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Abstract

Data-driven analysis methods, such as independent component analysis (ICA) and
clustering, have found a fruitful application in the analysis of functional magnetic reso-
nance imaging (fMRI) data for identifying functionally connected brain networks. Un-
like the traditional regression-based hypothesis-driven analysis methods, the principal
advantage of data-driven methods is their applicability to experimental paradigms in
the absence of a priori model of brain activity. Although ICA and clustering rely on
very different assumptions on the underlying distributions, they produce surprisingly
similar results for signals with large variation. The main goal of this thesis is to under-
stand the factors that contribute to the differences in the identification of functional
connectivity based on ICA and a more general version of clustering, Gaussian mixture
model (GMM), and their relations. We provide a detailed empirical comparison of
ICA and clustering based on GMM. We introduce a component-wise matching and
comparison scheme of resulting ICA and GMM components based on their correla-
tions. We apply this scheme to the synthetic fMRI data and investigate the influence
of noise and length of time course on the performance of ICA and GMM, comparing
with ground truth and with each other. For the real fMRI data, we propose a method
of choosing a threshold to determine which of resulting components are meaningful to
compare using the cumulative distribution function of their empirical correlations. In
addition, we present an alternate method to model selection for selecting the optimal
total number of components for ICA and GMM using the task-related and contrast
functions. For extracting task-related components, we find that GMM outperforms
ICA when the total number of components are less then ten and the performance
between ICA and GMM is almost identical for larger numbers of the total compo-
nents. Furthermore, we observe that about a third of the components of each model
are meaningful to be compared to the components of the other.

Thesis Supervisor: Polina Golland
Title: Assistant Professor of Computer Science and Engineering
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Chapter 1

Introduction

Since its development in the early 1990s, functional magnetic resonance imaging

(fMRI) has played a tremendous role in visualizing human brain activity for the

study of mechanisms of human brains and clinical practice. Acquired by a regular

magnetic resonance machine with special parameter settings, this non-invasive imag-

ing method measures changes in blood flow, which in turn are an indication of neural

activity. fMRI produces four-dimensional time-series images (three-dimensional in

space and one-dimensional in time) with relatively low temporal resolution and high

spatial resolution.

This new imaging technique has generated a large volume of new high dimensional

data and hence, the need for new image analysis methods. In the recent literature, in-

teresting discoveries in human cognitive states have been found using techniques from

machine learning, especially multivariate pattern analysis and non-linear pattern clas-

sification methods [20, 34, 55]. Much of the work in fMRI data analysis has revolved

around the detection of activation at different locations. In addition to localizing ac-

tivity, we are also interested in how the “activated” areas are related and connected

to each other. Functional connectivity, the central theme of this thesis, characterizes

these functional interactions and coordinated activations among different parts of the

brain.

Traditionally, the regression based, hypothesis-driven approach has been used to

detect functional connectivity. Taking this approach, a “seed” region of interest must
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be first selected by the user. The network is defined as the areas whose correlation

with the seed time course exceeds a pre-defined threshold. This method can work

well when the goal is to identify regions that co-activate with a certain part of the

brain. Hypothesis-driven methods require prior information on the protocol and

hypothesis of an experiment to model the expected hemodynamic response. Moreover,

the correlation threshold, directly related to the statistical significance level, must be

selected.

Recently, there has been an increasing number of fMRI experiments that inves-

tigate the brain activity in a more natural, near protocol-free setting, such as re-

sponding to audio-visual input like a movie or rest state scanning [10, 11, 17, 30, 65].

Unlike traditional protocol-based experiments, these new complex experiments do not

contain a well-defined onset protocol. Although the traditional seed-based connec-

tivity analysis can be applied to these data, paradigm-free, data-driven exploratory

methods such as principal component analysis (PCA) [26], independent component

analysis (ICA) [49], and clustering algorithms [30, 32] such as Gaussian mixture model

can naturally provide an alternative to comparing each voxel’s time course against

a hypothesis. They explore the data to find “interesting” components or underlying

sources. Structures or patterns in the data, which are difficult to identify a priori,

such as unexpected activation and connection, motion related artifacts, and drifts,

may be revealed by these components. However, the direct relationship among the

data-driven methods is largely unknown and the performance in correctly detect-

ing and classifying functionally connected regions depends on various theoretical and

experimental factors.

Recently, several works have compared data-driven analysis methods in the con-

text of functional connectivity. Baumgartner et al. [6] use artificially generated acti-

vations and show that fuzzy clustering analysis (FCA) outperforms principal compo-

nent analysis in a noisy data setting by comparing the maximum Pearson correlation

coefficient between the simulated activation time course and the representative time

courses obtained by FCA and PCA. The superior performance of ICA compared to

the regression-based cross-correlation analysis (CCA) in detecting functional connec-
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tivity in the resting brain and the effect of seed selection on CCA results are presented

in [47]. Meyer-Baese et al. [50] present comparative results of several variations of

clustering and ICA algorithms by evaluating their performances using task-related

activation maps and associated time courses with respect to the experimental proto-

col in a simple block design fMRI experiment and by conducting receiver operating

characteristic analysis. They show a close agreement between clustering and ICA,

but also conclude that despite a longer processing time, clustering outperforms ICA

in terms of the classification results of the task-related activation. Smolders et al.

[58] compare results of fuzzy clustering and ICA in terms of within- and between-

subject consistency and spatial and temporal correspondence of obtained maps and

time courses. They demonstrate a good agreement between FCA and spatial ICA

in discriminating the contribution of distinct networks of brain regions to the main

cognitive stages of the task (auditory perception, mental imagery and behavioural

response). They claim that whereas ICA works optimally on the original time series,

averaging with respect to the task onset (and thus introducing some a priori infor-

mation on the experimental protocol) is essential in the case of FCA leading to a

richer decomposition of the spatio-temporal patterns of activation. However, for all

of these studies, their comparison scheme was only based on the similarity of the task

related component detected by the methods to a predefined reference waveform and

disregarded all other components.

Exploratory data analysis methods have also been compared in other areas of

medical image analysis and computer vision. Jung et al. [41] show the advantages of

ICA over PCA in removing electroencephalographic (EEG) artifacts. In the context

of face recognition, the literature on the subject is contradictory. Bartlett et al. [5],

Liu and Wechsler [45] claim that ICA outperforms PCA for face recognition, while

Baek et al. [3] report a contrary result that PCA outperforms ICA when tested

on the FERET database. Delac et al. [21] and Draper et al. [23] conclude that

the performance of methods (PCA, ICA, and Linear Discriminant Analysis) largely

depends on a particular task of face recognition such as subject identification and

expression recognition and that one method cannot be claimed to perform better

15



than others in general cases.

Although ICA and clustering rely on very different assumptions on the under-

lying distributions, they produce surprisingly similar results for signals with large

variation. The main goal of this thesis is to understand the factors that contribute

to the differences in the identification of functional connectivity based on ICA and

a more general version of clustering, Gaussian mixture model (GMM), and their re-

lations. Using the synthetic data with artificial activations and artifacts generated

by the generative model of ICA under two experimental conditions (length of the

time course and signal-to-noise ratio (SNR) of the data), both spatial maps and their

associated time courses estimated by ICA and GMM are compared to each other

and to the ground truth. The number of components are chosen via the model se-

lection scheme and all selected components are compared, not just the task-related

components. This comparison scheme is verified in a real fMRI study.

This work provides a detailed comparison of ICA and clustering based on Gaussian

mixture model, both in terms of generative models and experimental conditions.

Contributions of this thesis are as follows.

• We devised a component-wise matching and comparison scheme of resulting

ICA and GMM components using their correlations.

• We applied this scheme to the synthetic data and investigated the influence of

noise and length of time course on the performance of ICA and GMM, compar-

ing with ground truth and with each other.

• We developed a method of choosing a threshold to determine which of result-

ing components are meaningful to compare using the cumulative distribution

function of their empirical correlations.

• We proposed an alternate method of selecting the optimal total number of

components for ICA and GMM using the task-related and contrast functions.

• We applied our methods to real fMRI data in visual recognition experiments.
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With ever increasing volume of complex experimental fMRI data, we believe that

our work will provide a better understanding of the functional brain networks and a

direction for further analysis.

The rest of the thesis is organized as follows. In Chapter 2, we review the basic

properties of fMRI, typical fMRI experiment set-ups, pre-processing steps, and the

sources of noise in fMRI data. In Chapter 3, we compare three definition (anatomical,

functional, effective) of brain connectivity. We also define and explain the notion of

functional connectivity. In addition, we discuss previous work on this topic and the

standard hypothesis-driven connectivity analysis method. In Chapter 4, we describe

the generative models and the algorithms for the three data-driven connectivity mod-

els of our interest, PCA, ICA, and GMM and model selection methods. Chapter 5

introduces the component-wise comparison scheme between ICA and GMM. Further-

more, we present the results of investigating the differences of performance of the

analysis methods using synthetic and real fMRI data in Chapter 5. We conclude with

discussion of future research directions in Chapter 6.
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Chapter 2

Functional Magnetic Resonance

Imaging

2.1 Overview

Functional magnetic resonance imaging (fMRI) is a recently developed neuroimaging

modality that provides an opportunity to study functional human brain activity in a

non-invasive way. MRI uses strong magnetic fields to create images of biological tissue.

To generate images, an MRI scanner applies a series of changing magnetic gradients

and oscillating electromagnetic fields, known as a pulse sequence. By varying this

pulse sequence, a particular tissue type of interest (e.g. gray and white matter,

tumors, bone damage) can be detected by the scanner. Functional neuroimaging

aims to localize different mental processes to different parts of the brain, in effect

creating a map of which areas are responsible for which processes. Since the early

1990s, the development of fMRI has catalyzed an explosion of interest in functional

neuroimaging and has become a powerful tool in research and clinical applications.

Unlike structural MRI, which measures differences between tissues, fMRI mea-

sures signal changes in the brain that are due to changing neural activity. The most

popular approach is the fMRI based on blood oxygenation level dependent (BOLD)

signal changes, which allows assessment of brain activity via local hemodynamic vari-

ations over time [51, 64]. The basic assumption is that increased neural activity
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induces an increased demand for oxygen and, in turn, the vascular system increases

the amount of oxygenated hemoglobin relative to deoxygenated hemoglobin. Because

deoxygenated hemoglobin attenuates the MR signal, which causes a change in the

MR decay parameter T ∗
2 , the vascular response leads to a signal increase that is re-

lated to the neural activity. This process is known as hemodynamic response (HDR).

In a typical fMRI experiment, external stimuli are presented at intervals of several

seconds, causing a change in voxel-signal intensity, delayed and blurred by the hemo-

dynamic response lag. From these changes, researchers can make inferences about

the underlying neural activity and how different brain regions may participate in dif-

ferent perceptual, motor, or cognitive processes. However, the precise nature of the

relationship between neural activation and the BOLD signal is a subject of current

research and is yet to be well understood. Because changes in blood oxygenation oc-

cur intrinsically as part of normal brain physiology, fMRI is a non-invasive technique

that can be repeated on the same subject as many times as needed.

fMRI provides one of the optimal combined spatial and temporal resolution meth-

ods presently available for non-invasive functional brain mapping. Typically, it gen-

erates voxels with a spatial resolution of 2 to 5 mm and a temporal resolution of

few seconds. However, one of the main drawbacks of fMRI is the relatively low im-

age signal-to-noise ratio (SNR), which is the magnitude of the signal change due to

experimental condition divided by the variability in the measurements, depending

on both the amount and variability of signal change. Along with other factors such

as artifacts, head movement, and undesired physiological sources of variability, this

makes detection of the activation-related signal changes a difficult task.

Despite its limitations, fMRI has been widely used in many different application

domains in psychology, neurobiology, neurology, radiology, biomedical engineering,

electrical engineering, physics, and many others. Especially in cognitive neuroscience,

due to its adaptability to many types of experimental paradigms, fMRI has shown

great utility in researching object processing and recognition, memory, visual atten-

tion, language plasticity, and connectivity between brain regions, to name a few. With

a better understanding of the BOLD effect and hemodynamic response and more so-
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phisticated data acquisition and analysis techniques, fMRI has a great potential to

be used even more widely in research and clinical applications.

2.2 fMRI Experimental Protocols

To functionally associate one or more brain regions with a task that a subject per-

forms, one must first devise an experimental design. Simple tasks in fMRI experi-

ments include presentation of sounds and images, whereas more complex experiments

involve watching movies and presentation of instructions for memory and recognition

tasks, for example. Experimental design is followed by the image acquisition step,

in which the subject lies in a MRI scanner performing a task with his head fixed to

avoid movement artifact. These acquired images are used to draw a cognitive inter-

pretation via careful statistical analysis. The experimental design is commonly based

on a block-design or an event-related design.

