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Abstract. In this paper we construct an atlas that captures functional
characteristics of a cognitive process from a population of individuals.
The functional connectivity is encoded in a low-dimensional embedding
space derived from a diffusion process on a graph that represents corre-
lations of fMRI time courses. The atlas is represented by a common prior
distribution for the embedded fMRI signals of all subjects. The atlas is
not directly coupled to the anatomical space, and can represent func-
tional networks that are variable in their spatial distribution. We derive
an algorithm for fitting this generative model to the observed data in
a population. Our results in a language fMRI study demonstrate that
the method identifies coherent and functionally equivalent regions across
subjects.

1 Introduction

The functional architecture of the cerebral cortex consists of regions and net-
works of regions that become active during specific tasks or at rest when the
brain is suspected to engage in activities such as memory encoding [1]. The func-
tional networks vary spatially across individuals due to natural variability [15],
developmental processes in early childhood [9] or adulthood [4], or pathology [5].
Reorganization can appear over remarkably short periods of even few days [4].
The relationship between the structure of functional networks and their spatial
distribution is not well understood.

The traditional brain imaging paradigm in most functional MRI (fMRI) stud-
ies treats functional activity as a feature of a position within the anatomical coor-
dinate frame. The anatomical variability in a population is typically mitigated by
smoothing and non-rigid registration of the anatomical data, and the correspond-
ing normalization of functional signals into a stereotactic space. The remaining
spatial variability of functional regions is ignored. An alternative approach is
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Fig. 1. Joint functional geometry scheme

to localize functional regions of interest (fROIs) in individuals or groups [15] as
a precursor to analysis, and subsequently study the responses in the resulting
small number of fROIs.

Both approaches limit the range of questions that can be formulated on the
fMRI observations. For example, the spatial normalization framework cannot
express or account for spatial variability within the population since it assumes
perfect spatial correspondences when detecting networks by averaging over mul-
tiple subjects. In contrast, the fROI approach is based on detection results for
each subject, which can be infeasible if the activation is weak and cannot be dis-
tinguished from noise in individual subjects without averaging over the group.

We propose a different approach to characterize functional networks in a pop-
ulation of individuals. We do not assume a tight coupling between anatomical
location and function, but view functional signals as the basis of a descriptive
map that represents the global connectivity pattern during a specific cognitive
process. We develop a representation of those networks based on manifold learn-
ing techniques and show how we can learn an atlas from a population of subjects
performing the same task. Our main assumption is that the connectivity pattern
associated with a functional process is consistent across individuals. Accordingly,
we construct a generative model (the atlas) for these connectivity patterns that
describes the common structures within the population.

The clinical goal of this work is to provide additional evidence for localization
of functional areas. A robust localization approach is important for neurosurgical
planning if individual activations are weak or reorganization has happened due
to pathologies such as tumor growth. Furthermore the method provides a basis
for understanding the mechanisms underlying formation and reorganization in
the cerebral system.

Related work. A spectral embedding [18] represents data points in a map
that reflects a large set of pair-wise affinity values in the Euclidean space.
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Diffusion maps establish a metric based on the concept of diffusion processes
on a graph [2]. A probabilistic interpretation of diffusion maps has recently been
proposed [13]. Previously demonstrated spectral methods in application to fMRI
analysis mapped voxels into a space that captured joint functional characteristics
of brain regions [10]. This approach represents the magnitude of co-activation
by the density in the embedding. Functionally homogeneous units have been
shown to form clusters in the embedding in a study of parceled resting-state
fMRI data [17]. In [7] multidimensional scaling was employed to retrieve a low
dimensional representation of positron emission tomography (PET) signals in a
set of activated regions. In an approach closely related to the method proposed in
this paper [11], an embedding of fMRI signals was used to match corresponding
functional regions across different subjects. Recently a probabilistic generative
model that connects the embedding coordinates with a similarity matrix has
been demonstrated in [14].

2 Generative Model of Functional Connectivity

We start by reviewing the original diffusion maps formulation. We then derive
a probabilistic likelihood model for the data based on this mapping and use the
model to link diffusion maps of functional connectivity across subjects.

