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Abstract
The connectivity architecture of the human brain varies across individuals. Mapping functional anatomyat the individual level
is challenging, but critical for basic neuroscience research and clinical intervention. Using resting-state functional connectivity,
we parcellated functional systems in an “embedding space” based on functional characteristics common across the population,
while simultaneously accounting for individual variability in the cortical distribution of functional units. The functional
connectivity patterns observed in resting-state data were mapped in the embedding space and the maps were aligned across
individuals. A clustering algorithmwas performed on the aligned embeddingmaps and the resulting clusterswere transformed
back to the unique anatomical space of each individual. This novel approach identified functional systems that were
reproducible within subjects, but were distributed across different anatomical locations in different subjects. Using this
approach for intersubject alignment improved the predictability of individual differences in language lateralitywhen compared
with anatomical alignment alone. Our results further revealed that the strength of association between function and
macroanatomy varied across the cortex, which was strong in unimodal sensorimotor networks, but weak in association
networks.
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Introduction
The connectivity architecture of the human brain exhibits an
extraordinary level of complexity. Its development is shaped by
genetic and environmental factors that are variable across indivi-
duals. Whereas some brain systems are relatively consistent
across the population, many networks exhibit substantial inter-
individual differences (Hill et al. 2010; Zilles et al. 2013). Recent
findings suggest that interindividual variability in functional
connectivity is not uniformly distributed across the cortex: the

association regions, including language, executive control, and
attention networks, are likely more variable than the unimodal

regions, such as the visual and sensorimotor cortices (Mueller

et al. 2013). Crucially, individual differences in functional net-

works exist not only in the connectivity patterns among the

nodes supporting those functions, but also in the morphological

locations of these nodes (Rajkowska and Goldman-Rakic 1995)

and their cytoarchitecture (Brett et al. 2002). Consequently, indi-

vidual differences observed in functional connectivity measures
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are often a combination of both functional and anatomical vari-
ability (Brett et al. 2002).

Currently, fMRI studies often rely on intersubject normaliza-
tion based on global brain morphology, brain areas derived from
cytoarchitectural segmentation of a template (Fischl et al. 1999),
or functional atlases derived from a population (Yeo et al. 2011;
Baker et al. 2014). These approaches implicitly assume a static re-
lation between anatomy and function, and they can confound in-
tersubject variability in functional characteristics with variability
in anatomy. The mixture of variability sources can thus reduce
the specificity of functional connectivitymarkers related to cogni-
tive capability (Seeley et al. 2007; van den Heuvel et al. 2009; Cole
et al. 2012) or psychiatric diseases (Fox andGreicius 2010), because
the targetednetworksareoften those that aremost variable across
individuals, both anatomically and functionally (Fox et al. 2012;
Mueller et al. 2013). The same challenge is faced by genomewide
association studies that aim to unveil the genetic underpinnings
of specific brain functions (Meyer-Lindenberg et al. 2006; Potkin
et al. 2009). A brain parcellation technique that can establish
valid functional correspondences across individuals will facilitate
the investigation of individual differences in fine-grained func-
tional characteristics, especially those that are not tightly coupled
tomacroscopic brain structures. More broadly, mapping function-
al networks at the individual level will not only improve group-
level analyses in basic and clinical neuroscience research, but
will also lead to direct clinical applications, such as preoperative
functional mapping and noninvasive brain stimulation.

Here, we demonstrate a novel approach to mapping functional
networks in individual subjects. By representing function in a refer-
ence space that is decoupled from global morphology of the indi-
vidual brain, we investigated the multivariate function across
subjects. Correspondence across subjectswas established by align-
ing these low-dimensional “embedding maps” of the whole-brain
functional connectivity patterns derived from individual subjects.
Brain parcellation was performed using these aligned embedding
maps and the resulting networks were projected back to each sub-
ject’s anatomical space (e.g., vertices on the cortical surface). Intra-
subject reproducibility of the functional networks and intersubject
variability in their anatomical distribution were evaluated.

Materials and Methods
Participants and Data Collection

Two separate resting-state fMRI datasetswere used in the current
study; both datasets have been previously reported (Mueller et al.
2013; Wang et al. 2013, 2014). The first dataset consisted of 23
healthy subjects (age 51.8 ± 6.99, 9 females) who were recruited
as the healthy control cohort for a longitudinal stroke recovery
study. Each subject underwent 5 resting-state fMRI scanning ses-
sions within 6 months (7, 14, 30, 90, and 180 days from enroll-
ment) and had at least 2 good resting-state runs (temporal
signal to noise ration > 100) in each session (6 min and 12 s per
run, mean = 2.02 runs). The second dataset consisted of 55
subjects who participated in a task-based fMRI semantic classifi-
cation paradigm, as well as resting-state scans. The design of the
semantic classification task is described in Wang et al. (2014).
Each subject had one or two resting-state (eyes open) fMRI runs
(6 min and 12 s per run, mean = 1.7 runs). All participants
provided written, informed consent in accordance with guide-
lines established by the Institutional Review Boards of Harvard
University, Partners Healthcare, or Xuanwu Hospital.

