. Figure 1-3

shows how we exclude images which are likely to be corrupted by artifacts since the

actin intensity in these images is abnormally high. The blue lines indicate

1.1.4 Verifying and Determining Gene Functionality

Ultimately, a visualization tool facilitates the data-exploration process for biologists.

The end goal of this process would be to either verify known gene functionality or

find interesting, previously unknown, gene functionalities. As we illustrate in the

later chapters, CellVisualizer facilitates this process by providing tools for interactive

browsing of the dataset.
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1.2 Challenges of High-Throughput Data Visual-

ization

The visualization and exploration of high-throughput microscopy data is a challenging

problem because datasets tend to be large and because the natural relationships

within these dataset must be captured.

The datasets are often tens of gigabytes, well outside the range of what can be

stored in physical memory of a typical computer. Further, it is beyond the human

capacity to synthesize and interpret such large amounts of data. A robust visualiza-

tion system would balance a user’s requirements of speed and completeness - allowing

users to visualize the entire dataset, albeit slowly, if required, and also allowing users

quick access to various summaries of the data.

The natural relationships within the dataset also make data visualization a chal-

lenging problem. The dataset that is being analyzed has two levels of hierarchical

data - “Per Image” data and “Per Object” data. The “Per Image” data stores mea-

surements and information common to a particular image, such as the total intensity

of the image, the mean cell area averaged across all cells in the image, and the gene

that corresponds to the image. The “Per Object” data stores measurements for each

object (i.e. cell) that was measured in each image, such as the area of each cell or

the intensity of the staining in each nucleus.

Moreover, biologists often run the experiments under nearly identical situations,

changing just one variable, such as which gene was co-knocked down. For example,

microscopy experiments can be done where the TOR gene is knocked down in the

first set of images and the PTEN gene is knocked down in the second set of images.

Since all other conditions are the same, it is worthwhile to consider the differences in

gene expression between the TOR knockdown experiment and the PTEN knockdown

experiment. In this case, the database would have two sets (TOR and PTEN) of two

levels (“Per Image” and “Per Object”) of hierarchical data.
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1.3 The CellVisualizer System

CellVisualizer is designed to be a complementary tool to CellProfiler and thus pri-

marily addresses the concerns of CellProfiler users. Still, the design was carefully

considered to be applicable to other problems that involve two levels of related, hi-

erarchical data. For example, it would be possible to use CellVisualizer to analyze

datasets of baseball players, on both the “Team” and “Player” level. CellVisual-

izer provides users with interactive visualization functionality necessary to quickly

and effectively explore data. Standard visualization tools are provided, including

histograms, scatter plots, and parallel coordinates.

In addition to the standard tools, CellVisualizer tightly integrates solutions for

the particular exploration approaches relevant to high-throughput microscopy data.

Users can build plots both on the image level and on the object (cell/nucleus) level.

Users can also plot measurements from different experiments, images, or cells on the

same figure to quickly compare results from these plots. When a user clicks on a

data point, the point is highlighted in every open plot. Relevant statistics of that

data point, the corresponding image, as well as gene information from a website of

the data point is shown on demand. Specific cell sampling techniques are available

to identify interesting genes.

We also designed CellVisualizer to be usable on any desktop, be it a Windows,

Macintosh, or Linux machine, with typical amounts of memory. CellVisualizer man-

ages the numerous constraints in plotting massive dataset on the order of several

tens of gigabytes. Users can store several highly used columns in the “in-memory”

database while still having access, albeit more slowly, to the rest of the data in the

database.

1.4 Roadmap

Chapter 2 begins with an overview of the problem and the requirements of a system

designed to analyze high-throughput microscopy data. Chapter 3 discusses common
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multi-dimensional visualization techniques and existing visualization software. Chap-

ter 4 describes our system, CellVisualizer, and its architecture in detail, especially

in the context of the previous chapters. Chapter 5 discusses possible extensions to

CellVisualizer, including a classification learner that has been incorporated into the

system. Chapter 6 presents case-studies of our system in use, and demonstrates how

CellVisualizer enables validation and discovery of important gene functions. Finally,

chapter 7 presents a discussion of the work.
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Chapter 2

Background: High-Throughput

Microscopy Analysis

To fully understand the visualization problem addressed in this work, it is important

to understand the dataset produced in high throughput microscopy experiments. This

chapter provides an overview of how these experiments are conducted and how we

would like to analyze the resulting image data.

2.1 Image Microscopy: Gathering the images

Using powerful RNA interference (RNAi) techniques developed in the past few years,

we are able to perform full genome-wide RNAi-based screens using both Drosophila

(fruit fly) and human cells. Figure 2.1 details one such procedure for preparing

samples and gathering images from microscopy experiments.

19



Figure 2-1: Schematic of proce-
dure for the fabrication, cell seed-
ing, and assaying of Drosophila
RNAi cell microarrays.[15] This
process allows biologists to per-
form full genome wide screens rel-
atively quickly.

This process is very powerful because we can print arrays that allow testing thou-

sands of gene knockdowns, even up to the full genome. We print these arrays by

synthesizing and purifying thousands of RNAi reagents, each carefully designed to

knockdown one particular gene. These reagents are then placed in different wells of

multiwell plates, or spots in a cell microarray. The microscope typically takes 1-6

images within each well, capturing hundreds of cells. Examining these images by

eye, or exploring cell measurement data acquired from the images can reveal how a

particular gene-presence or gene-knockdown affected cells.

2.2 CellProfiler: Quantifying the image results

CellProfiler is cell image analysis software developed jointly by the Sabatini Lab at the

Whitehead Institute and Polina Golland’s laboratory at MIT CSAIL [2]. CellProfiler

reads each image taken by the microscopy imager and measures various features

for each cell and/or sub-compartment (such as nuclei and cytoplasm), including the

area, location, shape, intensity, texture, and interesting measurements published in

20



the literature [2]. As CellProfiler is designed to measure many properties of cellular

objects, the number of measurements the system stores typically numbers in the

hundreds.

In addition to the individual measurements for each cellular object in the images,

there are measurements and information for each captured image. Such “Per Image”

information includes unique gene and website identifiers for each image, the location

of the actual image files that produced the measurements, and certain numerical

values measured by CellProfiler, such as the average intensity of the DNA staining

across the image.

2.2.1 The Data in Detail

As mentioned in Chapter 1, multiple slides are often imaged under nearly identical

conditions while manipulating parameters on the image set level, such as knocking

down different genes in the entire image set. That is, one particular gene is knocked

down in all images of an image set in addition to specific genes being knocked down

in each image. In such an experiment, there is a set of slides corresponding to each

gene knockdown, and the conditions in image n of one set of slides is identical (ex-

cept for the gene knockdown) to the conditions in image n of another set of slides.