2.1 Diffusion Distances, Diffusion Maps, and fMRI Time Courses

Given an fMRI sequence I ∈ R
T×N that contains N voxels, each characterized

by an fMRI signal over T time points, we calculate matrix W ∈ R
N×N that

assigns a non-negative symmetric weight to each pair of voxels (i, j)

W(i, j) = e
〈Ii,Ij〉

ε , (1)

where 〈·, ·〉 is the correlation coefficient of the time courses Ii and Ij , and ε is
the weight decay. We define a graph whose vertices correspond to voxels and
whose edge weights are determined by W [2,10]. In practice, we discard all
edges that have a weight below a chosen threshold. This construction yields
a sparse graph which is then transformed into a Markov chain. We define the
Markov transition matrix P = D−1W, where D is a diagonal matrix such that
di = D(i, i) =

∑
j w(i, j) is the degree of node i. By interpreting the entries

P(i, j) as transition probabilities, we can define the diffusion distance

Dt(i, j) =
∑

i′=1,...,N

(Pt(i, i′) − Pt(j, i′))2

φ(i′)
where φ(i) =

di∑
i′ di′

. (2)

The distance is determined by the probability of traveling between vertices i andj
by taking all paths of at most t steps. The transition probabilities are based on
the functional connectivity of node pairs; the diffusion distance integrates the
connectivity values over possible paths that connect two points and defines a
geometry that captures the entirety of the connectivity structure. This distance
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is characterized by the operator Pt, the tth power of the transition matrix. The
value of the distance Dt(i, j) is low if there is a large number of paths of at most
length t steps with high transition probabilities between the nodes i and j.

The diffusion map coordinates Γ = [γ1, γ2, · · · , γN ]T yield a low dimensional
embedding of the signal such that the resulting pairwise distances approximate
diffusion distances, i.e., ‖γi−γj‖2 ≈ Dt(i, j) [13]. They are derived from the right
eigenvectors of the transition matrix. In Appendix A we show that a diffusion
map can be viewed as a solution to a least-squares problem. Specifically, we
define a symmetric matrix A = D−1/2WD−1/2, and let L be the normalized
graph Laplacian

L = D−1/2A2tD−1/2. (3)

The embedding coordinates are then found as follows:

Γ∗ = argmin
Γ∈RN×L

∑

i,j

didj(L(i, j) − γT
i γj)2, (4)

where L is the dimensionality of the embedding. To simplify notation, we omit t
for L and Γ in the derivations, assuming that all the results are derived for a
fixed, known diffusion time.

2.2 A Generative Model for Diffusion Maps across Subjects

The goal of the generative model is to explain jointly the distribution of pairwise
functional affinities of voxels across all subjects. We use latent variables Γ =
{Γs}S

s=1 to represent the diffusion map coordinates for S subjects indexed by
s ∈ {1, . . . , S}. We can interpret Eq. (4) as maximization of a Gaussian likelihood
model. We let γsi denote the embedding coordinates of voxel i in subject s and
let Ls be the normalized graph Laplacian for subject s. We further assume that
elements of Ls are conditionally independent given the embedding coordinates:

p(Ls(i, j)|γsi, γsj) = N
(

Ls(i, j); γT
siγsj ,

σ2
s

dsidsj

)

, (5)

where N (·; μ, σ2) is a Gaussian distribution with mean μ and variance σ2.
Note that the variance depends on the degrees di, dj , which is technically a

problem since these quantities depend on the data W. We find that in practice,
the method works well and leave the development of rigorous probability models
for diffusion maps as an interesting future direction.

In the absence of a prior distribution on Γs, fitting this model to the data
yields results similar to the conventional diffusion maps for each subject inde-
pendently from the rest of the population.

The goal of this paper is to define an atlas that represents a population-
wide structure of functional connectivities in the space of diffusion maps. To
capture this common structure, we define a shared prior distribution on the
embedding coordinates Γs for all subjects, and expect the embedded vectors to
be in correspondence across subjects [11]. Here, we assume that the common
distribution in the embedding space is a mixture of K Gaussian components.
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We let zsi ∈ {1, · · · , K} be the component assignment for voxel i in subject s
and obtain the prior on the embedding coordinates of voxel i in subject s:

p(γsi|zsi = k; μ,Θ) = N (γsi; μk,Θk), (6)

where μk and Θk are the center and covariance matrices for component k. We
let the component assignments be independently distributed according to the
weights of different components, i.e.,

p(zsi = k) = πk. (7)

Together, Eqs. 5 to Eqs. 7 the joint distribution of the embeddings Γ , the compo-
nent assignments z, and the observed affinities L = {Ls}S

s=1. The distribution
is parameterized by component centers {μk}, covariance matrices {Θk}, and
weights {πk}.

By adding the group prior over diffusion maps, we constrain the resulting sub-
ject maps to be aligned across subjects and further encourage them to resemble
the population-wide structures characterized by the mixture model (Fig. 1). The
mixture model acts as a population atlas in the embedding space.