Both datasets were acquired on 3-Tesla TimTrio scanners
(Siemens, Erlangen, Germany) using the 12-channel phased-array

coils supplied by the vendor. Functional data were obtained using
the same gradient echo-planar pulse sequence (TR, 3000 ms; TE,
30 ms; 3 mm isotropic voxels; transverse orientation; 47 slices
that fully covered the cerebral cortex and the cerebellum).
Structural images were acquired using a sagittal MP-RAGE 3D
T1-weighted sequence.

fMRI and Structural MRI Data Processing

Resting-state fMRI data were preprocessed using previously
described procedures (Van Dijk et al. 2010; Yeo et al. 2011). The
processing included the following steps: 1) slice timing correc-
tion; 2) rigid body correction for head motion with the FSL pack-
age; 3) normalization for global mean signal intensity across
runs; and 4) low-pass temporal filtering, headmotion regression,
whole-brain signal regression, and ventricular and white matter
signal regression. Anatomical data were processed using the
FreeSurfer version 4.5.0 software package (http://surfer.nmr.
mgh.harvard.edu). Surface mesh representations of the cortex
for each individual subject were reconstructed and registered to
a common spherical coordinate system (Fischl et al. 1999). Ana-
tomical and functional images were aligned using boundary-
based registration (Greve and Fischl 2009). Resting-state BOLD
fMRI datawere then aligned to the common spherical coordinate
system by sampling from the middle of the cortical ribbon in a
single interpolation step (Yeo et al. 2011). To evaluate functional
laterality, a symmetric surface template of the cerebral cortex
was constructed (Greve et al. 2013). The symmetric surface tem-
plate was downsampled to 2562 vertices in each hemisphere,
with an average distance of 4.3 mm between any 2 neighboring
vertices. fMRI data of each individual were then registered to
this template and smoothed on the surface with a 6-mm full-
width half-maximum (FWHM) kernel.

In this study, we have compared different parcellation meth-
ods. In all comparisons, fMRI data were processed in the same
way, i.e. the data were downsampled to the same number of ver-
tices on the same brain surface generated using FreeSurfer. The
fMRI signal on each vertex was thus identical for different parcel-
lation methods.

Spectral Embedding of Global Intrinsic
Connectivity Patterns

For each fMRI session, we constructed a correlation matrix using
the fMRI signal time courses extracted from the 5124 cortical
vertices in 2 hemispheres, where each entry in the matrix repre-
sented the correlation coefficient value between 2 vertices.
Correlation values smaller than a certain threshold were set to
zero. We then performed diffusion map embedding (Coifman
et al. 2005) of the cortical vertices, by defining non-negative sym-
metricweights, e�ðð<i;j>Þ=εÞ, among pairs of vertices,where<i,j> are
the entries in the correlation matrix, and defines the weight-
decay (Langs et al. 2014). Diffusion map embedding treats the re-
sulting graph as the basis of the diffusion process, and projects
the vertices to an embedding space. The probability of transition
between nodes in a given time defines the Euclidean distance
between the corresponding points in the embedding space
(Coifman and Lafon 2006). The diffusion time parameter of the
embedding steers the granularity of the representation. Para-
meters for the embedding process, including correlation thresh-
old, dimensionality, and diffusion time, were selected based on
intrasubject test–retest reliability and sensitivity to individual
differences of the resulting parcellation maps (details described
in a later section).
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Eachpoint in the embeddingmap represented acortical vertex.
Thedistributionofpoints in theembeddingmap characterized the
global functional connectivity pattern,with cliques of vertices that
exhibit coherent activity forming clusters of points, and regions
exhibiting different signals being mapped to positions that are
far apart in the embedding space. Although neighboring vertices
on the cortical surface tend to have a coherent fMRI signal and
may be positioned closely in the embedding space, spatial relation
in the embedding space is otherwise decoupled from global ana-
tomical characteristics and is determined solely by functional re-
lations among vertices. The key property of the embedding space
is that it represents the pairwise functional connectivity relation-
ships among cortical points in a globalmap, allowing for thequan-
tification of relationships among groups of points. We used this
property to cluster the points in the embedding space. Clustering
the points in the embedding space corresponds to grouping verti-
ces on the cortical surface that exhibit a coherent fMRI signal. The
one-to-one correspondence between the data points in the em-
bedding space and the surface vertices allows direct transform-
ation of the clustering results back to each subject’s anatomical
space. For each fMRI session, we obtained an embedding map
that formed the basis for intersubject functional alignment.