In the case of the block design, each condition is presented for an extended time

period, and the different conditions are usually alternated over time. Typically, a

block design involves alternations of a task-performing block and a rest block, where

no stimuli are presented. A block, also referred as an epoch, contains a sequence

of several repetitions of stimuli under the same condition. A single condition may

include more than one cognitive task. Block design considers all of them as a single

task condition. This is the case of our real visual recognition fMRI data, presented in

Chapter 5. Due to the large amount of noise is present in fMRI data, the underlying

signal, which should follow the periodic activation pattern, is hardly recognizable

even when the voxel is taken from a strongly activated region. This low signal-to-noise

ratio of fMRI makes detection of any activation difficult with only one realization of a

condition. Thus, the fMRI algorithms are based on averaging over several realizations

since averaging increases the signal-to-noise ratio. However, the limiting factor in

multiple realizations of experimental conditions is the subject’s ability to perform

identical tasks without moving or getting tired, which introduces motion artifacts

and fatigue effects.
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An alternative to the block design is the event-related design, which involves a

different stimulus structure. Although the block design has an advantage of excellent

detection power, the event-related design has the ability to estimate the shape of

the hemodynamic response function. Event-related designs present stimuli one at a

time rather than together as a block. Such experimental protocols are characterized

by rapid, randomized presentation of stimuli. Time between each trial of stimuli is

typically jittered. This has the advantage that the subject does not get used to the

experiment, which ensures that the HRF does not change its shape or decrease in

amplitude. This is necessary to enable averaging over several realizations. Further-

more, different trial types are intermixed so that each trial is statistically independent

from other trials. Since it assumes that the HRFs corresponding to various tasks are

different, signals can be analyzed by task category. The possibility of post hoc cat-

egorization of an event is another advantage of event-related fMRI. It is in general

difficult to draw a conclusion which type of experimental design is better. The design

which best suits a specific research hypothesis should be chosen.

2.3 Preprocessing

Preprocessing includes all processes that are performed after image reconstruction and

prior to the statistical analysis of the data. The two primary goals of preprocessing

are to reduce non-task-related variability in experimental data and to improve validity

of statistical analysis [36].

Since almost every fMRI scanner acquires the slices of a volume in succession, each

slice is obtained at a different time point. Slice timing correction shifts each voxel’s

time series within a repetition time (TR) so that all voxels in a given volume appear

to have been captured at exactly the same time. This is especially important for long

TRs, in which the expected hemodynamic response amplitude can vary significantly.

Slice timing correction is typically done using temporal interpolation, which uses

information from nearby time points to estimate the amplitude of the signal at the

onset of the TR. Interpolation strategies include linear, spline, and sinc interpolations.
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Another very important preprocessing step is motion correction. fMRI analysis

assumes that each voxel represents a unique part of the brain. In case of head motion,

each voxel’s time course could be acquired from more than one brain location. The

effect of head motion on the signal change is significant, especially near the edge of

the brain. A movement of one tenth of a voxel may produce 1-2% signal change,

which is not negligible, compared to the very small amount of signal change of fMRI

BOLD effects [29]. This requires the use of accurate image registration algorithms to

spatially align multiple image volumes. The images are transformed by resampling

with respect to a reference image, which is often the first acquired image. In case of

the rigid body transformation, the transformation parameters (translation, rotation)

for the images are determined by optimizing the goodness of fit to the reference image

[28].

In order to facilitate comparisons of the results of analyses aross different subjects,

the images in the data are normalized according to a template in the standardized

space. This process is called spatial normalization. The most commonly adopted

coordinate system is that described by Talairach and Tournoux [60]. Although spatial

normalization allows generalization of results to larger population and provides a

coordinate space for reporting results, matching between subjects is only possible

on a coarse scale, since there is not necessarily a one-to-one mapping of the cortical

structures between different brains. No such processing was required in our work,

since we did not perform the analysis across subjects.

Spatial filtering with a Gaussian smoothing kernel is often applied to increase

signal-to-noise ratio in the data. The increase in SNR is achieved by applying a

filter which has the same shape and size as the signal. However, the effectiveness of

spatial smoothing diminishes if exact signal properties are not known and the size

of the smoothing kernel is larger than the activation area. In the temporal domain,

applying a high-pass filter suppresses slow, repetitive physiological signals related to

the cardiac cycle or to breathing, as well as the scanner-related drifts.

In some studies, a region of interest (ROI) is selected through segmentation, which

classifies voxels within an image into different anatomical divisions. It allows direct,
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unbiased measurement of activity within an anatomical region, based on the assump-

tion that functional divisions tend to follow anatomical divisions.

2.4 Signal-to-Noise Ratio of fMRI Signal

Although fMRI has been shown useful and is used extensively in neuroscience research,

the level of signal changes in fMRI data still remain low (approximately 1-2%). Signal-

to-noise (SNR) ratio is one way to quantify the level of signal changes in the fMRI

data. SNR is typically defined as the ratio of the variability in the signal to the

variability in the noise. We define SNR in the General Linear Model framework [27],

which models the brain as a linear time invariant system with an impulse response

function reflecting the hemodynamic properties of the brain. We use design matrix

B = [B1, B2] for linear regression. GLM assumes the signal is a linear combination of

a protocol-dependent component, B1, a protocol-independent component, B2, such as

physiological noise and drifting, and random noise, ε. We construct B1 by convolving

the experimental protocol and the assumed hemodynamic response function modelled

as a two gamma function [39], defined as

h(t) =

(
t

d1

)a1

exp

(
−t− d1

b1

)
− c

(
t

d2

)a2

exp

(
−t− d2

b2

)
(2.1)

where dj = ajbj is the time to the peak and a1 = 6, a2 = 12, b1 = b2 = 0.9s, and

c = 0.35. The two gamma function correctly captures the small dip after the HRF

has returned to zero. Typically, low order polynomials are used to model B2. For a

given time course "yi, GLM is often formulated as

"yi = B1
"β1i + B2

"β2i + "εi, (2.2)

where "βi = [β̂1i, β̂2i] is a vector of estimated amplitudes of the hemodynamic responses

and the protocol independent signals at voxel i. Noise "εi ∼ N(0, Σi). The noise

covariance Σi is unknown. Assuming the noise is white, Σi = σ2
i I, we can estimate "β
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using the least square estimate,

"̂βi = (BT B)−1BT "yi. (2.3)

For a given voxel i, we define our estimated SNR as

ŜNRi =
|B1β̂1|2

|"yi −B1
"β1i|2

. (2.4)

We use the average of these estimates over our region of interest. The SNR value is

subject to the choice of noise measurement. In the definition above, we define noise

in the denominator as anything that is not signal. Each region in the brain contains

different components of the noise signal. Data acquired outside the brain region is

only subject to the noise of the measurement instrument (e.g., the scanner), whereas

data within the brain is related to motion-related noise, thermal and respiratory noise

from the body, partial volume effects, flow artifacts, and MR spin history errors [52].

The estimated SNR is an optimistic approximation of the true SNR because the

signal and the noise overlap in some frequency bands, and thus part of the noise is

treated as signal. We use this estimated SNR as an upper bond of the true SNR.

Amount of noise presented in the data largely influences effectiveness of data analysis

and modeling algorithms. Therefore, a clear connection between SNR of data and

performance of an analysis method is crucial in obtaining accurate interpretation of

results.

2.5 Summary

In this chapter, we introduced a brief background on fMRI physics, properties of

data, and experimental protocols. Preprocessing steps of fMRI data described in the

previous section are applied to the real fMRI data, and signal-to-noise ratio is an

important property of the data against which we test performance and robustness of

our data driven analysis methods in Chapter 5. We now turn our attention to how

fMRI data can be used to reveal connectivity in the brain.
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Chapter 3

Functional Connectivity

Many fMRI studies aim to discover patterns of brain activity that are associated with

phenomena of interest. The patterns of activity are often called neural correlates, to

emphasize that changes in the brain vary with changes in an external phenomenon.

Most fMRI analysis methods identify whether a given voxel or a region of interest

(ROI) shows significant task-related signal changes. Each voxel or a group of voxels is

tested for correlation with the protocol, independently from other voxels or groups in

such methods. A collection of voxels whose time courses correlate substantially with

the experimental task may implicitly represent coactivation, but do not provide any

information about the relations or dependencies among the brain regions that those

voxels delineate.

Because fMRI data are collected over time and have a temporal structure, several

methods utilize the information about the coherence of activity over time to identify

functional connectivity, which represents the pattern of functional relations among

brain regions, independent of a particular task-induced activation. This class of

methods includes cross-correlation [25], partial least squares [66], and data driven

methods such as flat [32] and hierarchical clustering [30], principal component analysis

[26], multidimensional scaling [26], and independent component analysis [49].
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3.1 Brain Connectivity

The organization of the human brain is based on two complimentary principles, which

lead to two corresponding approaches in explaining its function [56]. The first ap-

proach is functional segregation. The goal here is to localize function to specific brain

areas. This approach is based on the principle of modularity, which is specialization

of function within different regions of the brain, where local assemblies of neurons

in each area perform their unique operations. The second approach is functional in-

tegration, which explains function in terms of information flow between brain areas.

This approach is based on the principle that functions are emergent properties of in-

teracting brain areas within networks. Functional segregation has been the dominant

approach, but segregation itself does not explain the entire brain function. Recently,

more works have been focused on the distributed nature of information processing

in neuronal networks in the brain, which attempt to explain “transferred and trans-

formed effects within the segregated regions” [56]. This leads to the study of brain

connectivity.

Before we look at the relationships between neuronal networks across the brain,

we first need to categorize the different types of brain connectivity. Connectivity

refers to several interrelated, yet different aspects of brain organization [35, 44]. The

basic distinction is that between structural connectivity, functional connectivity, and

effective connectivity. Structural connectivity refers to a network of anatomical con-

nections linking sets of neurons or neuronal elements. On the other hand, functional

connectivity is fundamentally a statistical concept. It characterizes deviations from

statistical independence between distributed and spatially remote neuronal units.

Statistical dependence can be estimated by measuring correlation or covariance [26]

or spectral coherence [61]. Functional connectivity often looks for temporal correla-

tions between all neurophysiological events in a system, regardless of the anatomical

routes through which such influences are exerted. Furthermore, it does not make

any explicit reference to specific causal effects between events. Effective connectivity

describes networks of causal effects of one neural element over another in the context
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of a particular anatomical model that specifies such routes a priori. Thus, it is often

viewed as the intersection of structural and functional connectivity. Such casual ef-

fects are inferred through a causal model, which includes structural parameters, and

regions and connections of interest are specified by the researcher [54].

3.2 Standard Regression-based Hypothesis-driven

Method for Detecting Functional Connectivity

Since fMRI studies rely on the detection of a weak signal in the presence of substantial

noise, careful statistical analysis is necessary. As briefly discussed above, the regres-

sion based approach has been traditionally applied to detect functional connectivity,

especially in early studies of fMRI [4, 10]. Typically, a “seed” region is selected as

the first step. It is often a particular area of interest in the brain that we want to find

connectivity to, or a group of regions whose time courses exhibit most resemblance to

the protocol of an experiment (e.g box-car waveform). Then, functionally connected

network is defined as the areas whose correlation with the seed time course exceeds

a pre-defined threshold. For a time course t and a reference waveform s of the seed

region, the correlation coefficient is calculated as

r =

∑
(t− t̄)(s− s̄)√

(t− t̄)2(s− s̄)2
, (3.1)

where t̄ and s̄ are the means of the individual time course and the reference waveform,

respectively. r has a value of 1 for perfect correlation, a value of zero for no correlation

(corresponding to the null hypothesis), and a value of -1 for perfect anti-correlation.

The basic idea is very similar to that of a simple hypothesis testing, where the

result is declared as significant if the data sample is unlikely to have occurred under the

null hypothesis. An experimental hypothesis represents a prediction about the data or

an active voxel, whereas a null hypothesis is based on random chance, corresponding

to an assumption that the mean of correlation coefficients between the signals of the

seed region and activated areas is same as that with non-activated areas. Therefore,
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the standard regression based method is also known as hypothesis-driven analysis.

Hypothesis-driven analysis has two main characteristics. First, this method re-

quires a prior knowledge about the choice of the seed region or an external reference

function (not necessarily from within the brain), which often requires information

on the protocol of an experiment. Although it is difficult to obtain an exact event

timing in more complex experiments, the experimental protocol is pre-defined in a

vast majority of fMRI experiments, and hypothesis-driven analysis such as t-test or

correlation analysis can be applied. The second characteristic is an choice of the

correlation threshold, which is directly related to the significance level for the val-

ues of correlation. Obtaining a meaningful correlation coefficient depends on having

maximal variability in the signal of interest, compared to experimental noise, and the

number of time samples used. The choices of seed regions and threshold values should

be carefully compared, especially when group analysis across subjects is performed.

On the other hand, exploratory data analysis methods, such as principal com-

ponent analysis [26], independent analysis [49], and clustering [32], do not require a

pre-determined choice of a seed region. Instead, they discover the interesting seed re-

gions and their associated networks and time courses in an unsupervised way. These

methods will be discussed in depth in Chapter 4.

3.3 Prior Work

An increasing amount of attention has been recently paid to the conditions of the

human brain at rest and correlations in brain activity during a deactivated state in

fMRI studies. Functional connectivity in the motor cortex of resting human brain

was demonstrated by Biswal and his group in 1995 [10]. Using echo-planar image

pulse sequence with a time resolution of 250ms to rapidly sample a single slice within

the brain, they measured fMRI activity in the sensorimotor cortex during a rest

condition. Voxels that are “functionally related” were determined by the standard

regression-based cross-correlation analysis, which identified voxels whose BOLD ac-

tivity time courses were significantly correlated with each other despite the subject
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not performing any motor task. The seed region, which in this case was the region

with time courses of low frequency fluctuations (<0.1 Hz) compared to the MR signal

intensity fluctuations of about 2% in the resting brain, and the correlation threshold

had to be predetermined before the correlation analysis. Thus, the resulting map

presented functional connectivity with that seed region. The authors concluded that

correlation of low frequency fluctuations, which may arise from fluctuations in blood

oxygenation or flow and are not associated with system noise or cardiac or respira-

tory peaks, is a demonstration of functional connectivity in the brain. This study

was followed by other groups’ studies that revealed evidence of connectivity between

additional functional areas of the brain, such as the somatosensory and visual cortices

[17, 46, 53].