3 Atlas Learning and Inference

We employ the variational EM algorithm [8] to estimate the parameters of our
model from the observed data. We approximate the posterior distribution of
latent variables p(Γ , z|L) with a product distribution of the form

q(Γ , z) =
∏

s,i

q(γsi)q(zsi). (8)

The problem is then formulated as the minimization of the Gibbs free energy

F = Eq [ln q(Γ , z) − ln p(Γ , z, L; μ, Θ, π)] , (9)

where Eq indicates the expected value operator with respect to distribution q(·).
We derive coordinate descent update rules that, given an initialization of all
latent variables and parameters, find a local minimum of the cost function in
Eq. (9). Appendix B presents the derivation of the update rules.

3.1 Initialization

The algorithm requires initial estimates of the latent variables and model param-
eters. Initialization affects convergence and the quality of the final solution. Here,
we describe a simple initialization scheme that matches closely the structure of
our model and enhances the performance of the algorithm.

In general, the relationship between the diffusion map coordinates Γ and the
corresponding symmetric matrix L is defined up to an arbitrary orthonormal
matrix Q since (ΓQ)(ΓQ)T = ΓQQTΓT = ΓΓT = L. In order to define an at-
las of the functional connectivity across all subjects, we seek matrix Qs for each
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subject s such that the maps {ΓsQs}S
s=1 are aligned in a common coordinate

frame. Consider aligning the diffusion map Γs of subject s to the diffusion map
Γr of reference subject r. Similar to the construction of the diffusion map, we
compute the inter-subject affinities between the fMRI signals of subjects s and
r using Eq. (1) and only keep those with a correlation above the threshold. This
step produces a set of M node pairs {(im, jm)}M

m=1, characterized by affinities
{wm}M

m=1. The initialization should ensure that nodes with similar fMRI sig-
nals are close in the common embedding space. Therefore, we choose matrix Q
that minimizes the weighted Euclidean distance between pairs of corresponding
embedding coordinates

Q∗
sr = argmin

Q

[
M∑

m=1

wm||Qγsim − γrjm ||2L2

]

. (10)

We define matrices Γsm = [γsi1 , . . . , γsiM ]T and Γrm = [γrj1 , . . . , γrjM ]T. It can
be shown that Q∗

sr = VUT, where we use the singular value decomposition
UΣVT = ΓT

sm
diag(wm)Γrm [16].

We find initial estimates of {μk,Θk, πk}K
k=1 by fitting a K component Gaus-

sian mixture model to the initial estimates of the atlas embedding coordinates
{ΓsQ∗

sr}S
s=1 for a randomly chosen reference subject r.

4 Experiments and Results

Data. We demonstrate the method on a set of six healthy control subjects. The
fMRI data was acquired using a 3T GE Signa system (TR=2s, TE=40ms, flip
angle=90◦, slice gap=0mm, FOV=25.6cm, volume size of 128× 128× 27 voxels,
voxel size of 2 × 2 × 4 mm3). The language task (antonym generation) block
design was 5min 10s long, starting with a 10s pre-stimulus period. Eight task
and seven rest blocks, 20s each, alternated in the design. For each subject, an
anatomical T1 MRI scan was acquired and registered to the functional data.
Grey matter was segmented with FSL [19] on the T1 data. The grey matter
labels were transferred to the co-registered fMRI volumes, and computation was
restricted to grey matter.

Evaluation. We construct a joint functional diffusion map for all six subjects.
For the results presented in this paper, we set the dimensionality of the diffusion
map to be L = 20 and choose a diffusion time t = 2 that satisfies (λL/λ1)

t
< 0.2

for all subjects. To facilitate computation we only keep nodes for which the
degree is above a certain threshold. In the experiments reported here we choose
a threshold of 100. For the EM algorithm, we fix a value of σs = 102N−1

s

∑
i dsi

for the first 10 iterations, then allow this parameter to update for the remaining
iterations according to the rule defined in Appendix B. In our experiments, an
initial value of σs specifically proportional to 102 allows the algorithm to achieve
the lowest Gibbs free energy.

We hypothesize that working in the embedding space should allow us to more
robustly capture the functional structure common to all subjects. In order to
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Fig. 2. Mean cluster Dice scores for clustering in Signal, Linear Atlas, and Atlas. For
each number of clusters K, we report the mean Dice score across subjects for each clus-
ter. Color illustrates correlation of the cluster average fMRI signal with the paradigm
signal.

validate this, we compare the consistency of clustering structures found in the
space of fMRI time courses (Signal), a low-dimensional (L=20) PCA embedding
of these time courses (PCA-Signal), and the low-dimensional (L=20) embedding
proposed in this paper. We report results for the initial alignment (Linear-Atlas)
and the result of learning the joint atlas (Atlas).