Functional Alignment across Subjects

We performed intersubject alignment in the embedding space
where the functional connectivity patterns of each subject had
been mapped.

The embedding maps containing the embedded vertices of
both hemispheres were treated as a representation of the
whole cortex and were aligned across all subjects using the fol-
lowing procedure. Embedding points were paired across subjects
if they represented the same vertex on the cortical surface. Em-
bedding maps of each subject were then aligned orthonormally
to a reference subject by minimizing the sum of squared dis-
tances between paired embedding points that corresponded to
the same surface vertex. The alignment procedure allowed for ro-
tation, translation, permutation of dimensions, change of axis,
and change of axis signs, i.e., the resulting transformation was
an isometry that left distances within each individual map un-
changed (Langs et al. 2014). This alignment resulted in a joint
map, with data points corresponding to all surface vertices ac-
quired in all scan sessions. It represented the shared connectivity
architecture observed in the entire population. Each point in the
joint map corresponded to one vertex in one subject.

Parcellation in the Joint Embedding Space

To identify functional networks, we performed a single cluster-
ing in the joint embedding map. We fitted a Gaussian mixture
model to the distribution. Each Gaussian had a diagonal covari-
ancematrixwith independent diagonal entries. After the cluster-
ing, each point in the embedding map was assigned the cluster
label corresponding to the Gaussian component with the highest
a posteriori probability at this position. To obtain the network
parcellation in each individual, the cluster labels were projected
back to the individual subject’s corresponding surface vertex. To
reduce noise, we removed clusters with fewer than 40 vertices
(∼0.78% of the cortex) from the result. To enable the comparison
with parcellations established in the literature (Yeo et al. 2011),
we evaluated 2 Gaussian mixture models that resulted in 7 and
17 clusters. Because a single clusteringwas performed on embed-
ding points derived from all subjects, this population-based ana-
lysis is less sensitive to noise that can significantly affect

individual-level analysis. Importantly, individual subject infor-
mation is well preserved in the data because the procedure
does not require averaging across subjects. The parcellation
results in the embedding space can be directly transformed
back to the anatomical space to inform the unique functional
architecture of each individual.

Evaluating Intrasubject and Intersubject Variability

To facilitate research on individual differences, a mapping tech-
nology must achieve high intrasubject test–retest reliability and
high sensitivity to intersubject variability simultaneously. Here,
we defined a metric, termed variability signal-to-noise ratio
(vSNR), to quantify the potential usefulness of a functional map-
ping technology in individual differences research. In the context
of individual differences research, the signal of interest is inter-
subject variability of functional measures. Intersubject variability
of parcellationmaps reflectsnot only true individual differences in
functional organization, but also variability caused by technical
artifacts and dynamic brain states. Variability due to artifacts
and dynamic brain states can be approximated by intrasubject
variation.Assuming variability due to different sources is additive,
then

Intersubject variability
Intrasubject variability

¼ Signalþ noise
noise

¼ vSNRþ 1

Therefore,

vSNR =
Intersubject variability
Intrasubject variability

� 1

Intersubject variability and intrasubject variability of the
brain parcellation maps were evaluated based on the first data-
set. For each subject and each fMRI session, the parcellation algo-
rithm generated a network label for each cortical vertex.

To obtain intrasubject variability (i.e. the inverse of reliability),
we first applied a binarymatching between any 2 scans from the 5
scans (i.e. C2

5 ¼ 10 possible combinations for each subject). The re-
sulting 10 binary matching maps were then averaged within the
subject. Finally, the variability maps were averaged across 23
subjects.

To obtain intersubject variability, we randomly selected 5 fMRI
sessions, each from a different subject. Variability was quantified
similarly at each vertex by counting the fraction of cluster labels
that were not identical among all possible comparisons (C2

5 ¼ 10
possible combinations). This permutation was repeated 23 times
to match the number of subjects, and the resulting intersubject
variability maps were then averaged across the 23 permutations.