Functional connectivity during the resting state was also measured by independent

component analysis in [65]. It was demonstrated that spatial ICA yielded connectivity

maps of bilateral auditory, motor and visual cortices, which in part confirmed Biswal’s

result. In addition, it showed that prefrontal and parietal areas are also functionally

connected within and between hemispheres during the resting state. The authors

claimed that these connectivity maps obtained by ICA showed an extremely high de-

gree of consistency in spatial, temporal, and frequency parameters within and between

subjects. Several other applications of ICA in resting state fMRI data showed simi-

lar results that ICA is capable of detecting functional networks beyond the primary

(motor, visual, and somatosensory) brain regions [7, 42, 47, 67].

Calhoun et al. used ICA to decompose activation patterns into interpretable

components during a simulated driving test, which simultaneously engages multiple

cognitive elements, such as error monitoring and inhibition and perceiving driving

speed [11]. In addition, they also applied ICA to clinical research. In [14], they

found that the use of coherent brain networks such as the temporal lobe and default

mode networks provides a more reliable measure of disease state than task-correlated

fMRI activity, when the goal is to discriminate subjects with bipolar disorder, chronic

schizophrenia, and healthy controls.

Another pioneering work in functional connectivity was done by Friston et al.
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[26]. They defined time-series functional connectivity as temporal correlations be-

tween spatially remote neurophysiological events. They modeled a connected brain

system as a pattern of activity in terms of correlations or covariance, and used prin-

cipal component analysis to demonstrate the connectivity during a verbal test. This

method is explained in more detail in Section 4.1.

Clustering also has been applied to detect functionally connected networks. For

example, in [17], Cordes et al. used hierarchical clustering [32] in resting data and

found clusters of neighboring voxels whose activity was highly correlated at low fre-

quencies, which suggested functional connectivity similar to that of Biswal [10]. Sim-

ilarly, Peltier et al. [53] classified the low frequency resting state functional connec-

tivity using a self-organizing map (SOP) [43]. In [30], Golland and her colleagues

applied a top-down hierarchical clustering approach to the rest-state scan and movie

watching data. By incorporating the concept of functional hierarchy and its multi-

resolution visualization framework, their results described the co-activation pattern

at different scales, which helped the interpretation of the results when compared to

the anatomical structure of the brain. They discovered that clustering analysis finds

networks consistent with neuroanatomical parcellation of the cortex at the coarse lev-

els of hierarchy, and that the finer levels reveal an interesting, yet unstudied, network

structure which exhibits higher variability across subjects and experiments. Various

components that lead to the differences in the clustering tree need to be understood

to expand this model for use in global analysis.

Besides describing functional relations between brain regions, several approaches

have been developed to provide information on the directionality of those relations,

called pathway analysis. These include structural equation models and dynamical

causal models [54], whose goals are to measure effective connectivity, which is the

influence exerted by one neuronal system over another.
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3.4 Summary

In this chapter, three types of brain connectivity, namely, anatomical, functional,

and effective connectivity were presented and compared to each other. Functional

connectivity was more specifically defined as temporal correlations between neuro-

physiological events. The standard approach of identifying functional connectivity

using the hypothesis-driven method was discussed along with the prior work utilizing

this method.
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Chapter 4

Data-Driven Methods

Data-driven methods provide an alternative to testing each voxel’s time course against

a hypothesis. Also known as exploratory analysis, data-driven analysis explores the

multivariate structure of the data, aiming to identify “interesting” components. These

components may reveal structures or patterns in the data, which are difficult to iden-

tify a priori, such as unexpected activation and connection, motion related artifacts,

and drifts [11]. These unsupervised analysis methods provide generalizations of con-

nectivity analysis in situations where reference seed regions are unknown or difficult

to identify reliably. One important motivation and expectation behind the use of

these methods is that in many data sets, data points lie in some manifold of much

lower dimensionality than that of the original data space [9]. Three most popular

methods are clustering, principal component analysis, and independent component

analysis, and they will be discussed in the context of functional connectivity in the

subsequent sections.

We first define the notations used throughout this chapter:

X: Data, a set of samples/observations.

x: Single sample/observation.

S: Sources.

s: Single source.

K: Number of sources/components.

n: Index for observations.
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k: Index for sources.

A: Mixing/projection matrix.

W: Unmixing matrix.

C: Sample covariance matrix.

T : Number of time point in fMRI data.

V : Number of voxels in fMRI data.

N : Number of observations. (For spatial PCA and ICA, N = T . For GMM, N = V .)

D: Dimension of observation. (For spatial PCA and ICA, D = V . For GMM, D = T .)

4.1 Principal Component Analysis

Principal component analysis (PCA) is a statistical technique that linearly transforms

an original set of variables into a substantially smaller set of uncorrelated variables

that captures most of the variance in the original set of variables. It is also known as

the Karhunen-Loeve transform [40]. One of the main goals of PCA is to reduce the di-

mensionality of the original data set. A small set of uncorrelated variables is assumed

to represent the underlying sources for observations, and is more computationally

efficient in further analysis than a larger set of correlated variables. Thus, PCA is

often used as a pre-processing step for other data-driven analysis methods such as

clustering and ICA. For investigation of functional connectivity, principal component

analysis has been found to be useful. In [26], time-series functional connectivity was

investigated by defining it as the temporal correlation between spatially remote neu-

rophysiological events. Besides its use in dimensionality reduction, PCA is widely

applied in lossy compression and feature extraction of data and data visualization

[40]. In this section, we follow the formulation presented in [9].

The algorithm of principal component analysis is driven by two different ideas,

namely maximum variance of transformed data and minimum reconstruction error,

which can be shown to be equivalent. In the maximum variance formulation of PCA,

it is defined as the orthogonal projection of the original data onto a lower dimensional
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linear “principal space,” which maximizes the variance of the projected data. Assume

we have a data set of observations {xn} of dimension D, where n = 1, . . . , N represents

the number of samples. We project the data onto a space of dimension K ≤ D, where

the value of K is determined by the user depending on the application. In a simplified

case, consider projecting the data onto a one-dimensional space where the direction

is defined by a D-dimensional unit vector u1, such that uT
1 u1 = 1. The variance of

the projected data is given by

1

N

N∑

n=1

{uT
1 xn − uT

1 x̄}2 = uT
1 Cu1, (4.1)

where x̄ is the sample mean of the data

x̄ =
1

N

N∑

n=1

xn, (4.2)

and C is the sample data covariance matrix defined as

C =
1

N

N∑

n=1

(xn − x̄)(xn − x̄)T . (4.3)

We want to maximize the variance of the projected data with respect to u1, enforcing

the constraint that u1 is a unit vector. Then by using a Lagrange multiplier, this

becomes a maximization problem of

uT
1 Cu1 + λ1(1− uT

1 u1), (4.4)

where λ1 is a constant. By taking the derivative with respect to u1 and setting it to

zero, the maximum is achieved when

Cu1 = λ1u1, (4.5)

which implies that u1 is an eigenvector of the covariance matrix C. Also, since u1 is
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a unit vector, the variance of the projected data is given by

uT
1 Cu1 = λ1, (4.6)

which suggests that u1 must be the eigenvector with the largest eigenvalue λ1. This

eigenvector defines the first principal component.

The next principal components can be found in an iterative manner by selecting

the direction that maximizes the variance of the projected data among all the direc-

tions that are orthogonal to the ones that have already been defined as principal com-

ponents. Therefore, in the general case of projection onto the K-dimensional space,

the optimal projection that maximizes the variance of the projected data is achieved

when the principal components are defined as the K eigenvectors (u1, . . . ,uK) of

the data covariance matrix C with the K largest eigenvalues (λ1, . . . , λK). Only the

first (the mean) and second order (covariance) information of the data governs the

principal component analysis.

An alternative formulation of principal component analysis is based on the notion

of minimum reconstruction error. In this formulation, it is shown that among all

linear projection methods, principal component analysis minimizes the reconstruction

error, which is the distance between a data point and its reconstruction from the lower

dimensional space,

J =
1

N

N∑

n=1

||xn − x̂n||2, (4.7)

where x̂n is the projection of point xn onto the lower dimensional space.

To obtain a solution that minimizes the reconstruction error, we assume we have

a complete orthonormal set of D-dimensional basis vectors {ui}, where i = 1, . . . , D.

We want to approximate each data point using a set of K ≤ D basis vectors of the

lower-dimensional space of the projected data. Then the approximation of each data

point xn can be expressed by

x̂n =
K∑

i=1

aniui +
D∑

i=K+1

biui, (4.8)
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where ani’s are the coefficients of the basis vectors for each point and bi’s are constants

for all data points. We seek {ui}, {ani}, and {bi} that minimize the reconstruction

error J . Taking the first derivative of J with respect to {ani} and {bi}, and making

use of the orthonormality condition of basis vectors, we obtain anj = xT
nuj for j =

1, . . . , K and bj = x̄Tuj for j = K+1, . . . , D. Substituting {ani} and {bi} and making

use of the relation xn =
∑D

i=1(x
T
nui)ui gives

xn − x̂n =
D∑

i=K+1

{(xn − x̄)Tui}ui. (4.9)

Therefore, we obtain the reconstruction error J in terms of the basis vectors in the

form of

J =
1

N

N∑

n=1

D∑

i=K+1

(xT
nui − x̄Tui)

2 =
D∑

i=K+1

uT
i Cui. (4.10)

Then, the solution for the minimization of J with the constraint that {ui} are or-

thonormal is given by choosing {ui} as the eigenvectors of the covariance matrix C,

namely,

Cui = λiui, (4.11)

where i = 1, . . . , D, and the corresponding reconstruction error J is given by

J =
D∑

i=K+1

λi (4.12)

which is the sum of the eigenvalues of eigenvectors that are normal to the principal

subspace. The minimum reconstruction error is achieved by choosing such eigen-

vectors with the D − K smallest eigenvalues. Equivalently, the eigenvectors with

the K largest eigenvalues define the basis vectors of the principal subspace. There-

fore, we have shown that the maximum variance and minimum reconstruction error

formulations of PCA give identical solutions.

There remains the problem of choosing the dimensionality of the principal space

where we project the original data onto, or equivalently, the number of principal

components, K. One can choose K based on a priori knowledge or use automatic
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procedures. Several measures have been adopted in choosing the number of principal

components. One popular way, which examines the proportion of variance, is to select

K such that the top K principal components explains 90 per cent of the total variance

in the data. Since the variance in the data is explained in terms of the eigenvalues

λi’s of the data covariance matrix C, we pick the optimal K such that

λ1 + · · · + λK

λ1 + λ2 + · · · + λD
= 0.9 (4.13)

holds. Adding another principal component beyond K would not substantially in-

crease the variance explained. As in the case of many time series of images, such as

fMRI experiments, where inputs are highly correlated in space and time, there will be

a small number of eigenvectors of the data covariance matrix with large eigenvalues.

Therefore, a large amount of dimensionality reduction can be achieved via principal

component analysis. Another approach in selecting the number of principal compo-

nents is to adopt a model selection technique. This approach is discussed in depth in

Section 4.5.

In the setting of fMRI time-series data, let the data be represented as an T x V

matrix X, where each row represents a time point and column presents a voxel. In

terms of a generative model, we assume that the observed time course x comes from

a multivariate Gaussian distribution with mean E[x] = µ and covariance Cov[x] = Σ,

i.e., x ∼ N(µ, Σ). Then, the computation of the principal components is reduced to

the solution of an eigenvalue-eigenvector decomposition of a correlation/covariance

matrix. In this work, we follow the convention that principal components are the

normalized eigenvectors from the decomposition. Following the formulation in [26], a

connected brain system is represented as a pattern of activity in terms of correlations

or covariance, XTX, depending on the normalization of the data. The subtracting

the mean from the data is necessary in order to force the first principal component to

represent the direction that captures the most variance within the data, rather than

with respect to the origin of the coordinate system. XTX expressed as correlation is

preferred to covariance when the variables are in different units or their variances differ
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widely. Then, applying Singular Value Decomposition (SVD) on X, X = UΛΨT , the

normalized time-series matrix X is decomposed into two sets of orthonormal vectors

U and Ψ, which represent patterns in space and in time, respectively, and Λ, which

is a diagonal matrix of singular values in a decreasing order. Since XTX defines the

functional connectivity matrix, rearranging the above equation into XTXΨ =Λ 2Ψ

implies that the columns of Ψ are the eigenvectors of the functional connectivity

matrix. Thus, the first eigenvector represents a spatial pattern that embodies the

most variance. Other eigenvectors are sorted in terms of the amount of variance they

explain. Since these eigenvectors or spatial modes can be represented as an image,

they are often called eigenimages [63], each of which can be seen as a template for

important features. In addition, each column of U depicts the time dependent profile

of each eigenimage and reflects the level at which an eigenimage is expressed over

time or under each experimental condition. By comparing the temporal expression

of the first few eigenimages with the variation in experimental factors over time, we

can determine a distributed functional system associated with these various factors.

4.2 Probabilistic Principal Component Analysis

In [62], Tipping and Bishop developed a more precise probabilistic formulation of PCA

using a Gaussian latent variable model, similar to factor analysis. This probabilistic

formulation of PCA provides a way to find a low-dimensional representation of higher

dimensional data with a well-defined probability distribution, and enables comparison

to other generative models within a density estimation framework.