We first apply clustering to signals from individual subjects separately to
find subject-specific cluster assignments. We then apply clustering to signals
combined from all subjects to construct the corresponding group-wise cluster
assignments. Since our group atlas for the lower-dimensional space is based on a
mixture model, we also choose a mixture-model for clustering in the Signal and
PCA-Signal spaces. In both cases, each component in the mixture is an isotropic
von Mises-Fisher distribution, defined on a hyper-sphere after centering and
normalization of the fMRI signals to unit variance [12].

Likewise, we cluster the diffusion map coordinates Γs separately in each sub-
ject to obtain subject-specific assignments. We cluster the diffusion map coordi-
nates of all subjects aligned to the first subject, {ΓsQ(s,1)}s for the Linear-Atlas
and in {Γ∗

s}s for Atlas to obtain group-wise clustering assignments. Analyzing
the consistency of clustering labels across methods evaluates how the population
structure captures the individual embeddings. For the diffusion maps, Euclidean
distance is a meaningful metric; we therefore use a mixture model with Gaussian
components that share the same isotropic variance.

Since clusters are labeled arbitrarily in each result, we match group and
subject-specific cluster labels by solving a bipartite graph matching problem.
Here, we find a one-to-one label correspondence that maximizes voxel overlap
between pairs of clusters, similar to the method used in [12]. After matching the
labels, we use the Dice score [3] to measure the consistency between group and
subject-specific assignments for each cluster.
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4.1 Results

Fig. 2 reports the consistency of clusters between group-level and subject-specific
assignments, measured in terms of Dice score averaged across subjects. To illus-
trate the temporal nature of the clusters, the colors of the bars indicate the
correlation of the average fMRI signal in the cluster with the fMRI language
paradigm convolved with the hemodynamic response function. Note that the
paradigm was not used at any point during the generation of the maps or clus-
ters. The cluster with the highest paradigm correlation is the most consistent
cluster over a large range of cluster numbers. The highest Dice score (0.725)
for Signal clustering is achieved, with similar values for larger numbers of clus-
ters. Although the plot is not shown here, clustering in the PCA-Signal space
exhibits no noticeable improvement. Initial alignment of the diffusion maps into
the Linear-Atlas substantially increases the Dice score of the highest ranked clus-
ters for all K, with a maximum value of 0.876. The variational EM algorithm
performed using a range of reasonable cluster numbers and further improves the
cluster agreement for the top ranked clusters (0.905).

Fig. 3 shows the networks of the subjects that correspond to the top ranked
atlas cluster (K=10), together with the corresponding average fMRI signal. The
paradigm is recovered very well, and for most subjects the cluster network plau-
sibly spans visual, motor, and language areas.

Fig. 4 compares the location and average signal of the top ranked of 10 clus-
ters for Signal and Atlas clustering in a single subject. While both recover parts
of the paradigm, the clustering in the diffusion map atlas exhibits more consis-
tency between the group and the subject levels. Additionally, the Signal clusters
suffer from a relatively high dispersion across the entire cortex. This is not the

The mean fMRI signal in the cluster

1

2

3

4

5

6

Fig. 3. A cluster in the joint map corresponds to a network in each subject. Here we
illustrate a network in 6 subjects that corresponds to one cluster in the atlas, and the
mean fMRI signal of this cluster. The 8 block stimulus in this language study was not
used by the analysis, but was recovered by the algorithm and corresponding networks
were identified across all subjects. They typically span the visual cortex, the language
areas (Wernicke and Broca), and the motor areas in some cases.
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Group Subject

Signal

Group Subject

Atlas

Fig. 4. Most consistent cluster in the Signal space and the Atlas shown in the anatom-
ical space. For each method, we show the group-wise (left) and subject-specific (right)
assignment. Also shown is the average and standard deviation of the cluster fMRI
signal. Results for subject 2.

case for the diffusion map atlas. In summary, these results demonstrate that the
representation of fMRI time courses in the low dimensional space of diffusion
maps better captures the functional connectivity structure across subjects. Not
only are clustering assignments more consistent, but the anatomical characteris-
tics of these clusters also are also more plausible. Furthermore, our results using
the variational EM algorithm suggest that the probabilistic population model
further improves the consistency across the population, and consolidates the
distribution in the embedding space.