Selecting Optimal Parameters for Embedding

To investigate the influence of embedding parameters on the
performance of our parcellation algorithm, we parcellated
brain networks using the first dataset by varying the correlation
threshold, the dimensionality of the embedding space, and the
diffusion time. The parameters were evaluated based on vSNR
of the resulting parcellationmaps. Intersubject variability and in-
trasubject variability of the parcellationmapswere quantified for
different combinations of parameters (see Supplementary Fig. 1).
The results indicated that the correlation threshold had themost
significant impact on vSNR. Based on this experiment,we chose a
diffusion time of t = 0.5, a dimension of d = 30, and a correlation
threshold of c = 0.1 for the subsequent analyses.
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Comparison with Subject-Level Clustering Using
Traditional Approaches

An alternative method to obtaining subject-specific functional
parcellation (FP) is to perform individual-level clustering in the
anatomical spaceusing traditional approaches. Forcomparisonpur-
poses, we applied the k-means clustering based on the cortico-
cortical connectivity profiles (Yeo et al. 2011) of each subject. To
allow comparison between subjects, this approach requires match-
ing the results across subjects bymaximizing the overlap of the cor-
responding clusters. We used the Hungarian algorithm (Kuhn 1955)
to obtain an optimal matching of clusters across all sessions and
subjects. The Hungarian algorithm for maximum-weight bi-partite
matching, finds correspondences between 2 sets of points. Using
this method to find corresponding parcellation networks between
2 subjects ensures a globally optimal matching with regard to Dice
overlapmeasure. Intersubject variability and intrasubject variability
were then calculated using the same approach described above.

Correlation Between Language Laterality
and Connectivity Laterality

For the second group of subjects who underwent both a lan-
guage-task fMRI scan and a resting-state fMRI scan, we first per-
formed a network parcellation based on the resting-state data in
the embedding space. For each vertex,we calculated the degree of
within-hemisphere connectivity (Wang et al. 2014) by counting
the number of vertices that were strongly correlated with the
seed vertex (r > 0.25). A laterality index was computed for each
network by contrasting the within-hemisphere connectivity de-
gree summed across the vertices in its left and right hemisphere
portions. To obtain the task-based language laterality index, task
fMRI data were analyzed using the general linear model in each
participant’s native fMRI space (Wang et al. 2013). The language
laterality index was calculated for each individual subject based

on the asymmetric activations in the 2 hemispheres, using an
approach previously described (Liu et al. 2009). For each of the
17 (or 7) brain networks, the Pearson correlation coefficient be-
tween the task-based language laterality index and the connect-
ivity-based laterality index was computed. For comparison, we
also computed a laterality index for each of the 17 brain networks
derived from 1000 subjects whose data were aligned in anatom-
ical space (Yeo et al. 2011). The laterality index of a network was
computed using the same approach as described above.

Visualization

For the purpose of visualization, maps were displayed on the left
and right inflated PALS cortical surfaces using the Caret software
(Van Essen 2005).

Results
Brain Parcellation Based on Functional Alignment
in the Embedding Space

Functional networks were identified based on a joint analysis
of the resting-state fMRI data of 23 subjects who were scanned
5 times during a period of 6 months. The intrinsic functional con-
nectivity of the cerebral cortexwas transformed into a low-dimen-
sional embedding space and then aligned across individuals (see
Supplementary Materials and Methods). A single clustering was
performed in this transformed space (Fig. 1, right column) to iden-
tify the commonnetworkswithin the entire studypopulation. The
spatial distributions of the networks in each individual brain were
thenobtained byprojectingnetworkmarkers from the embedding
space back to the subject-specific anatomical space. This resulted
in a FP for each individual and each fMRI acquisition, enabling the
quantification of intrasubject reproducibility and intersubject
variability.

Figure 1. Brain parcellation based on functional alignment in the embedding space. Parcellation can be performed at the population level when assuming anatomical

consistency (left panel). The results reflect the general organization principle of brain networks, but lack subject-specific details. Subject-level parcellation in

anatomical space is more sensitive to noise and lacks consistency across subjects (middle panel). Projecting individual subject data into a low-dimensional

embedding space, and aligning the maps in this functional space enables population-level clustering and can reflect the interindividual variability of the spatial

distribution of networks (right panel).
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The cerebral cortex was parcellated into 7 and 17 networks in 2
different experiments (Fig. 2). Since the network distributions
could vary across individuals, in order to compare with the previ-
ous parcellation results based on the anatomical space alignment
of a large subject cohort (Yeo et al. 2011), a consensus map was
generated in the anatomical space usingmajority voting of cluster
labels across all individuals in this study (Fig. 2). At the group level,
the consensus parcellation resembled the previous reports and
identified the default, frontoparietal, dorsal attention, ventral at-
tention, sensorimotor, and visual (including central and periph-
eral visual systems) networks. The consensus map (Fig. 2) and
the group-level maps derived after anatomical alignment (Yeo
et al. 2011) (Fig. 1, left column) both illustrate the general organiza-
tional patterns of functional systems in the population.