Let us consider a latent variable model which fits data x of dimension D to its

corresponding lower-dimensional representation z of dimension K. This continuous

latent variable z corresponds to the principal subspace. Assuming that this lower-

dimensional representation of x is linear, we aim to find a projection matrix A, which

spans a linear space within the data subspace corresponding to the principal subspace,

and offset µ such that x = Az+ µ, where µ is the mean offset of the data permitting

the model to have non-zero mean. We evaluate the estimates of the parameters with

41



an objective function, which in this case is the squared-error in representation,

A∗ = argminA||x−Az− µ||2. (4.14)

Extending the model to explicitly represent the noise present in the observations by

additive isotropic noise ε ∼ N(0, σ2I), an observation x is generated by

x = Az + µ + ε. (4.15)

Assuming the prior distribution over z is a standard normal distribution,

p(z) = N(z|0, I), (4.16)

with the conditional distribution of the observed variable x, which is also Gaussian,

p(x|z) = N(x|Az + µ, σ2I) (4.17)

we can compute the marginal distribution of x,

p(x) =

∫
p(x|z)p(z)dz ∼ N(µ,B), (4.18)

where the covariance matrix B is defined by

B = AAT + σ2I. (4.19)

Equation 4.18 defines the probability model of the high dimensional observations.

Given the model and B, it implies that the likelihood of any observation x can be

directly evaluated.

For a set of data observations X = {xn}, the corresponding log-likelihood function
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is given by

ln p(X|µ,A, σ2) =
N∑

n=1

ln p(xn|µ,A, σ2) = −N

2
{D ln(2π) + ln |B| + Tr(B−1C)},

(4.20)

where the maximum likelihood estimator for µ is given by the mean of the data x̄, and

C is the sample covariance matrix defined in Equation 4.3. Finding the maximum

likelihood estimator for other parameters is non-travial, but Tipping and Bishop

[62] show that the closed-form solutions of the maximum likelihood estimates of the

parameters A and σ2 are obtained when

ÂML = U(L− σ2I)1/2R, (4.21)

where R is an arbitrary rotation matrix, U is the matrix of the eigenvectors of the

observation covariance matrix C, and L is the matrix whose diagonal contains the

corresponding eigenvalues. At the stationary point of the likelihood function for

A = ÂML, the corresponding maximum likelihood estimate for σ2 is

σ̂2
ML =

1

D −K

D∑

i=K+1

λi, (4.22)

where λi is the ith eigenvalue of the observation covariance matrix C, assuming the

eigenvalues are arranged in order of descending magnitude. It was shown by Tipping

and Bishop that the maximum of the likelihood function is obtained when the chosen

K eigenvectors correspond to the K largest eigenvalues.

There are two main advantages of probabilistic principal component. First, it

provides an explicit probability model of the data, p(X), in the density estimate

framework, which allows us to compute the likelihood of any observation and to

compare the result of probabilistic principal component to other exploratory data

analysis methods. Second, in a generative viewpoint, this probability model can be

used to provide samples from the distribution of PCA. We will not directly model

our fMRI data as probabilistic PCA, but instead use it to compute the likelihood in
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model selection.

4.3 Independent Component Analysis

Originally developed by Bell and Sejnowski [8], independent component analysis

(ICA) is a powerful explorative analysis technique used in many applications that

tackle blind source separation (BSS) problems [37]. ICA assumes that the original

data variable X is a linear weighted sum of a set of unknown latent source variables

S; i.e. X = AS, where A is the matrix of mixing coefficients. The latent variables,

known as the independent components of the observed data, are assumed to be non-

gaussian and mutually independent. As the linear mixing system is unknown, both

the source variables S and the weights A are iteratively estimated in ICA.

ICA was first introduced for fMRI analysis by McKeown et al. [49]. They used

the ICA algorithm to investigate task-related human brain activity in fMRI data and

showed that ICA can be used to reliably partition fMRI data sets into meaningful

basic components, including task and function related physiological changes, non-

task related signal changes, and artifactual components. Despite its strict linearity

assumption and debate on the choice of spatial or temporal independency, ICA has

been widely applied, especially in analysis of complex fMRI data. For instance,

Calhoun et al. [11] used ICA to decompose activation patterns into interpretable

components during a simulated driving test, which is an example of a near-protocol-

free fMRI experiment.

Since we are interested in the functional connectivity of the brain, we want to

obtain spatial maps which represent independent functional networks and their asso-

ciate time courses. Thus, for our analysis of fMRI data, we use spatial independent

component analysis (sICA), rather than time independent component analysis which

produces a set of time courses that are as independent to each other and their as-

sociated spatial maps. Esposito et al. [24] compared two ICA algorithms that have

been used so far for spatial ICA (sICA) of fMRI time-series in the literature: Infomax

[8] and Fixed-Point [38]. They found that whereas both algorithms produced highly
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accurate results, because of its adaptive nature, they concluded that the Infomax

approach appears to be better suited to investigate activation phenomena that are

not predictable or adequately modelled by inferential techniques. We chose to use

the Infomax approach for our fMRI analysis.

4.3.1 Generative Model

As in the case of PCA, the generative model used in ICA is a linear mixture of

latent random variables. Assuming we have N observations of such mixtures, each

observation of mixture xn is expressed as a linearly weighted sum of K independent

sources, sk,

xn = an1s1 + · · · + anKsK (4.23)

for n = 1, . . . , N and ank’s represent the mixing coefficients. ICA assumes that

each mixture x and each source s are random variables. In the matrix form, where

the mixed signals are represented as a data matrix X, the generative model can be

expressed as

X = AS. (4.24)

In other words, for a total of K sources, each row sT
k of the source matrix S contains

a single independent component, whereas each column ak of the mixing matrix A

comprises the corresponding mixing weights.

Unlike principal component analysis where we want our sources to be uncorrelated

with each other, independent component analysis imposes a stricter condition that

sources are statistically independent of each other. Given X = AS, we want to find

the optimal unmixing matrix W∗ ∼ A−1 in S = WX such that the components of S

are statistically independent.

Since both A and S are unknown, the ICA model has the following ambiguities.

First, the scaling and signs of the sources can not be determined. For example, any

scalar multiplier in the mixing vector ak can be cancelled by dividing the source vector

sk by the same scalar. The second ambiguity is that the order of the independent

components is not fixed since we can freely change the order of the linear terms
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in Equation 4.23. The sign and scaling of components are often normalized after

performing ICA to deal with these ambiguities. In our case, we sorted the components

by their energy and adjusted the components so that each component has a positive

mean.

4.3.2 Independence of Sources

What differentiates ICA from PCA and other exploratory data analysis methods is

the assumption that the underlying sources, or equivalently, the components of S

are statistically independent. Statistical independence means that the sources do

not contain any information about each other. In other words, the joint probability

density function (pdf) of the sources is the product of its marginal probability densities

for all sources,

p(s1, ..., sK) =
K∏

k=1

p(sk). (4.25)

Since the exact determination of the pdfs is generally not feasible, it is difficult to

obtain a closed form solution of ICA. Instead, we estimate the sources by approxi-

mating independence with an objective function. This objective function, measuring

the non-Gaussianity of the estimated sources, is often based on mutual information

(infomax) [8] or negentropy (fixed-point algorithm) [38]. In practice, we use iterative

methods, such as gradient descent, to optimize the objective function of ICA.

The use of non-Gaussianity as a measure of independence is justified by the cen-

tral limit theorem. Central limit theorem states that the distribution of the sum

of independent, identically distributed random variables tends to be more Gaussian

than the original ones. In other words, the more non-Gaussian the sources are, the

more independent they have to be. This builds the link between independence and

non-Gaussianity.

One important measure of non-Gaussianity is given by negentropy, which is based

on the information-theoretic quantity of entropy. Treating each source s as a discrete

random variable, the entropy H of the discrete random variable s with the probability

46



distribution p(·) is defined as

H(s) = −
∑

a

p(s = ai) log p(s = ai), (4.26)

where the ai are all the possible values of s. By definition, entropy measures the

amount of information contained in the observation of the random variable s. The

more random (unstructured and unpredictable) the random variable is, the larger its

entropy is. This definition can be generalized to differential entropy for continuous

random variables or vectors, where the summation in the entropy equation is replaced

by an integral.

In the differential entropy setting, Gaussian variables have the largest entropy

among all random variables of equal variance, implying that the Gaussian distribution

is the least structured of all distributions [19]. This allows entropy to be used as a

measure of non-Gaussianity. Negentropy J is defined as

J(s) = H(sgauss)−H(s), (4.27)

where sgauss is a Gaussian random variable with the same covariance as s. Negentropy

is always non-negative and is equal to zero if and only if s is Gaussianly distributed.

In other words, negentropy measures the difference between the Gaussian distribution

and that of the independent variables, and shows how non-Gaussian the independent

variables are. In the case of unit variance s, entropy and negentropy differ only by

a constant. The above definition of negentropy requires an exact pdf of the random

variable. To make estimation feasible in practice, negentropy can be approximated

without knowing exact pdfs by using other measures of non-Gaussianity, such as

skewness and kurtosis, which are, the third and fourth order cumulants, respectively

[38].

Mutual information measures how much dependence is shared among random

variables. The mutual information I between K random variables is defined using
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entropy as

I(s1, . . . , sK) =
K∑

k=1

H(sk)−H(s). (4.28)

This is equivalent to the Kullback-Leibler divergence (relative entropy) between the

joint density p(s) and the product of its marginal densities [19]. Mutual information

is always non-negative and zero if and only if the variables are statistically indepen-

dent. Since mutual information measures the amount of information shared between

random variables and captures the whole dependence structure of the variables be-

yond the simple covariance, it can be used as a natural measure of independence.

Thus, estimating the independent components is possible by minimizing the mutual

information between them. However, in practice, minimizing mutual information can

be highly computationally expensive.

From the definition of negentropy, we observe that negentropy differs from mutual

information only by a constant C; i.e.

I(s1, . . . , sK) = C −
K∑

k=1

J(sk). (4.29)

This shows the fundamental relation between negnetropy and mutual information.

Therefore, maximizing negentropy is equivalent to minimizing mutual information

when estimating independence.

4.3.3 The Infomax Algorithm

Infomax is an implementation of ICA from a neural network viewpoint, based on

minimization of mutual information between independent components [8]. In the

Infomax framework, a self-organizing learning algorithm is chosen to maximize the

output entropy, or the information flow, of a neural network of non-linear units. The

network has N input and output neurons, and an N x N weight matrix W connecting

the input layer neurons with the output layer neurons. X is an input the to neural
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network. Assuming sigmoidal units, the neuron’s outputs are given by

s = g(D) with D = WX (4.30)

where is g(·) a specified non-linear function. This non-linear function, which provides

necessary higher-order statistical information, is chosen to be a logistic function

g(Di) =
1

1 + e−Di
, (4.31)

where Di represents a row in the matrix D for i = 1, · · · , N .

The main idea of this algorithm is to find an optimal weight matrix W iteratively

such that the output joint entropy H(s) is maximized. In the simplified case of only

two outputs, where s = (s1, s2), I(s) = H(s1)+H(s2)−H(s) holds by the definition of

mutual information. Hence, we can minimize the mutual information by maximizing

the joint entropy. Then, by another equivalent definition of mutual information,

I(X, s) = H(s)−H(s|X), the information flow between the input and the output is

maximized by maximizing the joint entropy H(s) since the last term vanishes due to

the deterministic nature of s given X and g(·).

To find an optimal weight matrix W, the algorithm first initializes W to the

identity matrix I. Using small batches of data drawn randomly from X without

substitution, the elements of W are updated based on the following rule:

∆W = −ε

(
∂H(s)

∂W

)
WTW = −ε(I + f(D)DT )W, (4.32)

where ε is the learning rate (typically near 0.01) and the vector function g has elements

fi(Di) =
∂

∂Di
ln

(
∂gi

∂Di

)
= (1− 2si). (4.33)

Equation 4.32 is known as the Infomax algorithm. The WTW term in Equation 4.32,

first proposed by Amari et al. [2], avoids matrix inversions and speeds up convergence.

During training, the learning rate is reduced gradually until the weight matrix stops

49



changing appreciably. The choice of nonlinearity depends on the application type. In

the context of fMRI, where relatively few highly active voxels are usually expected in

a large volume, the distribution of the estimated components is assumed to be super-

Gaussian. Therefore, a sigmoidal function is appropriate for such an application [49].

4.3.4 Maximum Likelihood Formulation

ICA can also be formulated in the maximum likelihood framework [38, 59]. For a

mixture vector variable x with the joint pdf p(x) and a source vector variable s with

the joint pdf p(s), such that s = W∗x, where W∗ is the optimal unmixing matrix,

the density of x given W∗ is

px(x) = ps(s)|W∗|. (4.34)

|W∗| = |∂s/∂x| is the Jacobian of s with respect to x. Equation 4.34 defines the

likelihood of the observed mixtures x. We assume that we can set the density of s a

priori.

For any non-optimal unmixing matrix W, the resulting signals are given by y =

Wx. Explicitly stating the dependence on W, the likelihood px(x|W) of the mixture

x given W is

px(x|W) = ps(Wx)|W|. (4.35)

The maximum of this likelihood is achieved when W is the optimal unmixing matrix

W∗. Therefore, the quality of any presumed unmixing matrix W can be evaluated

by the above equation, and we can optimize Equation 4.35 to find the particular W

that maximizes the likelihood of the mixture.