Furthermore, to ensure the integrity and reproducibility of the data, the knockdowns

are often replicated several times. For example, in a recent experiment at the White-

head, image sets 1-3 knocked down the GFP protein, negative control image sets 4-6

knocked down the PTEN protein, image sets 7-9 the TSC1 protein, and image sets

10-12 the TSC2 protein. This type of experiment elucidates how the knockdown of

one gene affects cellular phenotypes compared to the knockdown of another gene.

This type of experiment creates one “Per Image” table and one “Per Object”

table for each gene knockdown image set in the database. In the example described

above, there are 12 distinct “Per Image” and 12 distinct “Per Object” tables. The

database structure is identical in each of the “Per Image” and “Per Object” tables.

A partial schema of one such experiment is shown in Figure 2-2. It is important to

note that the number of rows is identical in each of the “Per Image” tables - each row
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Figure 2-2: Partial schema of the Fly203 database.

captures measurements for a particular image and each image set captures the same

experimental conditions and thus the same number of images. On the other hand,

the number of rows in each “Per Object” table varies for each image set because the

number of rows depends on how many objects were recognized in each image within

the image set.

Finally, to appreciate the magnitude of the dataset that the visualization system

must handle, let’s examine a sample dataset. The NIRHT dataset is made up of

43,000 images, with an average about 200 cellular objects for each image. In total,

CellProfiler stored 468 measurements for each of these 7,500,000 objects. Since each

of these measurements is stored as a float (4-bytes) in a database, the dataset we are

measuring is over 14 gigabytes.

2.3 Visualization Requirements

The most fundamental requirement of any data visualization and exploration tool is

the ability to plot the data in a variety of different ways. Histograms and scatterplots

are among the most basic and useful ways to plot data. Additionally, since every
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measurement in a “Per Image” table is produced from a single image and every

measurement in a “Per Object” table is produced from a single cellular object, it is

important to link each of the measurements back to the image or object that it came

from.

Linking to Images

One of the most important requirements for a visualization system designed for high-

throughput microscopy experiments is the ability to view the actual images that were

acquired by the imager. It is typical in these experiments for multiple images to

be collected - one image may correspond to nuclei staining, another image to cell

staining, and yet another image to an additional protein of interest. After analyzing

and extracting measurements from these images, CellProfiler stores the path and

filenames in the “Per Image” table of the database. It is necessary to be able to

retrieve these images and confirm by eye the results of segmentation and measurement

steps performed by CellProfiler.

In addition to storing the path and filename information for the images, CellPro-

filer also stores where in each image every object it measures is located in the “Per

Object” tables. This information can be used to locate a specific cell/nucleus in the

dataset.

Linking to Internet Resources

It is also important to leverage the power of the Internet by linking experiments

to available gene databases and look up known information about each gene. For

example, FlyBase is a comprehensive database for information on the genetics and

molecular biology of Drosophila[6]. Similar databases exist on the Internet for other

genomes.
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Chapter 3

Background: Common

Multi-Dimensional Visualization

Techniques and Software Systems

There has been a lot of research in the visualization of multi-dimensional datasets.

The challenge is to present multiple dimensions on a computer screen, a two-dimensional

surface, in a way that is easily comprehensible. This challenge becomes even more

difficult when dealing with massive datasets, as in the case of some high-throughput

experiments, because the computer screen is limited by the number of pixels avail-

able. In this chapter, we discuss existing techniques for displaying and exploring

multi-dimensional datasets and some available software systems.

3.1 High-Dimensional Visualization

In this section we discuss two methods for displaying and exploring multi-dimensional

data on a two-dimensional computer screen: brushing and parallel coordinates.

Brushing

First described by researchers Richard A. Brewer and William S. Cleveland at Bell

Laboratories[1], brushing is the ability to allow the user to move a region (a brush)
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around the data display to highlight groups of data points. When multiple plots

of the same dataset are open at the same time, the brushing of points in one plot

highlights the corresponding subset of points in all the other plots. This technique

allows the user to more easily understand data and see relationships across multiple

dimensions when the data has a large number of attributes or items, when the data

spans multiple tables or data types, or when it is natural to analyze different parts of

the data using different views. We extend the concept of brushing in CellVisualizer so

when users highlight a point that corresponds to one particular image, all points that

correspond to similar experimental conditions would also be highlighted regardless of

what table the data comes from.

Multi-Dimensional Plots

There have been a lot of developments over the past twenty years in viewing multiple

dimensions on a 2-dimensional output. One common approach is to use color/shape to

visualization additional dimensions in a simple two-dimensional scatterplot. However,

other techniques must be used to visualize more than 3 or 4 dimensions. The most

notable is parallel coordinates, proposed by Inselberg in 1981, where all axes are

parallel to another and equally spaced apart [7]. By drawing axes parallel to each

other, one can represent multi-dimensional points. CellVisualizer users are able to

visualize several dimensions at the same time using the parallel coordinates.

3.2 Available Tools

As part of this work, we researched currently available software systems to determine

the viability of their use in the exploration of high-throughput microscopy data.

3.2.1 Commercially Available Tools

The simplest way to analyze the data is to export the measurements into an Excel

spreadsheet. Excel’s charting tools allow users to graph histograms and scatterplots

of the measurements. Users can also generate hyperlinks using Excel. By copying and
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pasting gene information to a separate column, gene information can be hyperlinked

from a spreadsheet to known gene databases available on the Internet.

Figure 3-1: Researchers at the Whitehead initially explored the data using Excel
spreadsheets.

Although Excel is a very powerful data analysis tool, there are several limitations

when using it for interactive data visualization. Users cannot truly interact with

their data - it takes a long of time to generate the graphs. Changing axes, gating

(selecting on a particular subset of the original dataset), and finding information

about a selected point is tedious and time-consuming. Another shortcoming in the

current version of Excel are the limits on the number of rows and columns we can

view. Finally, hierarchical data is not linked. “Per Image” information cannot be

presented alongside “Per Object” data because it is not possible for Excel to know

the links between the information. One way to bypass this particular limitation in

Excel is to import all the data into an Microsoft Access database, create links, and

then copy the generated datapoints back into Excel and plot this information. Again,

it is easy to see why such a process is not conducive to interactive data exploration.