In individual subjects, networks derived fromFP in the embed-
ding space exhibited high reproducibility in repeated sessions
(Fig. 3, left). Critically, the maps also demonstrated substantial
intersubject variability in spatial distribution, suggesting that the

same brain function could involve different brain structures in dif-
ferent subjects (see Supplementary Fig. 2 for the results fromall 23
subjects). In contrast, individual-level parcellation in the anatom-
ical space (AP) based on traditional k-means clustering (analogous
to the population clustering in (Yeo et al. 2011)) suffered fromover-
all weaker stability and required a post hoc matching of identified
clusters across subjects, whichwas quite challenging (Fig. 3, right,
also see Supplementary Fig. 2).

Parcellation in the Embedding Functional Space Captures
Interindividual Variability

The performance of brain parcellationmethods can be evaluated
based on their capability to capture the differences across sub-
jects,while, at the same time, reliably recovering the connectivity
architecture of each subject in repeated measurements. Unless
an imaging measure is highly reproducible within subjects, the
variance observed across individuals cannot be fully attributed

Figure 2. Functional alignment in the embedding space captured the general organization of functional systems in the human brain. The cerebral cortex was parcellated

into 7 networks and 17 networks in 2 experiments. Population-level functional atlases were derived from the brain networks of all individual subjects through amajority

voting approach. Each network was represented by a different color.

Figure 3. The functional parcellation (FP) in the embedding space captured differences across subjects and achieved high reproducibility within subjects. Themaps show

the test–retest reliability of parcellation results in 2 subjects (left 2 columns). As a comparison, results of subject-level parcellation in anatomical space (AP) are also shown

(right 2 columns). Parcellation results based on functional space alignment are consistent within the same subject, but vary between 2 different subjects. See also

Supplementary Figure 2 for the results from all 23 subjects.
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to individual differences. Here, we quantified parcellation reli-
ability based on 5 fMRI sessions for each individual subject and
evaluated the variability across 23 subjects. The overall perform-
ance was assessed using vSNR, which reflected the sensitivity
to individual differences, while intrasubject variability was
controlled (see Supplementary Materials and Methods).

Theperformanceof FPwas comparedwith that ofAP.Using the5
scans of each subject, intrasubject test–retest reliability was evalu-
ated at each vertex (see Fig. 4A for the reliabilityof the seven-clusters
solution). FP yielded a mean reliability of 0.64 for the seven-clusters
solution, whereas AP had a reliability of 0.45 (Fig. 4B). Intersubject
variability was also evaluated for both methods. Compared with
FP, AP showed both higher inter- and intrasubject variability, sug-
gesting that the results of AP were inherently unstable (Fig. 4B).

The vSNRof bothmethodswas then compared (Fig. 4C). For the
seven-clusters solution, FP yielded a vSNRof 0.32, whereas AP had
a vSNR of 0.15. For the 17-clusters solution, FP had a vSNR of 0.26
and AP had a vSNR of 0.16. To statistically test whether vSNR was
significantly higher for FP than AP, intrasubject variability was
computed for each of the 23 subjects. vSNR was then evaluated
at the individual subject level using intrasubject variability and
the intersubject variability derived from the 23 subjects. Pairwise
comparison of this subject-level vSNR indicated a significantly
higher vSNR for FP than AP, in both the 7-clusters and 17-clusters
solutions (both P < 0.01, Fig. 4D). These results suggest that FP can
better capture individual differences innetwork distributionwhen
variability due to noise is controlled.

Parcellation in the Embedding Space Reflects Individual
Differences in Functional Activity

To illustrate that parcellation in the embedding space can be trans-
lated into improved measurements of individual functional

differences, we studied language lateralization in a group of sub-
jects. The language network is known as one of the most variable
networks in the human brain.While the left hemisphere is domin-
ant for language processing in most individuals, atypical language
lateralization is estimated to occur in 4%–6% of healthy right-
handed individuals, with a rare few showing complete reversal of
brain asymmetry (Rasmussen and Milner 1977). Here, we investi-
gated whether aligning subjects in the embedding space and iden-
tifying the networks can help to capture the variability of language
lateralization across individuals. Fifty-five subjects performed a se-
mantic decision task in the scanner and the language laterality of
each individual was estimated based on the asymmetric activation
evoked by the task (Wang et al. 2014). Resting-state fMRI data col-
lected from the same subjects were used for the network parcella-
tion. The degree of within-hemisphere functional connectivity
(Wang et al. 2014) was computed for each vertex. The asymmetry
of connectivity degree was then computed for each brain network.