5 Conclusion

We propose a method to learn an atlas of the functional connectivity structure
that emerges during a cognitive process from a group of individuals. The atlas is
a group-wise generative model that describes the fMRI responses of all subjects
in the embedding space. The embedding space is a low dimensional represen-
tation of fMRI time courses that encodes the functional connectivity patterns
within each subject. Results from a fMRI language experiment indicate that
the diffusion map framework captures the connectivity structure reliably, and
leads to valid correspondences across subjects. Future work will focus on the
application of the framework to the study of reorganization processes.
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A Diffusion Map Coordinates

In the standard diffusion map analysis, the embedding coordinates Γ for a
L-dimensional space are obtained via the first L eigenvectors of matrix A =
D−1/2WD−1/2 [13]. Here we show that we can represent the embedding as a so-
lution of a least-squares problem formulated directly on the similarity matrix W.

Formally, Γ = D−1/2V1:LΛt
L, where A = VΛVT is the eigenvector decompo-

sition of matrix A, t s the diffusion time, and subscripts indicate that we select
the first L eigenvectors. Matrix Ã = V1:LΛLVT

1:L is a low-rank approximation
of matrix A that is quite accurate if the remaining eigenvalues are much smaller
than the sum of the first L eigenvalues. We define

L = D−1/2A2tD−1/2 ≈ D−1/2Ã2tD−1/2 = D−1/2(V1:LΛLVT
1:L)2tD−1/2

= D−1/2V1:LΛt
LΛt

LVT
1:LD−1/2 = ΓΓT (11)

and use a generalization of the Eckart-Young theorem [6] to formulate the eigen
decomposition as an optimization problem:

Γ∗ = argmin
Γ∈RN×L

‖A2 − D1/2ΓΓT D1/2‖2
F = argmin

Γ∈RN×L

∑

i,j

didj(Lt(i, j) − γT
i γj)2,

(12)

where ‖ · ‖F denotes the Frobenius norm.

B Variational EM Update Rules

We use a natural choice of a multinomial distribution for cluster membership
q(zsi = k) for s ∈ {1, . . . , S}, i ∈ {1, . . . , Ns}, and a Gaussian distribution for
the embedding coordinates q(γsi) = N (γsi; E[γsi], diag(V[γsi])), parameterized
by its mean E[γsi] and component-wise variance V[γsi].

E-Step. We determine the parameter values of the approximating probability
distribution q(·) that minimize the Gibbs free energy in Eq. (9) by evaluating
the expectation, differentiating with respect to each parameter and setting the
derivatives to zero. This yields

q(zsi = k) ∝ πk

|Θk|1/2
exp

{

−1
2

(
(E[γsi] − μk)T Θ−1

k (E[γsi] − μk)

+ trace
(
diag(V[γsi])Θ−1

k

))}
, s.t.

∑

k

q(zsi = k) = 1,

V[γsi(l)] =

⎛

⎝
∑

k

q(zsi = k)Θ−1
k (l, l) +

dsi

σ2
s

∑

j �=i

dsj

(
E[γsj(l)]2 + V[γsj(l)]

)
⎞

⎠

−1

,
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E[γsi(l)] =V[γsi(l)]

⎡
⎣∑

k

q(zsi = k)

⎡
⎣Θ−1

k (l, l)μk(l)−
∑
l′ �=l

Θ−1
k (l, l′) (E[γsi(l′)− μk(l

′)])

⎤
⎦

+
dsi
σ2
s

∑
j �=i

dsj

⎡
⎣Ls(i, j)E[γsj(l)]− E[γsj(l)]

∑
l′ �=l

E[γsi(l
′)]E[γsj(l′)]

⎤
⎦
⎤
⎦ .

Rather than solve the coupled system of equations above, we iteratively update
each parameter of the distribution q(·) while fixing all the other parameters.

M-Step. We now find the parameter values similar to the standard EM algo-
rithm, but using the approximating distribution q(·) to evaluate the expectation.
Specifically, we find

πk =
1

∑
s Ns

∑

s,i

q(zi = k), μk =
∑

s,i

q(zsi = k)
∑

s′,i′ q(zs′i′ = k)
E[γsi], (13)

Θk =
∑

s,i

q(zsi = k)
∑

s,′i′ q(zs′i′ = k)
[(E[γsi] − μk) (E[γsi] − μk)T + diag(V[γsi])], (14)

σ2
s =

2
Ns(Ns − 1)

∑

i,j �=i

dsidsjE[(Ls(i, j) − γT
siγsj)2]. (15)
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