Spotfire[13] is one of the most popular commercial visualization software available

for high-dimensional visualization. The visualization tools in Spotfire are impressive
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yet there are several critical shortcomings when analyzing our data. Spotfire has the

ability to visualize information stored on a database but its mechanism for doing this

is to load all the data into memory. Since the amount of memory on a typical computer

is typically less than 2 GB, it is impossible to import our entire NIRHT dataset into

memory. Exceptionally large datasets (1,000,000 records or more) are cumbersome,

because they take a long time to load, require a lot of memory, and do not respond

instantly to queries [5]. One option that Spotfire users have is to sample the database

[5]. This solution partially suffices for some of our exploratory purposes since we are

usually looking for general trends in the dataset as opposed to a single outlier cell out

of the 7 different million cells. Unfortunately, there are times when we would like to

consider the entire dataset, such as when we want to know how many objects match

a particular phenotype in each image. Another disadvantage of Spotfire is that there

is no way to represent the inherently hierarchical nature of our dataset. Like Excel, it

does not allow us to link the top-level “Per Image” information to the lower-level “Per

Object” information. Since Spotfire provides the ability to aggregate information in

a dataset, one workaround would be to redundantly copy all the top-level data for all

the entries in the lower-level. While possibly useful in smaller datasets, this approach

is inadequate because the amount of redundant information being copied will multiple

hundreds of gigabytes worth of information. The final limitation of SpotFire is the

cost. A one year Spotfire license costs thousands of dollars; the power of having free,

open-source software to compute quantitative measurements, such as CellProfiler, is

diminished if it costs thousands of dollars to view the results.

Other commercially available tools include software that come bundled with robotic

microscopes, e.g., Cellomics [3]. There are two main problems with such software.

Annual licensing fees costs tens of thousands of dollars. Bundled software often only

works for images produced by the corresponding imager. Not only does this limit

the type of experiments we can run to those that conform to the specifications of

the imager, but it also does not allow us to leverage new analysis tools, such as

CellProfiler.
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3.2.2 Publicly Available Tools

There are several publicly available tools for visualizing multi-dimensional data; GGobi

and VisDB are two such tools. The capabilities of these systems tend to be limited and

lack functionalities essential for viewing and analyzing high-throughput microscopy

data.

GGobi is the most well-known open source multi-dimensional data visualization

system available. GGobi supports several types of plots: scatterplots, parallel coordi-

nate plots, scatterplot matrices, and time-series plots [14], as shown in Figure 3-2. It

also supports interactivity between several plots by providing “brushing” capabilities.

Though GGobi provides the basic tools for viewing any general multi-dimensional

data, it doesn’t have some of the functionality helpful for the exploration of biological

data. There is no way to extract and display the hierarchical nature of the data, nor

to compare experiments of the same gene against each other, nor to group the data

in a meaningful way. GGobi does not provide interaction with images or available

gene databases. In addition, GGobi has the same memory limitations as SpotFire;

data must be loaded completely into the memory before it is visualized. Since users

cannot predict ahead of time which measurements will be useful when exploring the

data, confining the users to the limitations of system memory inhibits flexibility.

VisDB [10] represents a class of freely available research tools. Such tools have

been developed more to serve as experimental tools to help computer scientists eval-

uate the effectiveness of certain visualization techniques rather than to serve the

end-user. Typically they have limitations such as highly specific data formats or

particular platforms. VisDB, for example, works only on Linux/HP. Though useful

in benchmarking of visualization analysis, such tools have limited practical use for

researchers interested mainly in data exploration.

To summarize, though there exists both open-source and commercial software that

allow users to visualize multi-dimensional data, the available systems do not pro-

vide all the functionality necessary to adequately explore the datasets produced by
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Figure 3-2: GGobi is an open-source multi-dimensional visualization tool. Scatter-
plots, bar charts, and parallel coordinates are some of the types of charts that can be
plotted. It also includes interactive capabilities such as brushing.

CellProfiler.
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Chapter 4

The CellVisualizer System

This chapter discusses the details of the CellVisualizer system and explains the design

choices for the internal structures and the user interface.

4.1 Overview

The CellVisualizer system is designed to plot two levels of hierarchical data. In high-

throughput microscopy screens, the two levels of data are “Per Image” measurements

and “Per Object” measurements.

All the “Per Image” measurements are stored as columns in a “Per Image” table;

each row in the “Per Image” table corresponds to one particular image. Each row is

uniquely identified by its ImageNumber. In addition to the ImageNumber and the

measurements, each row also contains auxiliary information such as where the images

taken by the microscope reside in the file system.

The “Per Object” table contains all the data for individual cellular objects. The

unique identifier in the “Per Object” table is the ImageNumber/ObjectNumber pair.

As in the “Per Image” table, the columns in the “Per Object” table hold the mea-

surements and each row corresponds to one cellular object.

High-throughput microscopy screens are often replicated several times to ensure

the integrity of the data. As explained in section 2.2.1, experimental conditions may

also be altered slightly to test how cells react when one factor changes; one particular

30



gene, such as PTEN, may be knocked down in every single image in that screen. In

these cases, there would be several “Per Image” and “Per Object” tables, one “Per

Image” and one “Per Object” table for each screen. Since experimental conditions

are unchanged (except for the gene that is knocked down everywhere), the gene that

is knocked down in image n in one screen would be the same gene knocked down in

image n in every other screen.

Programming Language

CellVisualizer is intended to be a software tool used to visualize high-throughput mi-

croscopy data. Since scientists interested in high-throughput data use both Windows

and Macintosh, CellVisualizer is designed with cross-platform operability in mind.

To achieve this goal, CellVisualizer is written in Java.

4.2 Available Plots

Users can plot four different types of plots using CellVisualizer: histograms, scat-

terplots, 2-D color histograms, and parallel coordinates. Since there are hundreds of

possible measurements to plot and these plots are only capable of displaying a handful

of these measurements at one time, users must select which measurements they are

interested in viewing when selecting a particular plot.

Histograms

Histograms are useful for viewing the distribution of one particular measurement. In

Figure 4-1, we show a histogram of all the measurement “Mean Cell AreaShape Area”

in the “Per Image” table. The blue line indicates what a gaussian normal distribution

looks like for the histogram. We can see that this measurement seems to be normally

distributed across all the different images in the experiment.
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Scatterplots

Scatterplots are useful for viewing two measurements against each other. One lim-

itation of scatterplots is that the data points occlude each other when the dataset

becomes too large. Scatterplots are most useful for “Per Image” plots where the

number of datapoints is in the other of thousands. We plot the Average Nuclei Area

against the Average Nuclei DNA intensity in Figure 4-1.

2-D Histograms

When there is a large number (on the order of hundreds of thousands or more) of

data points, 2-D color histograms are the best plot to view two measurements against

each other. In this case, every pixel represents a “bin” and the number of objects

in the “bin” is indicated by the color of the bin. 2-D histograms are useful for

plotting “Per Object” measurements because each table contains millions of “Per

Object” measurements. In Figure 4-1, we plot the Nucleus Area against Nucleus

DNA Intensity for every single object in the dataset.

Parallel Coordinates

As discussed in section 3.1, parallel coordinates is one technique for displaying mul-

tiple dimensions on a flat surface. In Figure 4-1, we plot Average Cell Intensity,

Average Cell Size, Average Nuclei Size, and Average Nuclei Intensity against each

other.