Applying the FP in the embedding space, we identified a
strongly left-lateralized network whose connectivity laterality
was significantly correlated with task-based language laterality
(r = 0.60, P < 0.001). This network was localized to the inferior
frontal gyrus, the inferior parietal lobule, and the superior/middle
temporal gyrus inmost individuals (see Fig. 5A for this network in
the group consensus map), which overlapped with the traditional
language regions (Binder et al. 1997).

As a comparison, connectivity laterality was also estimated in
the group-level brain parcellations, derived from1000healthy sub-
jects, that were aligned in the anatomical space (Yeo et al. 2011).
The network that best predicted the task-based language lateral-
ization fell within the similar frontal, parietal, and temporal
regions (Fig. 5B), but showed a weaker correlation with the task-
based language laterality index (r = 0.28, P < 0.05). These results
suggest that decoupling functional characteristics from spatial

Figure 4. Performance of 2 different brain parcellation methods. Intrasubject test–retest reliability of the seven-network functional parcellation in the embedding space

was calculated at each vertex, based on the 5 scans of each subject. Reliability maps were then averaged across the 23 subjects (A). Intersubject variability was also

computed at each vertex. Intersubject variability and intrasubject variability values were then averaged across all vertices on the brain surface (B). The overall

performance of the 2 different parcellation methods was evaluated based on vSNR, which was derived from the intersubject variability and intrasubject variability. FP

resulted in a higher vSNR than AP (C). To test whether vSNR was significantly higher for FP than AP, intrasubject variability was computed for each of the 23 subjects.

vSNR was then evaluated for each subject. Pairwise comparison of this subject-level vSNR indicated a significantly higher vSNR for FP than AP, in both the 7-clusters

and 17-clusters solutions (both P < 0.01). The increases in vSNR for FP compared with AP are illustrated by the boxplots (D).
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variability enablesdetectionofnetwork boundaries that canbetter
reflect individual differences in brain function, as manifested in
the greater predictability of language lateralization during tasks.
In contrast, a static parcellation that assumes anatomical corres-
pondence of functional networks in multiple individuals is less
predictive of individual differences in functional laterality.

The Spatial Distribution of Association Networks
Is Highly Variable

Intersubject variability of the network distribution was assessed
after projecting the FPs from the embedding space back to each
subject’s native space. The disagreements innetworkmembership
across individual subjectswere computed for each vertex and then
averaged within each network (based on the consensus map
shown in Fig. 2). The association areas, including the frontal, par-
ietal, and temporal regions, exhibitedparticularlyhigh intersubject
variability in network membership (Fig. 6). The uni-modal areas,
including themotor, sensory, and visual cortices, showedminimal
spatial distribution variability. These results are reminiscent of the
intersubject variability observed in the correlation profiles of indi-
vidual surface vertices (Mueller et al. 2013), which, however, are a
mixture of variability inmacroanatomyandvariability in function-
al coupling. The stronger variability in networkmembership in the
association areas suggests a weaker link between macroanatomi-
cal structure and functional role, i.e., macroscopic structures in a
given location can be assigned to a particular functional network
in one subject, but to a different network in another subject.
These results suggest that group averaging based on macroanato-
mical alignment could be most confounded when studying the
higher-order association functions.

Discussion
Variability in resting-state functional connectivity has been re-
lated to individual differences in human behavior and cognition

(van den Heuvel et al. 2009; Cole et al. 2012), as well as to neuro-
logical and psychiatric disorders (Fox and Greicius 2010). The
methodology proposed in this paper can dissociate the interindi-
vidual variability in functional coupling and the interindividual
variability in the spatial distribution of functional networks.
The method identifies functional networks shared by a popula-
tion even if those networks are located at different anatomical
sites in different subjects. This method enables independent
analysis of functional and spatial characteristics at the individual
level. In 23 subjects with 5 scans each, the parcellation in func-
tional space provided both high intrasubject reproducibility and
high sensitivity to intersubject variability. In comparison, per-
forming subject-level parcellation using a traditional approach
in anatomical space yielded poor reproducibility. The parcella-
tion in functional space captures the intersubject variability in
network organization,which can lead tomore accurate estimates
of functional connectivity in each individual, and is informative
about the anatomical underpinnings of functions. As a proof-
of-principle, we showed that the functional space parcellation
predicted individual differences in language lateralization more
accurately than the static parcellation in anatomical space
derived from a large population. Parcellation in the embedding
space also revealed that the spatial distribution of association
functions was highly variable, while uni-modal sensorimotor
functions showed less spatial variability.