Since W is the parameter that needs to be estimated to calculate the maximum

likelihood, the joint pdf px(x|W) for x can be treated as if it was a function of the

parameter W. We denote this joint pdf as the likelihood function L(W). Assuming

the K source signals are statistically independent, such that the joint pdf ps is the

product of its marginal pdfs, it allows the logarithm of Equation 4.35 to be written
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as

ln L(W) = ln px(X|W) =
K∑

k=1

N∑

n=1

ln ps(w
T
k xn) + N ln |W|, (4.36)

where W = {w1, . . . ,wK}T . The matrix W that maximizes this function is the

maximum likelihood estimate of the optimal unmixing matrix W∗. This maximum

likelihood formulation of ICA enables comparison to other exploratory methods, such

as probabilistic PCA and Gaussian mixture model.

Furthermore, it can be shown that the maximum likelihood estimation formulation

is equivalent to the Infomax approach [16]. To see this connection, we consider the

expectation of the log-likelihood,

1

N
E[ln L(W)] =

K∑

k=1

E[ln ps(w
T
k x)] + ln |W|. (4.37)

If the true distribution of wT
k x were equal to the pre-defined ps(·), then the first

term on the right hand side would be equal to −
∑K

k=1 H(wT
k x), by the definition of

entropy. For an invertible linear transformation y = Wx, the mutual information is

expressed as

I(y1, . . . ,yK) =
K∑

k=1

H(yk)−H(x)− ln |W|. (4.38)

Therefore, combining Equation 4.37 and 4.38 shows that the likelihood would be equal

to the negative of the mutual information up to an additive constant. More precisely,

exact equivalence arises when the non-linearities gi(·) used in the neural network are

chosen as the cumulative distribution functions corresponding to the densities ps(·),

i.e., g′i(·) = ps(·).

4.3.5 Spatial ICA for fMRI

In the case of spatial independent component analysis (sICA) [49], we assume that

spatio-temporal fMRI data come from the linear mixing of different brain processes

whose spatial distributions are invariant over time and statistically independent. The

fMRI data is represented by a T ×V data matrix X, where T is the length of the time
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course and V is the total number of voxels in the volume. In case of sICA, each image

is treated as a sample. sICA provides an unsupervised composition so that each row

of S of dimension K × V contains an independent spatial pattern and the column

of A holds its corresponding activation time-course, X = AS. Typically, spatial

maps, treated as a segmentation of the volume, are sparse and non-overlapping, but

exact interpretation of the components is difficult. Within each independent spatial

component, we declare voxels with a large magnitude of coefficients as functionally

connected. This is similar to the definition of connectivity maps in PCA [26]. One

problem of ICA is that it is difficult to assign a statistical significance to a value in

the spatial maps since the amplitude of a separated signal is determined up to sign

and scale. In practice, a z-map conversion is adopted to convert a spatial map with a

non-Gaussian distribution into a z-map with a Gaussian distribution. For each voxel

within a spatial map, we first subtract the mean of the spatial map from the voxel

value, and then divide it by the standard deviation of the spatial map. This enables

assignment of significance levels based on the transformed z-map values [49].

There is another subtle step for dealing with fMRI data in ICA. Before estimating

the independent components, the observed data X is whitened, that is, the samples

made uncorrelated and their variances one. Whitening is a linear transformation

that can be constructed using principal component analysis (PCA). Since whiten-

ing reduces the number of free parameters, it makes the estimation of independent

components computationally easier. Specifically, the mixing matrix A becomes or-

thonormal, making its inverse W easy to calculate. In addition, by excluding the

weakest principal components, the dimension of the data can be reduced in a way

that optimally preserves the total variance, which improves the signal-to-noise ratio

of the data.

Calhoun et al. investigated many properties of ICA when applied to fMRI data.

They provided a generative model for validating and comparing results when different

choices of algorithms and preprocessing stages were performed [15]. They generated

artificial fMRI data using the synthesis model, performed analysis of the data using

ICA, and evaluated the performance using the Kullback-Leibler divergence between

52



the true source and the estimated component. In their work, Infomax outperformed

Fixed-Point for the choice of ICA algorithm, and PCA outperformed clustering for

the choice preprosessing. They concluded that the best combination is Infomax with

PCA. Based on this result, we chose Infomax as our choice of algorithm and PCA as

our preprossing step for the analysis of fMRI data in the next chapter. Furthermore,

Calhoun et al. compared the spatial and temporal ICA using the Fixed-Point algo-

rithm [13]. With synthetic activations, they found a good correspondence between

the resulting components of sICA and tICA for an activation study with a single acti-

vation, but also observed some divergence for a visual paradigm in which two closely

related regions were active. For further perspectives of ICA on fMRI data, such as

validation, group analysis, and applications to clinical research, one can refer to the

review articles in this topic [12, 48].

4.4 Clustering: Gaussian Mixture Model

Clustering, or data segmentation, algorithms aim to group a collection of data points

into subsets such that the points in each subset are more closely related to each other

than those in other subsets, while each cluster itself is as different as possible from

other clusters. In many real data cases where multiple clusters are present, a simple

probability distribution is insufficient to capture the structure of the data. A linear

combination of more basic distributions, known as mixture distribution, gives a better

characterization by providing a framework upon which to build a more complex, richer

class of density models. In this section, we follow the formulations presented in [9].

In terms of a generative model, we assume that the data sample x is generated

from a mixture density,

p(x) =
K∑

k=1

p(x|Θk)P (Θk) =
K∑

k=1

πkp(x|Θk), (4.39)

where Θk are clusters and p(x|Θk) and p(Θk) = πk represent component densities and

mixture proportions, respectively. The number of clusters K must be pre-defined.
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Gaussian mixture model (GMM) is a mixture distribution where each distri-

bution in the mixture is assumed to be a single multivariate Gaussian, p(x|Θk) =

N(x|µk,Σk). With GMM, any continuous probability density can be approximated

to some arbitrary accuracy by using a sufficiently large number of single Gaussians

and by adjusting their means and covariances as well as the mixture weights of the

linear combination.

If a joint distribution is defined over observed and latent variables, we can obtain

the distribution of observed variables alone by marginalizing the joint distribution over

the latent variables. This makes enables relatively complex marginal distributions

over the observed variables to be defined in terms of more tractable joint distributions

over the expanded space of observed and latent variables [9]. In other words, the latent

variables allow complicated distributions to be formed from simpler distributions.

To better understand this model, we introduce a discrete K-dimensional binary

latent variable z. An element zk of z can have a value of either 0 or 1, and only one

element of z is equal to one. There exists only K possible states of the vector z. The

marginal distribution of z can then be specified in terms of the mixing coefficients,

p(zk = 1) = πk, (4.40)

where the mixing coefficients {πi} must satisfy

0 ≤ πk ≤ 1 (4.41)

and
K∑

k=1

πk = 1 (4.42)

in order to be a valid probability distribution. Then the density of z can be written

as

p(z) =
K∏

k=1

πzk
k . (4.43)

Since the conditional distribution of x given a particular z is defined as a Gaussian
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distribution in GMM,

p(x|zk) = N(x|µk,Σk), (4.44)

the conditional distribution of x given z can be written in the form

p(x|z) =
K∏

k=1

N(x|µk,Σk)
zk . (4.45)

Now, with the introduction of the latent variable z and marginalizing the joint dis-

tribution of x and z over all possible states of z, the distribution of x is obtained in

the form of

p(x) =
∑

z

p(z)p(x|z) =
K∑

k=1

πkN(x|µk,Σk), (4.46)

which is equivalent to Equation 4.39. In generative viewpoint, we first generate a

value of z according to the mixture coefficients (Equation 4.43). Then, a data point

is generated from the Gaussian distribution which corresponds to the outcome of z

(Equation 4.45). Therefore, for every observation xn, there exists a corresponding

latent variable zn. This leads to another important quantity, the conditional distri-

bution of z given x, which can be viewed as the responsibility of component k for

explaining the observation of data x. We let γ(zk) denote this conditional distribution

and use Bayes’ theorem to obtain

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)

∑K
k′=1 p(zk′ = 1)p(x|zk′ = 1)

(4.47)

=
πkN(x|µk,Σk)∑K

k′=1 πk′N(x|µk′ ,Σk′)
. (4.48)

Note that πk can be interpreted as the prior probability of zk = 1, and γ(zk) as the

corresponding posterior probability after observing x.

Representing a data set of observations {x1, . . . ,xN} as an N ×D matrix X (for

fMRI data, N = V and D = T), the log-likelihood of the data is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln
K∑

k=1

πkN(x|µk,Σk). (4.49)
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We want to estimate the parameters {πi}, {µi}, and{Σi} from the sample for i =

1, ..., K such that the log-likelihood function is maximized. The usual way of esti-

mating the parameters, which is to set the first derivative of the log-likelihood with

respect to each parameter to zero and solve for the parameter, does not lead to a

closed form solution in this case. Such parameters are expressed in terms of the

responsibility term γ(zk), which in turn also involves the parameters we want to es-

timate, as shown in Equation 4.48. Therefore, we use the Expectation-Maximization

(EM) algorithm [22] to estimate the parameters in an iterative scheme.

The basic heuristic of the EM algorithm for estimating the parameters of GMM

is as follows [9]:

1. Initialize the means {µi}, covariances {Σi}, and mixing coefficients {πi}, and

compute the initial value of the log likelihood.

2. Expectation step: Evaluate the responsibilities using the current parameter

values according to the relative density of each data point under each Gaussian

component,

γ(zk) =
πkN(x|µk,Σk)∑K

k′=1 πk′N(x|µk′ ,Σk′)
. (4.50)

3. Maximization step: Update the estimates of the parameters using the new

responsibilities,

Nk =
N∑

n=1

γ(zk) (4.51)

µnew
k =

1

Nk

N∑

n=1

γ(zk)xn (4.52)

Σnew
k =

1

Nk

N∑

n=1

γ(zk)(xn − µnew
k )(xn − µnew

k )T (4.53)

πnew
k =

Nk

N
. (4.54)
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4. Compute the log-likelihood

ln p(X|π, µ,Σ) =
N∑

n=1

ln
K∑

k=1

πkN(x|µk,Σk) (4.55)

and evaluate the convergence of the parameters and the log-likelihood. Iterate

steps 2 and 3 until convergence.

Each update of the parameters that alternates between the expectation and max-

imization steps is guaranteed to increase the log-likelihood function [22]. Thus, we

repeat this procedure until the change in the likelihood or the parameters falls below

some set threshold. This is usually done in a finite number of iterations. However, as

in all gradient ascent procedures, there will generally be multiple local maxima of the

likelihood function. It is important to note that the EM algorithm is not guaranteed

to reach the global maximum. In addition, the results of the EM algorithm depend

on the initialization of the parameters. Therefore, multiple runs using several random

assignments should be run and we choose the run which has the highest likelihood.

Despite its ability to model complex densities, GMM has several additional weak-

nesses. First, the number of clusters must be pre-defined. Also, similar to ICA, there

is a problem of identifiability, since for K clusters, there exist K! equivalent solutions.

The ordering of components is arbitrary. As the number of clusters gets larger, it

becomes more difficult to interpret each cluster and compare across subjects. One

way to improve the interpretability is to incorporate a hierarchical structure among

clusters [30].

Computing full covariance matrices for all K Gaussians is computationally inef-

ficient and can easily introduce singularities. For high dimensional fMRI data, mod-

eling of the full covariance is impractical. Most methods obtain reasonable results

modeling only the variance elements in each Gaussian.

In the fMRI setting, if we treat the time course of a voxel as a sample in the data

X, GMM simultaneously estimates an optimal partition of the volume into a set of

disjoint networks and the representative time courses associated with these networks.

After the algorithm converges, the responsibilities γ(z) for each representative time
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course can be treated as a spatial map, which represents probabilistic segmentation

of the volume with respect to a particular time course representative. The exponen-

tial form of each Gaussian, combined with high dimensionality of the input space,

generates essentially binary posterior probabilities.

4.5 Model Selection

Model selection is a task of selecting a statistical model, which has the best gener-

alization of the given data, from a set of potential models [9]. As mentioned in the

previous sections, we saw that the total number of components, K, is pre-specified in

principal component analysis, independent component analysis, and Gaussian mix-

ture model. The number of components in those models also determines the degree

of freedom of the model and controls the model complexity. Therefore, we need to

determine such parameters for our model with a goal in mind that we want the model

to achieve the best predictability on new data sets. In addition, we also consider a

range of different types of models in order to find out the one that best describes our

data.

Typically, when the size of the data set is large, we select some of the data as

the training set to train a given model with a range of values for its complexity

parameters. Then we compare the parameters on independent data, called validation

set, and choose the one that gives the best prediction. In case of limited data where

the given model is fitted iteratively in the validation set, another test set of data is

necessary to evaluate the final performance of the selected model.

When we use maximum likelihood as the measure of performance, the performance

on the training set is not the best indicator of predictability due to the problem of

over-fitting. In other words, as we increase the number of the complexity parameters,

the likelihood of the training set will increase, but due to this close fitting to the

training data, the model loses the power to accurately predict the new data.

Various information criteria have been proposed as a measure of the goodness

of a fit of an estimated statistical model, which rely only on the training data and
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overcomes the bias due to over-fitting. They overcome the problem of bias in the

likelihood approach by introducing the penalty term for complexity which regularizes

and offsets the over-fitting for more complex models. Information criteria also make

use of only the training data so they can compare the complexity parameters and

models in a single training run. In the case of fMRI experiments, where the amount

of available data is limited due to the small size of experimental subjects and insub-

stantial number of repeated runs for each subject, the use of information criteria can

help to determine the number of components in a data-driven analysis model.

One of the classical and basic information criteria is Akaike Information Criterion

(AIC) developed by Hirotsugu Akaike in [1]. It uses information theoretic criterion

and selects the model for which the score

ln p(X|Ω)−K ′ (4.56)

is largest, where ln p(X|Ω) is the best-fit log-likelihood for the data X. Ω is the

set of parameters, and K ′ represents the number of free parameters in the model.