4.3 Brushing

Brushing in CellVisualizer incorporates the idea that the gene knocked down in image

n in one table is the same gene knocked down in image n in every other “Per Image”

table. Therefore, when a user highlights a points in one particular plot, CellVisualizer

highlights all the corresponding points in every other plot, regardless of what table the

data comes from. In Figure 4-2, though the data comes from 5 different tables (the

32



Figure 4-1: There are four types of plots available in CellVisualizer: histograms (top
left), scatterplots (top right), 2-D histograms (bottom left), and parallel coordinates
(bottom right).

scatterplot on the left plots average cell area per image in slide 2 against average cell

area in slide 3, the scatterplot in the middle plots average cell area in slide 4 against

average cell area in slide 5, and the histogram on the right plots the distribution of

average cell area per image in slide 6), highlighting points in one plot highlights all

the corresponding points in all the other plots.
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Figure 4-2: Highlighting certain points in one plot highlights the corresponding points
in all the other plots. In this example, we highlighted all points with big average cell
size in slide 02 and the corresponding points in the scatterplot in the middle and the
histogram on the right are also highlighted.

4.4 Displaying Detailed Information

An important feature of CellVisualizer is not only the ability to plot the data, but

also to view images and other detailed information once the user discovers interesting

phenomena in the plots. This section describes how the system links the plots to

images and other information.

The user may request different types of detailed information about a particular

point. Currently, the user can select data points and request the images from which

the data points came, information about the gene that produced the data points from

a web database, all the measurements recorded for the image/object that produced

the data point, and if the data points are from “Per Image” measurement, a “Per

Object” plot of measurements for all the objects in the images that produced the

“Per Image” points.

In the menu bar for each plot, we display the different detailed information avail-

able, as shown in Figure 4-3. Each plot stores information about which tables and

measurements it has plotted and thus can link back to the tables to extract detailed

information.
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Figure 4-3: Access to detailed information relevant to a displayed plot.

4.4.1 Linking To Images

The “ShowImage” object is capable of displaying 3 grayscale images and overlaying

them to create one RGB image. The GUI also provides users the ability to toggle

the 3-channels on and off and the ability to locate single or multiple cells within the

image. In order to display an image, the image files must first be retrieved from the

database. As Figure 4-4 shows, the CellVisualizer system handles the retrieval and

displaying of images on three distinct levels.

The first level is responsible for retrieving the image file stream from the remote

file server. Currently, the CellVisualizer system retrieves a file stream from images

on the local file system and images on the Internet. It can also remotely connect

to Samba file servers and retrieve file streams with the help of the Java CIFS open

source client library [4]. We have also integrated SSH2 connections to CellVisualizer

by integrating the open source JSCH library [8]. Currently, input streams to SSH2

connections are established by copying a remote file to a temporary local directory

and opening a stream to the local file. By isolating the fetching of the file streams from
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Figure 4-4: Unified Modeling Diagram (UML) diagram of objects involved in retriev-
ing and displaying image files.

the rest of the system, the system can be easily extended to use other file-fetching

protocols.

The second level is responsible for decoding the image from the input stream.

CellVisualizer currently has two image readers. The JAI reader uses the Java Ad-

vanced Imaging library which supports BMP, GIF, JPEG, PNG, PNM, and TIFF

files. In addition, we wrote a custom DIB reader for the Cellomics proprietary file

format.

The third level of image handling in the CellVisualizer system is responsible for

managing the images that have already been retrieved and decoded. Images typically

take some time to retrieve, decode, and load into memory, from about half a second if

the image is on the local hard drive to about five seconds per image if the image needs

to be fetched via a SSH2 connection. Therefore, once the image is loaded into memory,

we cache for future use. This level also supports basic image manipulation capabilities

including turning on and off the red, green, and blue channels and displaying smaller

portions of images showing individual cells. The Java Advanced Imaging library is

used to give users additional useful imaging functions such as the ability to control

the brightness and the contrast levels of an image.

4.4.2 Linking To Web Databases

CellVisualizer launches webpages by using Ostermiller Utils, an open source library

for common programming tasks including opening a browser from an application on

Windows, Unix, and Macintosh. Gene information for a particular point is usually

stored in the database in one of two ways. Gene information may be stored directly
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in each of the “Per Image” tables or there may be a separate “Gene Info” table to

which “Per Image” and “Per Object” tables can link. The online gene databases are

then queried to retrieve available information on the gene of interest.

4.4.3 Retrieving All Measurements

We also make it easy for users to query every measurement for any particular point.

Users can select using a mouse or type in genes of interest and open a table which

displays all the values in the database for that point.

4.4.4 Plotting Per Object Plots

Another useful function that CellVisualizer provides is the ability to easily plot “Per

Object” data from selected points in “Per Image” plots. For example, we may notice

that the average cell size may be large for a particular gene and that we are interested

in whether the distribution of the cell size in this gene is different from all the other

genes. We can easily select points of interest in the “Per Image” plot and ask for a

“Per Object” subplot to display the data that correspond to the selected gene in the

“Per Image” plot.

4.5 System Architecture Overview

The CellVisualizer system must retrieve data from a database, display data in multiple

plots, retrieve images from a file server, and even open an external web browser.

Achieving all these goals in a robust way requires the system to be extensible and

modular. Figure 4-5 shows a high-level diagram of how different parts of the system

interact with each other. The following sections describe each component in detail.

4.6 Database Layer

CellVisualizer accesses the data from a database through the database layer. Al-

though the JDBC (Java Database Connectivity) API provides cross-Database Man-
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Figure 4-5: High-level diagram of CellVisualizer. The database stores measurements
while the image file server stores the original images taken by the microscope.

agement System (DBMS) connectivity to a wide range of SQL databases and access

to other tabular data sources, such as spreadsheets or flat files, it fails to provide an

important capability - creating temporary tables. We implemented our own database

layer on top of the JDBC layer to address this deficiency. This layer hides the actual

connection to the JDBC database from the rest of the system to ensure that it is easy

to extend the database support beyond the currently supported mySQL and Oracle

databases.

Properties Files

CellVisualizer needs to know various properties about the database in order for the

system to be fully functional. For example, it needs to know what column is the unique

identifier in the “Per Image” tables, which columns correspond to the path/file names

that specify the location of the red/green/blue images, and which column specifies

the gene name. Since these column names may be different depending on the type

of experiment and preference of the users, instead of hard-coding these variables into

the system or forcing users to enter these values everytime they ran the system, the

user creates “properties” files which specify the experimental database and are loaded
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into CellVisualizer.