Dissociating Multiple Sources of Variability
in Resting-State fMRI Data

Intersubject variability observed in resting-state fMRI data is a
composition of multiple factors. When a specific brain function
is studied across subjects, there are differences not only in the
coupling pattern among the units anchoring the function, but
also in their morphological location, segmental structure, relative
size, or cytoarchitecture (Brett et al. 2002). The diverse sources of
variability require modeling methods that can separate these

Figure 5. Parcellation based on functional alignment in the embedding space reflected individual differences in functional activity. The degree of within-hemisphere

connectivity (Wang et al. 2014) was computed at each vertex and the laterality of the connectivity degree was then evaluated for each network. The network with the

strongest leftward asymmetry was identified, which involved the inferior frontal gyrus and the superior temporal gyrus. The consensus map of this network is shown

in Figure 5A. Note that this network is highly variable across different subjects. The laterality of connectivity degree in this network was significantly correlated with the

language laterality index calculated from the task data (r = 0.60, P < 0.001, Fig. 5A). The laterality of the degree of connectivity was also computed for 17 networks in the

population-level atlas derived from1000 subjects (Fig. 5B). Themost left-lateralizednetworkwas also identified.However, the laterality of the degree of connectivity in this

network showed only a weak correlation with the language laterality index calculated from the task data (r = 0.28, P < 0.05, Fig. 5B).
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sources and reveal their specific contributions to cognition and
behavior.

To separate the spatial variability of functional units from the
actual functional processes being investigated, some fMRI stud-
ies have used a functional localizer approach (Fedorenko et al.
2010). While a functional localizer is powerful when a specific
function is analyzed, it cannot easily obtain the information re-
garding the cortical arrangement of multiple systems and their
functional relations.

Based on resting-state fMRI, our study provides the proof-
of-concept that variability in macroanatomy and variability in
functional connectivity can be dissociated to improve the specifi-
city of functional measures. Rather than assuming a static func-
tion-anatomy association, we represented the neural architecture
by groups of points in the embedding space (similar to voxels or
vertices in the anatomical space) that are functionally coupled dur-
ing a specific state (e.g., rest or a task). These points may serve as
the “intrinsic functional localizer” for the future investigationof in-
dividual functional differences. A reference system based on func-
tional connectivity structure rather than macroanatomy might be
more appropriate for studies of higher-order association functions.
It is known that association networks exhibit themost widespread
spatial distribution (Sepulcre et al. 2010), the highest connectivity
variability across individuals (Mueller et al. 2013), and markedly
complicated network organization when compared with hierarch-
ical circuits, suchas those that dominate the sensori-motor system
(Buckner and Krienen 2013). The present study demonstrated that
higher functional specificity could be achieved when anatomical
variability was properly estimated and controlled. When we used
connectivity measures derived from resting-state data to predict
language lateralization, the prediction accuracy significantly
improved when connectivity lateralization was computed using
each subject’s own network profile rather than a population-
based brain atlas.

Implications for Group Analysis in Neuroscience
Research

To establish correspondence across subjects and study group ef-
fects, registering individual brains to a common template is neces-
sary. Aligning subjects based on brainmorphology has become the
standardprocedure in imaging software, suchasFreeSurfer, FSL, or
SPM (Friston et al. 1996; Fischl et al. 1999; Woolrich et al. 2009). The
key assumption of these morphologic registration technologies is
the fixed function-anatomy relation across all individuals. This as-
sumption is problematic if significant individual differences exist
in this relation, particularly in higher-order cognitive functions or
in nonstandard subject cohorts, such as patients or infants. Some
studies have used population-specific templates rather than fixed
templates during groupwise registration and achieved better per-
formance (Klein et al. 2009). This indicates that the subject-specific,
function-anatomy relation cannot be simply ignored. By incorpor-
ating the intersubject signal correlations into a cortical registration
algorithm, a recent study also demonstrated substantial improve-
ment in bringing functionally similar regions into correspondence
during a movie-watching task (Sabuncu et al. 2010).