Regardless of the number of free parameters in generating the data, the goodness of

fit is improved by increasing the number of free parameters to be estimated. Hence,

AIC not only rewards goodness of fit, but also discourages over-fitting by including a

penalty, which is an increasing function of the number of estimated parameters.

Bayesian Information Criterion (BIC) [57], on the other hand, selects the model

for which the score

ln p(X) ∼ ln p(X|Ω)− 1

2
K ′ ln N (4.57)

is the largest, where N presents the total number of data samples. Compared to

AIC, BIC penalizes the number of parameters in the model more severely, and favors

a simpler model. It is shown in [57] that, in the asymptotic case where N approaches

infinity, corresponding to having infinite number of samples, BIC always outputs the

correct model.

While we use GMM on the full data, sICA is a two step process. We pre-process

our T × V data (whitening and reducing dimensions to K ≤ T ) using PCA prior
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to applying sICA on the new retained K × V data to have the K spatial sources

represented by a K × V matrix [15, 49]. Thus, for the likelihood term in AIC and

BIC, in order to determine the optimal number of total sources for the full data using

sICA, we subtract the likelihood function of probabilistic PCA (Equation 4.20) on

the (T−K)×V disregarded data from the likelihood function of ICA (Equation 4.36)

on the K × V retained data. The likelihood of probabilistic PCA on the disregarded

components penalizes the dimensionality reduction for throwing out important infor-

mation in the original data.

4.6 Summary

In this chapter, we described the main ideas, the generative models, and the al-

gorithms for three data-driven connectivity models of our interest, PCA, ICA, and

GMM. We also reviewed model selection, which is used to determine the total num-

ber of components used in the models. In addition, we discussed the applications of

these methods in the context of fMRI analysis. We apply these methods in identi-

fying functional connectivity in the next chapter and discuss their similarities and

differences.
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Chapter 5

Empirical Study

In this chapter, we present our comparison scheme on the performance of ICA and

GMM, and necessary preprocessing steps using the methods presented in Chapter 4.

In Section 5.2, the synthetic data examples used for our studies, and the analysis of

the results are presented. In Section 5.3, we extend our comparison scheme to a real

object recognition fMRI study.

5.1 Comparison Scheme

In this section, we discuss our approach for comparing the performance of ICA and

GMM, and necessary preprocessing steps using the methods presented in Chapter 4.

5.1.1 Preprocessing and Component Selection

In fMRI studies, experimental raw data is usually preprocessed in many ways to

enhance the quality of analysis, as discussed in Chapter 2. In our study, we do not

emphasize the effects of the standard preprocessing techniques. However, we discuss

the effect of normalization to eliminate mean on the performance of ICA and GMM.

GMM, along with other clustering analysis methods, is based on grouping image

voxels together by the similarity of their profile in time. Thus, when using GMM,

we subtract the mean of a time course from that time course to make sure that we
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cluster based on the signal shape rather than signal amplitude. For example, without

subtracting the mean, two time signals with an identical shape, but with significantly

different mean amplitudes are unlikely to be grouped in a same cluster. On the

other hand, sICA considers the intensity profiles of each image in the data. Thus,

normalizing the data across space for each image enhances the result of sICA analysis.

We evaluated the effect of different ways of normalizing the data in the experiments

with synthetic data described in Section 5.3. Time-averaging the data for GMM gave

a much better result than performing GMM on the raw or space-averaged data, and

was similar to that of space-time averaging (averaged across both space and time). For

sICA, space-avaraging the data gave a better result than using raw or time-averaged

data, and again was similar to that of space-time averaging. The overall dependance

of performance on the type of normalization was more significant for GMM than

sICA. To make our comparison of sICA and GMM on identical data, we normalize

our data both across space and time prior to our analysis.

Another major issue when performing sICA and GMM is that we need to specify

the number of sources a priori. In order to approximate such number, K, we ran AIC

and BIC on our normalized data with sICA and GMM over a range of values of K

from 2 to 105. From this range, we obtained an estimate of the number of sources

that is most likely, based on AIC and BIC. We repeated this process 30 times and

selected the average as our K. Due to the known problem of AIC and BIC that

they underestimate the true number of sources with a finite number of samples, we

only interpreted the outcomes as “suggested” number of sources and used them to

approximate the real number of sources. We ran ICA and GMM with the number of

sources suggested by AIC and BIC when analyzing their performances, described in

the following sections.

5.1.2 Comparison between ICA and GMM

With the preprocessed data and the estimated optimal number of sources K for ICA

and GMM suggested by the model selection methods, we performed the comparison

of the performance of ICA and GMM on classifying functional connectivity and dis-

62



Figure 5-1: Comparison scheme of ICA, GMM, and the ground truth. The ground
truth is not available for real fMRI studies for components other than the ones corre-
sponding to the experimental protocol.

tinguishing different sources. The complete comparison scheme is shown in Fig. 5-1.

We first perform spatial independent component analysis (sICA) on a T x V

dimensional data with the prespecified number of sources, K. As a result, we obtain

K V -dimensional spatial maps and their associated time courses of length T . The

objective of sICA is to have the sources represented as spatial maps that are as

independent as possible. On the other hand, applying the data to Gaussian mixture

model (GMM) with K components groups similar data time courses together into K

clusters. As discussed in Chapter 4, GMM produces the T -dimensional mean time

courses of each cluster and their responsibility maps of dimension V , which explain

the probability that each voxel belongs to a particular cluster. The EM-based results

of GMM depends on the initialization condition. We perform 10 runs of the algorithm

using different random initializations and select the outcomes of the run which gives
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the maximum likelihood of the data.

In this work, we propose a component-based comparison, which directly compares

all components of sICA to their corresponding components in GMM. Since the or-

dering of components in each model is arbitrary, we need to match each component

of one method to that of another. We investigate two methods for comparing the

resulting components. In the first method, we first match each component of sICA to

its corresponding Gaussian cluster by selecting the cluster whose mean time course is

the most correlated with the sICA time course. This can be done by using correlation

across time, defined as

ct(i, j) =
tT
i tj

√
tT
i ti

√
tT
j tj

(5.1)

where i, j denote the index of components in sICA and GMM, respectively, and t is

a mean-corrected time course. The matching between sICA and GMM is one-to-one.

In case of a conflict, for example, where one component of sICA is claimed by multiple

Gaussians, the time course of Gaussian which has the highest energy gets the priority.

After the matching is done, we compare the spatial maps of sICA to the respon-

sibility maps of GMM. When interpreting the results, many studies first transform

the spatial maps of sICA to z-scores to give pseudo-statistical interpretation to voxel

values. However, it is also well-known that sICA spatial maps acquired from fMRI

studies have a property that they are very sparse and non-overlapping. Only small

portion of voxels have significantly high absolute coefficients whereas others have val-

ues near zero, similar to the structure of a binary map. This property enables a

direct comparison of sICA spatial maps to responsibility maps of GMM, which also

contains only small portion of voxels with probability near 1. The proximity of two

components obtained by sICA and GMM is evaluated using the spatial correlation,

defined as

cs(i, j) =
sT
i sj

√
sT
i si

√
sT
j sj

(5.2)

64



where i, j denote the index of components in sICA and GMM, respectively, and

s is a mean-corrected spatial or responsibility map. The significance of this spatial

correlation coefficient is described by its corresponding p-value. In some studies, sICA

spatial maps are thresholded with a prespecified value, when they are compared to a

GMM responsibility map [58].

This evaluation process can also swap the roles of time-correlation and space-

correlation using this alternative definition. We first match each component based

on the correlation of spatial maps and then compare the components using the time

correlation of their time courses.

In the presence of ground truth about our data, we can easily extend this method

to incorporate it, and perform a three-way comparison: between sICA and ground

truth, between GMM and ground truth, and between sICA and GMM. The com-

parison results are examined to check which analysis method performs better under

particular conditions of data and experiments. We examine each component and pay

careful attention to non-task related “lower” components, which is where we expect

the differences between ICA and GMM to arise. Task-related components estimated

from ICA and GMM are usually very similar to each other.

5.2 Synthetic Data

This section contains a description of synthetic data and the results of the comparison

scheme discussed in the previous section on influences of noise level and length of

experiment on the resulting components.

5.2.1 Data Generation

Simulated synthetic data were generated to investigate the influence of noise level

and length of a time course on the performance of ICA and GMM. Each data had the

size of V = 5000 voxels and T = 300 time points. The simulated signals and noise

used in this section are presented in Figure 5-2. Two types of signals (Signals A and

B) were constructed to represent a consistently task-related (CTR) hemodynamic
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Figure 5-2: Synthetic Data Signals. Signal A is consistently task related with block-
design waveform. Signal B is generated as a gamma function to represent transiently
task related component. Signal C is also a gamma function modeling physiological
noise. Signal D is a sine wave simulating head motion.

response and a transiently task-related (TTR) hemodynamic response of the brain,

respectively. The CTR signal has a property that it is periodic and slowly varying

in sync with the box-car experimental waveform. The experimental protocol was

assumed to have an alternating pattern of ON and OFF, where each of them lasts

over 10 time points. The TTR signal is also periodic, but is transient compared to the

CTR signal. Here, it was constructed using the Gamma function and has the period

of 30 time points. Note that the periods of CTR and TTR signals are not equal.

If they were to be equal, then the rise of the signals will happen at the same time,

which leads to the observation that two signals are not independent to each other

while their corresponding spatial maps are still independent. Although independence

in time is not required for sICA, we kept the sources independent both in space and
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time in our synthetic data by assigning a different period to TTR compared to that of

CTR, so that TTR is not in sync with the experimental protocol. Therefore, TTR in

this case is not fully task related in time, but has the shape of a typical TTR signal.

In section 5.2.2, we discussed the results when the independence in time no longer

holds.

Non-tasked related signal sources were also generated. Signal C models the

physiology-related noise such as heart beats. This periodic signal was constructed

using the Gamma function with the period of 4 time points. Signal D simulates the

motion-related signal such as the slow head movement. This type of signal usually

varies very slowly with large transient. In order to preserve these properties, we chose

a sine wave with the period of 60 time points to generate Signal D.

In typical fMRI data, the task related signals (Signals A and B) are corrupted by

the presence of non-task related components such as Signals C and D and random

noise. To make the comparison of these signals on the equal level, we set the maximum

and minimum amplitudes of all signals to be 1 and 0, respectively, as shown in

Figure 5-2. Another confounding source in fMRI data is the variation in the baseline

magnetization of the scanner. However, we did not include it in our synthetic data set

since its effect can easily be removed by detrending the data by fitting a low degree

polynomial. Signals A, B, C, and D were added to 125 voxels each, where each type

of signal source constitutes 2.5 percent of the total number of voxels in a volume.

These regions were made non-overlapping in order to follow the non-overlapping and

sparseness properties of fMRI spatial maps.

We added a Gaussian random noise to our data set to simulate a noisy environ-

ment. In our real fMRI studies, the estimated SNR is about 0.5. We generated a set

of 14 synthetic data to investigate the effect of noise by controlling the variance of the

Gaussian random noise, over a range of real SNR from 0.1 to 2.0, which corresponds

to the estimated SNR of 0.18 to 3.7. More data were generated around the estimated

SNR of our real fMRI data. In order to analyze the effect of the length of the time

courses on the performance of ICA and GMM, we generated a set of 8 synthetic data

with above signals over a range of time length from 50 to 300 time points for each
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SNR value, with more data around 105 time points, which is the length of the time

courses in our real fMRI study.

5.2.2 Effects of Noise on the Identified Components

In this section, we study the effects of noise on the performance of sICA and GMM.

We applied sICA and GMM on 14 data sets of SNR from 0.1 to 2.0, which is a typical

SNR range for fMRI data. Data were more finely sampled around SNR of 0.3, where

a significant change of performances occurred, and it is near the estimated SNR of

our real fMRI data. Aikake information criterion and Bayesian information criterion

correctly approximated the number of sources as 5 (four types of signals plus random

noise) for both sICA and GMM for all cases of SNRs.

Spatial Domain

We performed a component-wise comparison between sICA and GMM on the effect

of the noise level in the spatial domain. Here, the estimated time courses from

sICA and GMM were matched to each other by the similarity of their time courses,

and the matched spatial maps of sICA were compared to their corresponding GMM

responsibility maps using spatial correlation (ICA-GMM). Moreover, we conducted

the same analysis between sICA and the ground truth (ICA-GT), and GMM and

the ground truth (GMM-GT). Table 5.1 shows the average of the absolute values of

correlation coefficient between resulting ICA and GMM components for their spatial

maps and time courses for SNR = 0.1. The component numbers 1, 2, 3, 4, and 5

correspond to the consistently task-related component, head movement, physiological

noise, transiently task-related component, and the noise component, respectively.

As shown in the table, we observe that for a given component of one model, there

is only one obviously corresponding component of the other model. Our matching

scheme correctly selected the right pairs. The noise component of GMM (5) is highly

correlated with all ICA components except the noise component, whereas the noise

component of ICA (5) is uncorrelated with all GMM components. The matching
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GMM
# 1 2 3 4 5

ICA

1 0.6591 0.0253 0.0995 0.036 0.2757
2 0.0146 0.4945 0.0238 0.0662 0.1991
3 0.0317 0.0283 0.3753 0.135 0.1967
4 0.0111 0.0382 0.0843 0.2507 0.1706
5 0.0103 0.0257 0.0272 0.0716 0.0362

(a) Correlation Coefficients of Spatial Maps

GMM
# 1 2 3 4 5

ICA

1 0.9581 0.0494 0.2018 0.0674 0.5065
2 0.0249 0.8364 0.0448 0.1109 0.335
3 0.0585 0.048 0.6298 0.2213 0.3187
4 0.0169 0.0626 0.1442 0.4113 0.2806
5 0.0159 0.0411 0.0466 0.1211 0.0619

(b) Correlation Coefficients of Time Courses

Table 5.1: Average of the absolute values of correlations coefficient between ICA and
GMM components for SNR = 0.1.

between components were even more obviously for higher SNRs.