4.7 Internal Data Structures

The CellVisualizer system uses the model-view-controller pattern, originally articu-

lated in the Smalltalk-80 user interface[11], to separate the user-interface/visualization

front-end from the other parts of the application. This design decision allows the sys-

tem to be easily extended. We would only need to create a new view-controller object

if a new visualization display is needed. Similarly, we would only need to create a

new model object if we wanted to support a vastly different data source.

4.7.1 The Data Model

The “data model” serves as the model for the model-view-controller abstraction and

contains information about tables, columns, ranges, and other criteria that can be

used to construct a SQL statement to query data from the database. All information

requested by the user, whether it is data to be displayed in plots or gene identifiers

used to link to an external web browser, is retrieved using a “data model” object.

The attributes of the “data model” include a string that specifies the type of data

(Per_Image, Per_Object, Aggregated Per_Object), a list of TableColumn objects

(to be described further below), a list of all tables referenced (such as in columns and

where clauses), a list of column aggregators (e.g. avg, max, min, count), a list of

where clauses, and parameters that specify whether to order the results and whether

to limit the number of results. Each “data model” also contains a “data strategy”

object, which is discussed in the next section.

Table 4.1 shows an example data model that may be used to query the dataset for

a scatterplot. The data returned would be the slide02 and slide03 nuclei area mea-

surements where the corresponding gene knockout in slide07 produced a large nuclei

area (greater than 20). This “data model” produces the following SQL statement:

SELECT (Sl02_Per_Image.Mean_Nuclei_Area / Sl03_Per_Image.Mean_Nuclei_Area),

(Sl02_Per_Image.Mean_Cell_Area / Sl03_Per_Image.Mean_Cell_Area)
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Table 4.1: Example Data Model Object
Attribute Example Values
Type of Data Per Image data
Data Strategy Per Image strategy
TableColumn [Sl02 Per Image.Mean Nuclei Area/Sl03 Per Image.Mean Nuclei Area]

[Sl02 Per Image.Mean Cell Area/Sl03 Per Image.Mean Cell Area]
Tables Sl02 Per Image, Sl03 Per Image, Sl07 Per Image
Where Clauses Sl07 Per Image.Mean Nuclei Area > 20,

Sl02 Per Image.imagenumber = Sl03 Per Image.imagenumber
Sl02 Per Image.imagenumber = Sl07 Per Image.imagenumber

Order By
Limit

FROM Sl02_Per_Image, Slide03_Per_Image, Sl07_Per_Image

WHERE Sl07_Per_Image.Nuclei_Area > 20 AND

Sl02_Per_Image.imagenumber = Sl03_Per_Image.imagenumber AND

Sl02_Per_Image.imagenumber = Sl07_Per_Image.imagenumber

The TableColumn Object

As indicated in the previous section, CellVisualizer not only has the ability to plot

simple “Per Image” plots from columns in the database, but also allows the user to

type mathematical expressions (e.g.

Sl02_Per_Image.Mean_Cell_Area / Sl03_Per_Image.Mean_Cell_Area ) as columns

to query a plot. As shown in Figure 4-6, the interface allows the user to select certain

tables as groups, and then to select columns from these tables. When the user selects

a grouped table, the system averages the values in the selected column across the

tables in the group.

Once the user types or selects the column expression to query, TableColumn object

is created and stored in the data model. The TableColumn object has two attributes:

the column expression stored as a string and a list of tables that the expression

references. In order to parse any arbitrary mathematical expression a user may input,

we wrote a parser that identifies the variables in the expression, which in our case

should be in table.column format. We then add the table, associated with each such
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Figure 4-6: For convenience, the CellVisualizer interface allows users to label groups
of tables and then select columns from these tables to plot. CellVisualizer assumes
the user is requesting the averages of the values in the columns. This feature allows
the users to label replicates together and compare different groups of replicates.

variable, to the list of tables.

Ensuring Table Links

Every time the data model is changed, either by adding/removing TableColumn ob-

jects or adding/removing statements to the where clause, the data model is respon-

sible for ensuring the integrity of all the necessary table links. Specifically, the data

model must make sure that all the tables that are referenced in the SQL statement

are linked to each other as necesssary.

Currently, the system handles this by assuming that there is a common column

name that all “Per Image” and “Per Object” tables are linked by - e.g. “ImageNum-

ber”. Notice that it doesn’t make any sense for 2 different “Per Object” tables to be

linked to each other because the objects measured in each image of a “Per Object”

table have no underlying association with the objects in another “Per Object” table.

Moreover, the user can also enter an additional table and specify how this table is

linked to the data tables. By parsing every expression that is added to the data

model, the data model knows from which tables it requests data from, and adds the

corresponding links.
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Figure 4-7: UML diagram of the data strategies currently implemented in the CellVi-
sualizer system. Not all methods of the “Data Strategy” interface have been shown.

4.7.2 Data Strategy

In addition to all the data model attributes mentioned above, each data model has a

“Data Strategy” object which specifies how the data model should retrieve the data

from the database. We designed “Data Strategy” objects because we are interested

in presenting the data in multiple ways. More specifically, we may want to plot the

“Per Image” or the “Per Object” measurements of one particular experiment or we

may be interested in plotting the averages, standard deviation, or other aggregations

of the “Per Object” measurements. Other plots of interest would be measurements

that group several “Per Image” tables together; for example, in the Fly203 database

mentioned in Chapter 2, it would be useful to group and plot all the GFP knockout

measurements versus all the PTEN measurements.

The “Data Strategy” interface defines methods for plotting the data and for select-

ing/brushing/highlighting subsets of the data. We created a class that implements

the “Data Strategy” interface for each distinct way to plot data; the class struc-

ture is shown in Figure 4-7. If the system needs to be extended because there is a

need to retrieve the data from the database in a different way, one would only have

to implement the “Data Strategy” interface to ensure that all other components of

CellVisualizer works as expected.
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Figure 4-8: UML diagram showing the class hierarchy of display model objects.

4.7.3 Plots

CellVisualizer currently has four different types of plots: histograms, scatterplots,

2-dimensional histograms, and parallel coordinates. In addition to these plots, users

can also choose to view the data in a table. The system is designed to allow pro-

grammers to add new types of plots. Figure 4-8 shows the current class hierarchy

diagram of plots. Adding a new plot simply requires the programmer to implement

the DisplayModel and DisplayModelListener interfaces. Plots use “data models” to

get the data from the database. Users specify the “data model” for a particular plot

through a graphical user interface and further alter or create new “data models” by

interacting with open plots.

While we have used the word “plot” here to describe the entire figure that is

drawn, including the labels and axes, it is worthwhile to note that the drawing of

the actual charts (the bars in histograms and the points in scatterplots, for example)

is encapsulated within each class. This design allows us to both separate CellVi-

sualizer functionality from the charting functionality and to use different charting

implementations if necessary.
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Figure 4-9: UML showing the attributes and methods of the DisplayModelList which
keeps track of currently open plots and notifies plots of the points are highlighted.