Owing to the complex correspondence between morphology
and function, efforts have been made to align subjects directly in
the signal space. For example,multi-dimensional scaling was em-
ployed to retrieve a low-dimensional representation of positron
emission tomography (PET) signals in a set of activated regions
(Friston et al. 1996). Dual regression on group-level independent
component analysis (ICA) results has been used to project compo-
nents back to individuals (Zuo et al. 2010). More recently, diffusion
map embeddings of fMRI signals were matched across subjects to
find the correspondences in fMRI language task data, independent
of spatial location (Langs et al. 2010), and this approach was
extended to a group-level model for language task data (Langs
et al. 2014). Task-based data were also represented in a high-

Figure 6. Intersubject variability of network distribution was higher in the association networks than in the sensorimotor and visual networks. The disagreement of

network membership was computed for each vertex and then averaged within each network. The spatial distribution of the frontal-parietal control network showed

the highest intersubject variability.
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dimensional space that enabled decoding across subjects by
matching response patterns to individual stimulus categories
(Haxby et al. 2011). Collectively, these studies emphasize the
importance of moving beyond cross-subject alignment based on
macroanatomy. The methodology proposed in the present study
provides a novel approach to aligning subjects based on resting-
state fMRI, and can greatly benefit the group analyses of functional
connectivity data.

Clinical Relevance

Parcellating the individual brain into functional networks with
high reliability has important clinical implications. A direct
application for such techniques is preoperative functional map-
ping. To map the eloquent cortices, invasive cortical stimulation
is often managed perioperatively, in the awake patient, or in the
presurgical patient with subdural grids implanted (Penfield and
Jasper 1954). More recently, fMRI has been suggested as a non-
invasive alternative to map eloquent cortices (Desmond et al.
1995; Binder et al. 1997). However, obtaining robust maps in indi-
vidual subjects with fMRI is still a daunting challenge. The recent
advancement of functional connectivity fMRI techniques has
made the goal of subject-level network parcellation much more
attainable (Hacker et al. 2013; Wig et al. 2013). The parcellation
methodology proposed in the present study could reliably iden-
tify the functional networks within the same subject and capture
the difference between subjects. These characteristics are desir-
able in presurgical mapping. If validated using invasive mea-
sures, such as cortical stimulation, the individualized brain
parcellation may serve as a fast and accurate technique for pre-
surgical mapping, which could provide a functional layout across
the entire cortex at once.

Decoupling functional characteristics from spatial variability
also enables the removal of confounding factors in the study of
clinical cohorts, such as schizophrenia patients, where disease
affects both the morphology and function of the same structure
(Breier et al. 1992). Our approach promises to improve the speci-
ficity of the functional markers of diseases, and enables quantifi-
cation of the potential systematic differences in the network
distribution between patients and controls. It will also enable
the study of networks in individual subjects where atypical spa-
tial configurations are present, including children, patients with
lesions for whom the networks can be partially damaged or
undergo substantial reorganization, or in patients with neurode-
generative diseases. In these cohorts, the comparison of func-
tional network characteristics, independent of the spatial
differences, is particularly difficult, but essential.

Coupling Between Anatomy and Function

The relationship between anatomy and function is complex, and
not yet fully understood. The brain has long been viewed as a sys-
tem of histologically differentiated segments (e.g., Brodmann
areas) that fulfill specific functional roles. This anatomy-function
model has led to the discovery of detailed maps of various func-
tional systems, such as the visual processing pathways (Ishai
et al. 1999), the sensorimotor processing units (Muellbacher
et al. 2002), as well as some critical structures for higher-level
functions, including memory (Young et al. 1997) and language
(Price 2000). Overall, histological boundaries have strong func-
tional implications and are an important subject of neuroscience
investigations (Hinds et al. 2009). However, current neuroimaging
techniques are limited in the ability to obtain microscopic histo-
logical information in vivo. As an initial step to probe the

function-anatomy association, the present study explored the
coupling between macroanatomical structure and functional or-
ganization. Our data demonstrated the potential advantage of
decoupling functional organization from macroanatomy in the
investigation of individual differences.

Nevertheless, these results should not be interpreted as an as-
sertion of general dissociation between functional organization
and brain anatomy. Interindividual differences in functional
brain networks are likely to have a respective structural correlate
at the microscopic level. It has been shown that interindividual
variability exists in the locations of cytoarchitectonically defined
brain areas (Van Essen et al. 2012). This variability in microanat-
omy can contribute to the variability observed in the functional
data. To gain a comprehensive understanding of the function-
anatomy relation will require a sophisticate resolution for both
the functional and the structural measures. Future studies on
the function-anatomy coupling at different levels of resolution
will provide a broader view of this complex picture.

Supplementary Material
SupplementaryMaterial can be found at http://www.cercor.oxford
journals.org/online.
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