The results of comparison in the spatial domain are shown in Figure 5-3. Each

of the plots shows the performance of ICA and GMM on the consistently task re-

lated, transiently task related, physiological noise, and head movement components,

respectively, when compared to the ground truth (ICA-GT, GMM-GT) and to each

other (ICA-GMM). GMM outperformed ICA when compared to the ground truth for

the entire range of SNR. For this set of synthetic data examples, the spatial maps of

the ground truth were almost perfectly retrieved by the responsibility maps of GMM.

Although they are not as good as the results of GMM, almost all of the spatial corre-

lation coefficients obtained by sICA had p-values less than 0.005. In addition, for each

method, the accuracy of estimates for each component was ordered in the following

manner (from the best to the worst): the consistently task-related component, head

movement, physiological noise, and transiently task-related component. This order

is identical to the reversed order of the estimated kurtosis of the time courses of the
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(b) Transiently task-related component
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(c) Physiological Noise
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(d) Head Movement

Figure 5-3: Component-wise comparison of the effect of noise level on the spatial
correlation of the estimated sICA and GMM maps with ground truth and with each
other. T = 300 time points. Error bars come from ten independent repeats.

ground truth, where CTR has the lowest (sub-Gaussian) and TTR has the highest

(super-Gaussian) kurtosis value among all signal types.

The superior performance of GMM over sICA also persisted under a slightly dif-

ferent setting of our synthetic data. In a new data set, we simulated the transiently

task-related component to have the same frequency with CTR. sICA no longer sepa-

rated the two corresponding regions of voxels and their associated time courses with

five components although sICA managed to separate them when we increase the num-

ber of components. On the other hand, GMM, which only considers the shape of time

signals, still separated CTR from TTR, with only five clusters as before.
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(a) Consistently task-related component
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(b) Transiently task-related component
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(c) Physiological Noise
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(d) Head Movement

Figure 5-4: Component-wise comparison of the effect of noise level on the time cor-
relation of the estimated sICA and GMM time courses with ground truth and with
each other. T = 300 time points. Error bars come from ten independent repeats.

Time Domain

Similarly, we performed a component-wise comparison between sICA and GMM in

the time domain. Here, the estimated spatial maps of sICA and GMM responsibility

maps were matched to each other by their spatial correlations, and the matched time

courses of sICA and GMM were compared to each other using time correlation (ICA-

GMM). Moreover, we conducted the same analysis between sICA and the ground

truth (ICA-GT), and GMM and the ground truth (GMM-GT).

The results of comparison in the time domain are shown in Figure 5-4. The
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plots each show the performance of ICA and GMM on consistently task related,

transiently task related, physiological noise, head movement components, respectively,

when compared to the ground truth (ICA-GT, GMM-GT) and to each other (ICA-

GMM). Identical to the results obtained in the spatial domain, for both ICA and

GMM, the performance of each component was ordered in the following manner

(from the best to the worst): consistently task-related component, head movement,

physiological noise, and transiently task-related component.

The average of the time correlation coefficients was higher than that of the spatial

correlation coefficients. This leads to a conclusion that the estimated time courses

from sICA and GMM were closer to the ground truth time courses than the estimated

spatial maps were to the ground truth in space. Furthermore, the difference of the

time correlation coefficients between sICA and GMM time courses was much smaller

than that of the spatial correlation coefficients of their spatial maps. This implies

that sICA and GMM generated very similar time courses, but different spatial maps.

Figure 5-5 shows a zoomed plot of consistently task related component in time

over a range SNR from 0.3 to 2. When compared to the ground truth, both methods

performed extremely well. Here, we observe an interesting behavior. For SNR values

below 1, GMM clearly outperforms ICA. However, for SNR above 1, we observe that

ICA outperforms GMM. For SNR greater than 1.4, the range of time correlation

coefficients of ICA was even outside the margin of error of the correlation coefficients

of GMM. This behavior was also observed in all the other components of the simulated

data.

5.2.3 Effect of the Length of Experiment on the Identified

Components

In this section, we study the effects of length of the time courses (T) of data on the

performance of sICA and GMM. We applied sICA and GMM on 8 data sets of T

from 50 to 300 time points, which is a typical range for fMRI data. Data were more

finely sampled around T = 105 time points, where significant change of performances
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Figure 5-5: Zoomed plot of consistently task related component in time. Below SNR
= 1, GMM outperforms ICA. Above SNR = 1, ICA outperforms GMM. Error bars
come from ten independent repeats.

occurred, and it is also the length of the time course of our real data. The length of

time courses corresponds to the number of samples for sICA and the dimension of

each Gaussian for GMM. For a data with SNR = 0.3, Aikake information criterion

and Bayesian information criterion correctly approximated the number of sources as

5 (four types of signals plus random noise) for both sICA and GMM.

Spatial Domain

We performed a component-wise comparison between sICA and GMM on the effect

of the length of time courses in the spatial domain. The estimated time courses from

sICA and GMM were matched to each other by the similarity of their time intensity

profiles, and we compared the matched spatial maps of sICA to their corresponding

GMM responsibility maps using spatial correlation (ICA-GMM). Moreover, we con-
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GMM
# 1 2 3 4 5

ICA

1 0.5797 0.1021 0.1314 0.0823 0.261
2 0.033 0.2948 0.1397 0.1521 0.2184
3 0.0351 0.1785 0.3468 0.0961 0.2353
4 0.022 0.1001 0.1119 0.3691 0.2339
5 0.0155 0.0462 0.1034 0.0665 0.072

(a) Correlation Coefficients of Spatial Maps

GMM
# 1 2 3 4 5

ICA

1 0.9694 0.2361 0.2786 0.1628 0.4628
2 0.0848 0.5332 0.2498 0.268 0.3718
3 0.0828 0.3267 0.5753 0.1622 0.4008
4 0.0469 0.1788 0.1989 0.5781 0.4162
5 0.0338 0.0887 0.1822 0.1062 0.1292

(b) Correlation Coefficients of Time Courses

Table 5.2: Average of the absolute values of correlations coefficient between ICA and
GMM components for T = 50.

ducted the same analysis between sICA and the ground truth (ICA-GT), and GMM

and the ground truth (GMM-GT). Table 5.2 shows the average of the absolute val-

ues of correlation coefficient between resulting ICA and GMM components for their

spatial maps and time courses for T = 50. The component numbers 1, 2, 3, 4, and 5

correspond to the consistently task-related component, head movement, physiological

noise, transiently task-related component, and the noise component, respectively. As

in the case with SNRs, we observe that for a given component of one model, there

is only one obviously corresponding component of the other model. Our matching

scheme correctly selected the right pairs. The noise component of GMM (5) is highly

correlated with all ICA components except the noise component, whereas the noise

component of ICA (5) is uncorrelated with all GMM components. The matching

between components were even more obviously for longer time courses.

The results of comparison in the spatial domain are shown in Figure 5-6 for

the fixed value of SNR = 0.3. Each of the plots shows the performance of ICA
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(a) Consistently task-related component
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(b) Transiently task-related component
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Figure 5-6: Component-wise comparison of the effect of length of time courses on the
spatial correlation of the estimated sICA and GMM spatial maps with ground truth
and with each other. SNR = 0.3. Error bars come from ten independent repeats.

and GMM on consistently task related, transiently task related, physiological, and

motion-related components, respectively, when compared to the ground truth (ICA-

GT, GMM-GT) and to each other (ICA-GMM). We observe that GMM outperformed

ICA when compared to the ground truth over the entire range of values of T. Although

they were not as good as the results of GMM, almost all of the spatial correlation

coefficients obtained by sICA had p-values less than 0.005. Both sICA and GMM

performed well with a small margin of error for Ts longer than 100 time points, when

compared to the ground truth. Consistent with the results of variable SNR from the

previous section, for each method, the performance of each component was ordered
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(a) Consistently task-related component
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(b) Transiently task-related component
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(c) Physiological Noise
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Figure 5-7: Component-wise comparison of the effect of length of time courses on the
time correlation of the estimated sICA and GMM time courses with ground truth
and with each other. SNR = 0.3. Error bars come from ten independent repeats.

in the following manner (from the best to the worst): consistently task-related com-

ponent, head movement, physiological noise, and transiently task-related component.

Time Domain

Similar to the analysis in the previous section, we performed a component-wise com-

ponent comparison between sICA and GMM in the time domain. The results of

comparison in the time domain are shown in Figure 5-7 for the fixed value of SNR =

0.3. The plots each show the performance of ICA and GMM on the consistently task

related, transiently task related, physiological noise, and motion-related components,
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respectively, when compared to the ground truth (ICA-GT, GMM-GT) and to each

other (ICA-GMM). Again, we observed that GMM outperformed ICA when com-

pared to the ground truth over the entire range of values for T. This is different from

the analysis in the time domain with the variable SNRs where ICA outperformed

GMM for SNRs over a certain threshold. Although they are not as good as the re-

sults of GMM, almost all of the time correlation coefficients obtained by sICA had

p-values less than 0.005. Both sICA and GMM performed well with a small margin

of error for T longer than 100 time points, when compared to the ground truth.

Similar to the analysis in Section 5.2.2, the average of the time correlation coef-

ficients was higher than that of the spatial correlation coefficients. This again leads

to a conclusion that the estimated time courses from sICA and GMM were closer to

the ground truth time courses than the estimated spatial maps were to the ground

truth in space. Furthermore, the difference of the time correlation coefficients between

sICA and GMM time courses was much smaller than that of the spatial correlation

coefficients of their spatial maps. Again, it implies that different spatial maps were

estimated by sICA and GMM with very similar time courses.

It is a well-known notion in fMRI analysis that better analysis results can be

achieved by averaging over multiple runs of experiments as it improves the SNR of

the data. To test this, we divided our data of SNR = 0.3 and T = 300 time points into

3 pieces over time and averaged them over. With this new averaged data of T = 100

time points, the performance of the consistently task related component was better (2

standard deviations above) than that of T = 300 time points. However, by averaging

the data, we lose our ability to analyze all of the other simulated components in the

data. Since the performance of sICA and GMM on the non-averaged data with T

= 100 time points was already outstanding and not too distant from that of T =

300 time points, we conclude that it is better to use the non-averaged data for our

purpose and subsequent analysis with our real fMRI studies.
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5.3 Real fMRI Experiments

This section contains a description of the real fMRI study, which we used to compare

the performance of ICA and GMM on the resulting components. With the real fMRI

data, we present another way of choosing the optimal number of total components

based on the comparison between the results of ICA and GMM to the ground truth.

Furthermore, in the absence of ground truth, we propose a way of selecting a threshold

to determine which pairs of ICA and GMM components are meaningful to compare

using their correlation coefficient matrices.

5.3.1 Description of Data

To compare the performance of ICA and GMM, we used a set of fMRI scans obtained

during a visual object recognition task for high level vision conducted by Professor

Nancy Kanwisher’s group in the Department of Brain and Cognitive Sciences at the

Massachusetts Institute of Technology. Each experiment consisted of five rest epochs

and four task epochs. With the TR of 3 seconds, each rest epoch contained five time

points. In the rest condition, the subjects were instructed not to move and to concen-

trate on the noise of the scanner. In the task condition, the subjects were presented

with a series of pre-recorded visual images. Each task epoch consisted of a series of

four different categories of visual stimuli: faces, objects, scenes, and scrambles. Each

task category lasted over five time points, making each task epoch contain twenty

time points. Within each task epoch, the ordering of the four categories were ran-

domized to minimize the effect of ordering in the analysis. Experiments were repeated

eight times for each subject (eight runs per subject). The original study contained

eight subjects, but for the purpose of component-wise comparison of ICA and GMM,

we present the results for one subject. Furthermore, we only included the voxels in

the brain with the mask of the union of fusiform face area (FFA), parahippocampal

place area (PPA), lateral occipital complex (LO), and areas which activated signif-

icantly compared to the fixation. FFA, PPA, and LO are known to be responsible

for face processing, place processing (scenes, houses), and object/shape processing,
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respectively. Our data had a size of T = 105 time points and V = 9703 voxels. Other

preprocessing steps included motion and time-correction and Gaussian smoothing.

We further subtracted the mean both across time and space prior to our analysis.

Within the areas contained in the mask, the estimated SNR was 0.4.

5.3.2 Comparison on Task-related Components

With the presence of the experimental protocol, we devised a set of pseudo ground

truth for our fMRI data, which consist of eleven types of box-car waveforms. The first

type is the simple contrast between the rest condition (0) and the task condition (1).

We also made four types of pseudo ground truth, which are category-specific task-

related functions in the form of an image category (faces, objects, scenes, or scrambled

images) (1) versus all of the other conditions (0), including the rest epoch and the

other image categories. In addition, we designed six contrast functions between the

image categories: face vs. object, face vs. scene, face vs. scramble, object vs. scene,

object vs. scramble, and scene vs. scramble. One of the contrasting categories was

assigned a value of 1, whereas the other was given -1. All of the other conditions

had a value of 0. We did not make additional opposite contrast (for example, object

vs. face) functions because the resulting correlation coefficient would merely have

the opposite sign of the same magnitude (compared to, for example, face vs. object)

when the contrast function is correlated with a GMM or ICA time course. All of the

box-car waveforms here were convolved with the estimated hemodynamic function

presented in Chapter 2 and were 105 time points long.