4.7.4 Brushing

We use the Observer Pattern to implement brushing in CellVisualizer. As shown

by the UML diagram in Figure 4-9, CellVisualizer stores a list of currently opened

plots which is updated whenever the user opens or closes a plot. Whenever a user

highlights points in one plot, all other plots are notified of the ImageNumbers that

the user highlighted. The ImageNumbers are used to highlight the corresponding

points in each plot.

4.8 Performance Considerations

A data visualization tool should facilitate user exploration and interaction with the

data and should run in near real-time. However, since it is not possible to load tens of

gigabytes of data into physical memory on a typical desktop, and it takes a long time

to read 8 million rows from a database file, we implemented intermediate strategy for

data measurement to optimize the interactivity of CellVisualizer when possible.

4.8.1 In-Memory Database

To balance the demands of user interactivity with the limitations of available mem-

ory, we integrated the hypersonic SQL database engine (HSQLDB), an open source

relational database management system which supports in-memory data access. This

allows the users to fetch the columns that they use frequently and store them in

memory before starting to explore the data. Once the relevant data subset is stored

in memory, interacting with the data becomes faster as reported in Table 4.2. The
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Table 4.2: Time taken to retrieve data to display in a scatterplot
Database Data Location # of Rows Time Taken
mySQL Maxtor 6L250M0 (Serial ATA 7200 rpm) 4,095,698 1 min 5 sec
HSQLDB In Memory 4,095,698 8 sec

number of columns that the user is able to download is limited by the amount of

memory available.

Though it takes about the same amount of time to download several columns of

data as it would to do a single plot, the benefit is that if the same columns were to

be used in another plot, the ensuing plotting would be a lot faster. Moreover, since

retrieval of data from the database on hard disk is mainly constrained by the amount

of time the database takes to cycle through all the entries in the database, it is faster

to download 4 columns into memory at once (one pass through all the records) and

then plot 2 scatterplots than to simply plot 2 separate scatterplots which retrieves 2

sets of 2 columns from the database (2 passes through all the records).

We ensure that downloading only parts of the database doesn’t prevent the user

from accessing data that has not been downloaded into the in-memory database by

employing the “Chain of Responsibility” design pattern. If the system attempts to

execute a query that requires a column that has not been stored in the in-memory

database, the system catches the error and forwards the request either the mySQL or

Oracle database where all the data resides.

4.8.2 Memory Constraints on Plots

When designing the system, we had to consider the amount of functionality and

interactivity needed in particular plots. Specifically, we wanted to give users a lot of

tools when working with two-dimensional histograms. For example, we wanted users

to be able to plot all the “Per Object” data in their database (typically millions of

points), select a region of interest, display a montage of random cell objects in that

gate, display a single image with the objects within that region marked, and compute

the enrichment scores of each image.select a region of interest, display a montage of

random cell objects in that gate, display a single image with the objects within that
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region marked, and compute the enrichment scores of each image.

To balance our requirements of interactivity with our constraints of memory, we

initially performed all calculations necessary on the database server, thus minimizing

the amount of memory we used. For example, here would be the SQL code that

computes the values of every bin in the two-dimensional histogram (Nuclei Area

versus Cell Area, 0.27 is the minimum Nuclei Area, 13.42 is the maximum Nuclei

Area, 0.91 is the minimum Cell Area, 13.75 is the maximum Cell Area, and 450 x

450 is the number of different bins we want)

select floor((Nuclei_Area-0.27)*450/(13.42-0.27))

as A, floor((Cells_Area-0.91)*450/(13.75-0.91))

as B,count(*) from Per_Object group by A,B;

We also wrote SQL queries to pick random cells from a region of interest. However,

the database took too long to perform all these requests, especially given that before

we could process the query to bin the data, we must compute the max/min values as

well (thus requiring an additional pass through the database).

In the end, we determined that although users may only be able to open few

“Per Object” 2-D histogram at a time, it is more important to allow users more

interactive capabilities. Therefore, in addition to storing the two columns of “Per

Object” measurements being plotted in 2-D histograms, we decided to also store the

associated ImageNumber/ObjectNumber pair. Since every cellular object identifier is

stored in physical memory, selecting random cells and computing other calculations

became near instantaneous once the 2-D histogram is drawn.

4.9 Summary

We’ve designed a modular and extensible visualization system that currently allows

users to view two-levels of data in multiple different ways. Users can draw histograms,

scatterplots, 2-D color histograms, and parallel coordinates. Additional plots can

easily be added if there is a need to view the data in a different way. CellVisualizer

46



makes it easy for users to compare data across similar experimental conditions by

understanding that each data point in the dataset corresponds to a particular image,

which corresponds to a particular gene knockdown. In addition, we link each data

point back to the image it came from and to gene databases on the Internet to

facilitate data exploration. The modularity of the system allows additional tools to

easily be incorporated into CellVisualizer.
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Chapter 5

Example Extension - Cell

Classification

CellVisualizer was initially designed as a visualization tool, but we also intended

the system to be easily extensible, especially to other areas of data analysis. In

this chapter, we describe about how we extended CellVisualizer to incorporate an

automatic classification system.

5.1 Cell Classifier

Cell Classifier was developed to discover all the cellular objects in the dataset that

are characteristically similar to already seen interesting objects. This “Per Object”

classification strategy takes an approach similar to content-based image retrieval in

the field of computer vision. The user identifies a few cells showing a phenotype

of interest, along with a few negative examples. These labeled cells are used to

train a classifier. Once the classifier is trained, the user can choose to retrieve more

cells, which the user can again label, which then produces a new, hopefully better,

classifier. Once we have a classifier that we believe is sufficiently accurate, we can

use that classifier to find every single positive cell in the entire dataset as well as

compute enrichment scores for each image - i.e., find genes that produce significantly

more cells of the interesting phenotype.
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Figure 5-1: The Cell Classifier module in CellVisualizer. Users drag the individual
cells from the unclassified board (top) to the positive (left) or negative (right) board
and train on their examples to produce a classifier (bottom right). The results of
the classifier on an entire image can be viewed (bottom left), where dots label all the
positive cells.

The original cell classifier was written in Objective-C for the Macintosh. We have

ported the classification tools to be usable from within CellVisualizer. Figure 5-1

shows the CellVisualizer user-interface of the classification tools. In this example, a

classifier is trained to find cells which look as if they are grouped like peas in a pod.

5.1.1 Linking From Plots in CellVisualizer

In addition to simply porting classifier code from objective-C to Java, we wanted

to also link the classification functionality to the CellVisualizer visualization tools.

As mentioned in previous chapters, there may be several images or objects that we

want to exclude from our dataset because these images or objects may be corrupted.

By linking plots in CellVisualizer to the classification tools, we can exclude these
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corrupted measurements from our calculations when classifying cells. CellVisualizer

allows users to first plot their data, select regions of interest on these plots to include

only images/cells of interest, and then use the classifier on the relevant images/cells.

Picking Random Cells

In order to further explain how CellVisualizer interacts with the classification tools,

it is important to discuss two steps in the classification algorithm: selecting random

cells to present to the user and determining how many cells in each image match the

phenotype we are looking for.

In the case where we are considering the entire dataset or selecting entire images

of interest, we take advantage of the fact that there is a column in the “Per Image”

tables of the database that denotes how many objects are in each image. Since we

know that the object numbers are labeled consecutively starting from 1, it is relatively

straightforward to use a pseudorandom number generator to pick a random object to

find the image/object number pair that uniquely identifies a cell. However, when we

decide to exclude specific cellular objects, it is necessary to pick random cells without

using the column that tells us how many objects are in each image. For this reason,

we created a “CellPicker” interface for the classification tool to use.

Once we’ve picked random cells, the trainer picks measurements that best sep-

arates “positive” cells (cells that match the phenotype) and “negative” cells. We

then categorize every single cell in the database to determine how many and what

percentage of cells in each image are “positive” cells.

Per-Image Scatterplots

Currently, “Per Image” scatterplots can be used to include only relevant images in

the classifier. This allows users to exclude images that may be corrupted by fibers or

blobs of dye, as mentioned in section 1.1.1. In “Per Image” plots, we exclude some

images from our calculations using a SQL query, both when retrieving random cells

and when computing the number of “positive cells”.
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Figure 5-2: Selection of a region in a 2-D histograms to use the cell classification
tool on. This opens the CellClassifier module as in Figure 5-1 but limits all the
computation to cells within the selected gate.

Per-Object 2-D Histograms

To exclude individual objects from the classification process, users can select the

objects of interest on 2-D histograms of their data. We implemented the selection

process in 2-D histograms because we store all the ImageNumber/ObjectNumber

pairs for each object that is plotted in the 2-D histogram. We numerically order

all the unique cells in the selected region and randomly pick cells only from the

ordered list. When determining which cells are “positive”, we retrieve every cell

(ImageNumber/ObjectNumber pair) from the database and whether it matches the

phenotype. We order all the cells we’ve retrieved in the same ordering as the cells in

the selected region of interest and discard all cells not in the selected region before

computing enrichment calculations. Figure 5-2 illustrates a 2-D histogram that plots

the total nuclear DNA intensity (horizontal axis) against mean nuclear phospho-

histone H3 intensity and how a user would use the two particular gated windows for

classification.
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We have discussed high-throughput microscopy data and the capabilities of the

CellVisualizer system. Now we will discuss several examples of how CellVisualizer

was actually used.
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Chapter 6

Case Studies

The benefits provided by any application can best be illustrated by how the appli-

cation is used in practice. In this chapter, we present several ways CellVisualizer is

currently being used to the exploration of high-throughput data.

6.1 Finding Genes that Regulate Mitosis

In this section, we will describe how CellVisualizer is used to find genes that regulate

mitosis. The dataset we explored was created by screening genes using Drosophila

RNA interference living cell microarrays. There were 1120 spots of dsRNA, including

three replicate spots for each of 288 genes (mostly kinases and phosphatases), plus

256 negative control spots lacking dsRNA [2]. DNA was stained with Hoechst, which

marks the nuclei, F-actin was stained with phalloidin, which marks the cell, and

phosphorylated histone H3 (phospho-H3) was stained using an antibody, which marks

nuclei in mitosis.

6.1.1 Quality Control

As mentioned in Chapter 1, the imaging process is not perfect. Fibers and other

artifacts sometimes interfere with measurements of some of the images. We have

discovered that such images have abnormal image thresholding values - the value
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Figure 6-1: Step 1 checks to make sure the images are not corrupted by artifacts.
The blue points in the scatterplot correspond to the images on the right.

that separates the background pixels from cell/nuclei pixels in an image. Thus,

as show in figure 6-1, step 1 of the data exploration process is to quickly check

whether such abnormal images exist by plotting ImageThresholdCells values against

ImageThresholdNuclei values and displaying images with abnormally high and low

threshold values.

In this dataset, all the images seem to be free of artifacts or other anomalies.

If there were to be images with artifacts, we would then select all the data points

without the artifacts and then plot a new scatterplot of just these normal points.

6.1.2 Plotting Measurements of Interest

The knockdown of genes that regulate the mitotic process would prevent the cells

from dividing once the nucleus replicates. Such cells would have larger nuclei and cell

size compared to normal cells. In step 2, we plot MeanCellArea vs. MeanNucleiArea

for each image. We then use search by gene name to highlight all the control points -

points where no gene has been knocked down - to again ensure that our experiment
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Figure 6-2: In step 2, we plot our measurements of interest and then highlight all the
control points in blue. This is to make sure that the measurements for the controlled
experiment is as we expect them to be.

ran as expected. Figure 6-2 shows that our control points are generally where we

expect them to be.

6.1.3 Finding Interesting Genes

In the next step, we explore the dataset to find interesting genes which meet our

criterion - in this case genes that regulate the mitotic cycle. We use our selection tool

to drag a rectangle around all the images whose mean cell size and mean nuclei size

are more than two standard deviations higher compared to all the other images (top

right corner of the plot in Figure 6-2). Next, we highlight these genes and ask for the

gene names of all these points. Since there are 3 replicates of every gene knockdown,

we expect to find the same gene names retrieved 3 times; the knockdown of the gene

should produce greater cell and nuclei size in all 3 replicates. As figure 6-3 shows,

there was one such gene STG which produced such results. A few other genes had
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Figure 6-3: We request the gene names of all the points that have large mean cell and
nuclei size. All 3 replicates of STG knockdown produce large mean cell and nuclei
size.

2 replicates with abnormally large cell and nuclei area. To locate the third replicate

for such genes, we use CellVisualizer and query the “gene by name”. For example,

we see in Figure 6-4 that the third replicate of the CDC2 gene is located just within

the two standard deviation cutoff.

6.1.4 Getting More Detailed Information

Now that we have several genes of interest, we can explore more detailed information

about each of the genes. In this particular case study, we will concentrate on the STG

gene because it was the one gene where all three replicates showed up on our list.

We do this by using the option of searching for genes by name. Once all the STG

genes are highlighted, we open the images to see if the cells/nuclei look as we would

expect. We also use CellVisualizer to display web information so we can see if the

current literature already indicates that STG regulates mitosis. Figure 6-5 illustrates

CellVisualizer when we highlight STG and display the Flybase web information and
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Figure 6-4: We search for gene CDC2 in the plot and highlight all 3 replicates in
blue. We find that the third replicate is just within the two standard deviation lines
(blue).

the underlying images.