Over a range of the total number of components, K, from 5 to 105, we performed

ICA and GMM. For a given K, we correlated our ground truth to all of the resulting

time courses of ICA and GMM. Then, for each type of our ground truth, we selected

the corresponding ICA and GMM components which had the highest correlation

coefficient. We repeated this procedure over the range of K over eight runs to track

each model’s ability to identify the task-related and category-contrasting components,

and to find an optimal K∗ for this purpose. The results are shown in Figure 5-8.

Figures (a) and (b) each describes the correlation coefficients of the best matched
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(a) ICA, Task-related.
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(b) GMM, Task-related.
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(c) ICA, Contrast-related.

! "! #! $! %! &!! &"!
!

!'&

!'"

!'(

!'#

!')

!'$

!'*

+,-./01234560,708/29-569

8
,
66
5
/.
-:
,
;
08
,
5
77
:<
:5
;
-

0

0

=.<5!>4?5<-

=.<5!@<5;5

=.<5!@<6.34/5

>4?5<-!@<5;5

>4?5<-!@<6.34/5

@<5;5!@<6.34/5

(d) GMM, Contrast-related.

Figure 5-8: Comparison of the ground truth to the best matched ICA and GMM
components in time for different total number of components.

task-related components for ICA and GMM, respectively. Similarly, figures (c) and

(d) show the correlation coefficients of the best matched contrast-related components

for ICA and GMM, respectively.

For each model, the resulting components were highly correlated with our ground

truth in the order of the face, scene, object, and scramble task-related ground truth

components. Furthermore, the contrast functions which involve the face category

were most correlated with the estimated ICA and GMM time courses. Comparing

the figures (a) to (b) and (c) to (d), we found that there is no big difference in

the identifiability of task-related and contrast-related components between ICA and
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GMM for a large K. However, there exist several differences between the models. For

K less than 10, GMM time courses had better correspondences with the task-related

and contrast-related ground truth, except the ones involving the object category. This

is largely in agreement with our results on the synthetic data in the previous section

where K was 5.

The “elbow” values of K, after which point the correlation coefficients do not

increase significantly for larger values of K, are about 15 for ICA and 30 for GMM.

This implies that ICA can capture the category specific task and contrast-related

components with a smaller number of the total components than GMM. This is

contrary to the findings based on the Bayesian information criterion, which suggested

a larger required number of total components (79) for ICA than that of GMM (51) to

explain the entire data the best. This contrast indicates that ICA requires a smaller

number of K to extract the task and contrast-related components, but also needs a

large K to describe the entire data, whereas the difference between those values is

small for GMM. In other words, in order to best describe the data, ICA needs to

dedicate a large number of components to model non-task-related components. This

can in part be explained by the non-Gaussianity assumption of ICA components that

the noise information in the data, which are in many cases assumed as Gaussian, is

unable to be modeled by a single or a small number of ICA components and thus

is broken into many ICA components. On the other hand, GMM is able to model

Gaussian noise with one or a few more of its Gaussian components. The “elbow”

values are used in the component-wise comparison between ICA and GMM in the

next section.

5.3.3 Component-wise Comparison between ICA and GMM

We conducted the component-wise comparison between ICA and GMM on our real

fMRI data for five values of the pre-specified total number of components (K = 15,

30, 50, 80, 105). K = 15 and 30 were approximately the optimal total number of

components suggested by the “elbow” information for extracting the task-related and

contrast-related components by ICA and GMM, respectively, in the previous section.

81



K = 50 and 80 were approximately the suggested number of total components for

GMM and ICA based on the Bayesian information criterion. K = 105 is equivalent

to performing the full spatial ICA without any data reduction. The comparisons were

done following the scheme presented in Section 5.1.2.

Table A.1 is the matrix of the average of the absolute values of correlation coeffi-

cients between the ICA spatial maps and the GMM responsibility maps for K = 15

over eight runs. Similarly, Table A.2 shows the matrix of the average of the absolute

values of correlation coefficients between the ICA and GMM time courses. Unlike the

synthetic data case, the matching between the components of ICA and GMM is more

difficult with the real fMRI data, because, for some components of ICA, there exist

more than one corresponding GMM components that are highly correlated with, and

vice versa. However, comparing the matched time courses with our ground truth pre-

sented in the previous section, the matches based on spatial maps and time courses

are largely in agreement. This verification becomes significantly more difficult for

larger number of components.

Figure 5-9 shows the comparison results for K = 15. Figure (a) shows the cor-

relation coefficients between the spatial maps of ICA and the responsibility maps of

GMM (blue line). We first sorted the ICA components by energy, and then matched

GMM components to those of ICA by the correlation between their time courses with

respect to the order of ICA. In other words, we found the best matching component

of GMM for the first component of ICA, excluded that GMM component from the

selection pool, and then repeated the matching procedure for the next component of

ICA. While the blue line shows a series of correlation coefficients of spatial maps of

the best matched components of ICA and GMM, the red line shows the correlation

coefficients when we randomly matched the ICA components to those of GMM, still

on one-to-one basis. For instance, the first component of ICA was randomly matched

to a GMM component, the second ICA component was also randomly assigned a

GMM component (excluding the one that already has been picked by the previous

ICA components), and so forth. Essentially, each value of the red line shows the

average of the correlation coefficients to all GMM components for a given ICA com-
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(a) ICA vs. GMM, Spatial Maps.
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(b) GMM vs. ICA, Spatial Maps.
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(c) ICA vs. GMM, Time Courses.
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(d) GMM vs. ICA, Time Courses.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute Value of Correlation Coefficient

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

(e) Histogram of correlation coefficients.
Spatial Maps.
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(f) Histogram of correlation coefficients.
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Figure 5-9: Component-wise comparison of ICA and GMM with K = 15 components.
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ponent. The bigger the gap between the blue and red lines is, the more reliable the

match between the components of ICA and GMM is. For “lower” components of ICA,

we observe that two lines overlap. This implies that the matched GMM component

was not optimal for a given ICA component due to the fact the the best matches

for that ICA component were already taken by the “higher” order ICA components.

However, we also observe that the error bars of the blue and red lines do not over-

lap for the top half components. Based on the correlation matrices of spatial maps

of size K x K over eight runs (K = 15, in this case), we built a histogram of all

correlation coefficient values, shown in Figure (e). The green line in Figure (a) and

(b) is the value of the correlation coefficient in space where the empirical cumulative

distribution function of the histogram reaches 0.95 (α = 0.05).

From Table A.1, we notice that the correlation matrix is not symmetrical as the

correlation coefficient between the i’th component of ICA and the j’th component

of GMM is different from that between the j’th component of ICA and the i’th

component of GMM. Similar to Figure (a), Figure (b) shows the results when the

matching was done with respect to the order of GMM components. Figure (c) presents

the results when we matched the components using their spatial maps and compared

the models using their associated time courses. As in Figure (a), the matching was

based on the ICA components. Figure (d) is similar to Figure (c) except that the

matching was done with respect to the order of GMM. Figure (f) shows the histogram

of all correlation coefficients between ICA and GMM time courses. The green line

in Figure (c) and (d) is the value of the correlation coefficient in time where the

empirical cumulative distribution function of the histogram reaches 0.95 (α = 0.05).

The green line, i.e. the correlation coefficient value which corresponds to α = 0.05,

is used as a threshold to claim that the component pairs of ICA and GMM, which have

higher correlation coefficients than the threshold, are meaningful matches between the

models and also that it may not be meaningful to compare other pairs of components

(where the blue line is lower than the green line). Based on this threshold, we can

claim that only about top six out of the fifteen components are meaningful to compare

between ICA and GMM. As mentioned previously, for “lower” components of ICA,
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we observe that the blue and red lines overlap implying that the matching was not

optimal for those components. However, this overlap is only observed only for the

last few components, which we claimed that the match between those components

were not relevant.

Figure 5-10, Figure 5-11, Figure 5-12, and Figure 5-13 show the results of our

component-wise comparison between ICA and GMM for K = 30, 50, 80, and 105,

respectively. In general, the threshold values become smaller as the total number

of components becomes larger. From Figure 5-10, we observe that approximately

the top 17 out the 30 spatial components and 10 of the 30 time components were

meaningful to compare. Similarly, from Figure 5-11, approximately the top 27 out

of the 50 spatial components and the top 17 time components were selected to be

relevant.

On the other hand, we notice a slightly different behaviors for larger Ks. The

error bars of the red line begin including the blue line overlap for components ap-

proximately after the 30th component. This implies that our one-to-one matching

scheme may not be effective when we conduct ICA and GMM for a large number

of the total components (K > 30). Based on Figure 5-12, we observe that approxi-

mately the top 45 out the 80 spatial components and 25 of the 80 time components

were meaningful to compare. Furthermore, from Figure 5-13, we selected approxi-

mately the top 45 out the 105 spatial components and 32 of the 105 time components

as relevant comparisons.

All in all, based on our results and taking the lower value of the spatial and time

components to be conservative, we conclude, in general, that approximately the top

third of the total components are meaningful to compare with our matching and com-

parison scheme.
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(a) ICA vs. GMM, Spatial Maps.
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(b) GMM vs. ICA, Spatial Maps.
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(c) ICA vs. GMM, Time Courses.
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(d) GMM vs. ICA, Time Courses.
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(e) Histogram of correlation coefficients.
Spatial Maps.
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(f) Histogram of correlation coefficients.
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Figure 5-10: Component-wise comparison of ICA and GMM with K = 30 compo-
nents.
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(a) ICA vs. GMM, Spatial Maps.
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(b) GMM vs. ICA, Spatial Maps.
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(c) ICA vs. GMM, Time Courses.
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(d) GMM vs. ICA, Time Courses.
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(e) Histogram of correlation coefficients.
Spatial Maps.
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(f) Histogram of correlation coefficients.
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Figure 5-11: Component-wise comparison of ICA and GMM with K = 50 compo-
nents.
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(c) ICA vs. GMM, Time Courses.
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Figure 5-12: Component-wise comparison of ICA and GMM with K = 80 compo-
nents.
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(c) ICA vs. GMM, Time Courses.
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Figure 5-13: Component-wise comparison of ICA and GMM with K = 105 compo-
nents.
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5.4 Summary

In this chapter, we introduced our component-wise comparison scheme to compare

the performance of ICA and GMM on identifying the functional connectivity. We

applied this scheme on the synthetic data and investigate the influence of noise and

length of time course on the performance of ICA and GMM. We further extended the

analysis of our comparison scheme to a visual recognition real fMRI data. In addition,

we proposed an alternate method of selecting the optimal total number of compo-

nents for ICA and GMM when the goal was to extract the task and contrast-related

components. In the next chapter, we discuss the pros and cons of our comparison

scheme based on the results from the synthetic and real fMRI data.
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Chapter 6

Discussion and Conclusions

This thesis reviewed several representative data-driven analysis techniques for identi-

fying functional connectivity in fMRI and presented a component-wise matching and

comparison scheme of resulting ICA and GMM components using their correlation.

We investigated the effectiveness of this comparison scheme using synthetic and real

fMRI studies. We found in both synthetic and real data that GMM outperforms ICA

when the pre-specified total number of components in each model was less than 10.

There remain several points where our comparison scheme can improve and needs

to be further examined. First of all, prior to matching the components of ICA and

GMM, the components in each model were ordered in terms of their energy. Since it is

not necessary that the most significant components have the highest energy, we could

also incorporate kurtosis and the size of the activations in each component when or-

dering the components. With the current scheme, when we match the components of

one model with respect to those of the other model, we start the one-to-one matching

from the component of the other model which has the highest energy. Another way

of matching which should be tried in the future to relax this strict order of matching

is to use the bipartite graph matching algorithm [18], such as used in the marriage

problem [33], using the correlation matrix of the components.

Furthermore, in experiments where the pre-specified total number of components

in each model was large, we observed that a component in one model can be highly

correlated with multiple components of the other model. This arises partly due
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to the phenomenon that what used to be explained by one component when the

total number of components was small is now more finely separated into multiple

components. There is no theoretical analysis of when this breakdown occurs in each

model. When multiple components in one model correspond to a single component

in the other model, our component-wise comparison scheme might not be turn out to

be optimal.

On a visual recognition real fMRI data, we proposed a method of choosing a

threshold to determine which of resulting components of ICA and GMM are mean-

ingful to compare using the cumulative distribution function of their empirical cor-

relations. To complement this approach for selecting components that are valid to

compare, we could incorporate permutation testing [31]. By randomly permuting the

orders of images and voxels in the data and then performing our comparison scheme

on this new data with many iterations, we could obtain another set of measure in

which we can test the effectiveness of our comparison scheme. In addition, we plan

to further apply and examine our comparison scheme to other variations of ICA al-

gorithms such as the Fixed-Point algorithm and other clustering methods in the near

future.

With ever increasing volume of complex experimental fMRI data, we hope that

researchers in the field will find our empirical helpful in understanding and assessing

the similarities and differences among data-driven analysis methods applied to fMRI

data. We also hope this research will lead to building more sophisticated data-driven

analysis methods for identification of functional connectivity in fMRI.
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Appendix A

Tables

This section presents the tables that contain the results of the component-wise com-

parison of resulting ICA and GMM components of the real fMRI study for K = 15,

referred in Section 5.3.3.
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