When we look at the information available in Flybase, we see that STG has

already been identified as a gene that regulates mitosis. Extensive evidence shows

that differential expression of STG regulates mitosis during most stages of Drospholia

development [12]. In this case, we haven’t found anything novel but the result confirms

that our system of sample preparation and data analysis is producing meaningful

biological conclusions.

Per Object plots

In addition to looking at the average measurements in each of the STG images, we

are also interested in comparing what the individual object measurements, specifically

the total DNA intensity of the nucleus, look like in STG images versus control images.

We thus select all the STG Per-Image data points and plot a histogram of the nuclei

intensity of all the individual objects in all the STG points and compare it to a

similar plot of all the objects in control points. Once we plot both histograms, we

can select individual points (a single STG image) in the Per-Image plot to highlight
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Figure 6-5: The underlying images and web information for the STG gene.

the Per-Object data in the aggregate histogram. This verifies that each individual

image looks similar to the aggregate histogram.

What we hoped to see is greater DNA content (indicated by more total nuclei

intensity) in the 4N, 8N, and 16N peaks in the STG images when compared to control

images. This would mean the nuclei in the STG images kept duplicating without the

cell actually splitting; i.e. the cells were stuck in mitosis. As illustrated in Figure 6-6,

the 4N peak is greater, but it is inconclusive whether there are more cells in the 8N

and 16N peaks. This type of exploration gives researchers enough information to

hypothesize the mechanism of mitotic regulation by this gene and prioritize genes for

further follow-up in the laboratory.
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Figure 6-6: Histograms of the total nuclei intensity for each object in the control
images (left) and in the STG images (right).

6.2 Comparing Two Different Knockdown Exper-

iments

In this section, we explore Drosophila datasets similar to that in the previous case

study. As in the previous study, we screened the genes using Drosophilia RNA in-

terference living cell microarrays. There were 1120 spots of dsRNA, including three

replicate spots for each of 288 genes, plus 256 negative control spots lacking dsRNA.

However, in this study, we are interested in how pairs of genes interact with each

other. We produced three sets (to ensure the reliability of our data) of control slides

where the only gene being knocked down in a particular spot was the one specified by

the dsRNA. We also produced three sets of slides where in every spot the PSC2 gene

was knocked down in addition to the gene specified by the dsRNA. We are interested

in determining how the knock down of the PSC2 gene influences the effects of the

other gene that is knocked down.
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Figure 6-7: We group slides 2,3,4 together and name it “Control”.

6.2.1 Grouping Replicate Slides

We first group slides produced under the same experimental conditions together. As

shown in Figure 6-7, slides 2, 3, and 4 are the “Control” slides and we name it as

such. We also group the PSC2 slides, slides 11, 12, and 13, together.

6.2.2 Plotting Measurements of Interest

In this particular case, we are looking to find genes that decrease cell size under normal

conditions but whose effects are mitigated when the PSC2 gene is also knockdown.

After performing similar quality control steps to case 1, we draw a scatterplot with the

average cell size of control slides on the X-axis and the average cell size of PSC2 slides

on the y-axis. We select the region of the scatterplot where the average cell size is

small in the control experiments but normal in the PSC2 experiments. As illustrated

in Figure 6-8, when we query for the genes that correspond to these points, we find

that one particular gene, CG02028, where our criteria is met in all three replicates.

Our lab decided to conduct more extensive experiments to determine the interaction

between gene CG02028 and PSC2 due to these findings as well as supporting results

from coulter counter experiments and the available literature in the gene database.
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Figure 6-8: We plot the average cell size of images in control experiments (X-Axis)
against the average cell size of images in PSC2 knockdown experiments (Y-Axis). We
highlight points where cell size is decreased in the control experiments but restored
to normal size in the PSC2 experiments. We find one gene, CG02028, where all three
replicates produce this behavior.
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Chapter 7

Discussion

In this thesis, we designed and implemented a system for visualization and exploration

of large, multi-dimensional, hierarchical datasets. We tackled the challenges of linking

and displaying hundreds of gigabytes of data in multiple ways from numerous tables

both within and across several levels of a database. We evaluated the usefulness of

the tool in real biological applications and sought to make the system as interactive

as possible. In this chapter we will discuss possible extensions to the project as well

as how changing technology may alleviate some concerns such as memory.

7.1 Other Applications

Although the CellVisualizer system is designed with CellProfiler datasets in mind, it

can be used with other datasets as well. The types of datasets that CellVisualizer

is particularly useful for would be datasets where there are two-levels of related hi-

erarchical data. An example outside the high-throughput microscopy context would

be exploring baseball players’ statistics. The top level of data would be “Per Team”

data and hold the summaries of statistics of each player on the team. We would be

able to compare related statistics, such as the team’s first baseman’s batting average,

across different teams. The second level of data would be detailed “Per Player” data

and store information such as how a player performed in each game.
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7.2 Future Work

In this work, we developed a system that allows users to visualize and explore two-

levels of multi-dimensional hierarchical data. Along with optimizing the system to

take advantage of further advances in technology, future work will extend the system

to explore multiple levels of hierarchical data. For example, we may be interested not

only in nuclei but also in all the nucleoli within each nucleus.

Another consideration for the future is how advancements in memory and stor-

age technology improve the ability to store, retrieve, and view data. Currently, the

visualization of data is limited by two main factors: the amount of RAM that the

computer has, and how fast data is retrieved from a hard drive where the database

is stored.

Most computers typically have less than 1 gigabyte of RAM (the maximum mem-

ory ceiling of 32-bit architecture machines is only 4 GB) and are thus unable to store

the entire dataset in memory. However, as computers are upgraded to 64-bit pro-

cessors and memory continues to become cheaper, it is conceivable that computers

may have terabytes of memory in the future (the maximum memory ceiling of 64-bit

architecture is 16 exabytes).

A consideration that goes hand-in-hand with memory usage is how fast data is re-

trieved from hard-disk storage. Currently, the fastest workstation and server hard

drives spin at 15,000 rpm [16]. Since the time to seek and retrieve information from

the database is limited by how fast the database can find this information in its hard

drive, improvements in hard drive spindle spin would directly enhance the CellVisu-

alizer interactivity.

7.3 Conclusion

We have described CellVisualizer, a system to visualize large, multi-dimensional, hier-

archical datasets. In addition, we have linked the data to images and gene databases

to enhance the data exploration process. We demonstrated the system on preliminary
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biological experiments. CellVisualizer is currently in active use in our lab and will

be made available to a broader community in the future. The ability to explore vast

amounts of data produced in high-throughput experiments will significantly enhance

the usefulness of this data in understanding biological phenomena at a cellular level.
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