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Abstract. The substantial reorganization of functional systems and
hemodynamic changes caused by brain tumors make fMRI detection and
characterization of functional brain regions in tumor patients a particu-
larly difficult task. Our goal is to identify functional areas among different
individuals and to localize potentially displaced active regions in patients.
Localizing corresponding functional regions in patients with brain lesions
is necessary for the pre-surgical localization of functional regions criti-
cal for language and other functions. In addition such findings may help
to elucidate the mechanisms that control reorganization processes sec-
ondary to mass lesions in the brain. Anatomical data is only of limited
value for this purpose. Rather than rely on spatial geometry, we propose
to perform registration of functional regions between individuals in an al-
ternative space whose geometry is governed by the functional interaction
patterns in the brain. We first embed the brain into a functional map
that reflects connectivity patterns during a task sequence. The resulting
functional maps are then registered, and the obtained correspondences
are propagated to the two brains. Initial experiments with the language
system indicate that the proposed method yields improved correspon-
dences across subjects. Our algorithm localizes language areas in tumor
patients, even if the areas are not detected by standard approaches such
as univariate regression.

1 Introduction

The detection of functional regions such as language networks in tumor patients
is important for surgical planning and for studying the mechanisms that may
displace functional cortex due to tumor growth. This localization is difficult,
because a lesion may cause structural displacement, change hemodynamics, and
can cause substantial reorganization of the functional areas. The standard fMRI
analysis (such as the general linear model) faces challenges in localizing the ac-
tivations; additional evidence for the location of the regions is needed. In this
paper we propose to align neuroanatomy based on the functional geometry of
fMRI signals during specific cognitive processes to match corresponding func-
tional areas. For each subject, we construct a map by spectral embedding of the
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Fig. 1. Standard anatomical registration and the proposed functional geometry align-
ment. Functional geometry alignment matches the diffusion maps of fMRI signals of
two subjects.

functional connectivity of the fMRI signals and register those maps to establish
correspondences between functional areas in different subjects.

The primary clinical goal of the fMRI in this work is to localize language
areas in tumor patients. The functional connectivity pattern for a specific area
provides a refined representation of its activity. Our approach is to utilize the
connectivity patterns to improve localization of the functional areas in tumor pa-
tients, by transferring the connectivity patterns from healthy subjects to tumor
patients. The transfered patterns serve as a patient-specific prior for functional
localization, improving the accuracy of detection. The functional geometry we
use in this work is largely independent of the underlying anatomical organi-
zation. As a consequence, our method handles substantial changes in spatial
arrangement of the functional areas that typically present significant challenges
for anatomical registration methods.

Standard registration methods that match the anatomy of the brain between
pairs or groups of individuals based on T1 weighted MRI data, such as the Ta-
lairach normalization [1] or non- rigid methods [2, 3] are of only limited useful-
ness in this context. Related work on functional registration of fMRI data either
matches the centers of activated cortical areas [4, 5], or densely registers cortical
surfaces [6, 7]. The fMRI signals at the surface points serve as a feature vector,
and registration is performed by an elastic surface warp. These methods rely
on a spatial reference frame for the registration, and use the functional charac-
teristics as a feature vector of individual cortical surface points. This approach
is limited in accuracy in cases of substantial reorganization of the functional
structures (e.g., migration to the other hemisphere, or changes in topology of
the functional maps). In contrast, our method of functional registration does not
rely on spatial consistency.

We propose and demonstrate a functional registration method that oper-
ates in a space that reflects functional connectivity patterns of the brain. In
this space, the connectivity structure is captured by a structured distribution
of points, or functional geometry. Each point in the distribution represents a
location in the brain and the relation of its fMRI signal to fMRI signals at
other locations. Fig. 1 illustrates the method. To register functional regions
among two individuals, we first embed both fMRI volumes independently, and
then obtain correspondences by matching the two point distributions in the
functional geometry. We argue that such a representation offers a more natural
view of the co-activation patterns than the spatial structure augmented with
functional feature vectors. The functional geometry can even handle long-range
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reorganization, and topological variability in the functional organization of dif-
ferent individuals. It provides a prior for the detection of displaced functional
regions in tumor patients. We evaluate the method on healthy control subjects
and brain tumor patients who perform language mapping tasks. The language
system is highly distributed across the cortex. The reorganization caused by
tumor growth sometimes sustains language ability of the patient, even though
the anatomy is severely changed. Preliminary results indicate that the proposed
functional alignment outperforms anatomical registration in predicting activa-
tion in the target data. Furthermore, functional alignment is much less affected
by the tumor presence than anatomical registration.

2 Methods

We first review the representation of the functional geometry that captures the
co-activation patterns in a diffusion map [8, 9]. We then introduce a registration
algorithm based on this representation.

2.1 Embedding the brain in a functional geometry
Given a fMRI sequence I ∈ RT×N at N voxels, each carrying a BOLD signal
over a time interval of T time points, we calculate the matrix C ∈ RN×N that
assigns each pair of voxels 〈k, l〉 a non-negative symmetric edge weight c(k, l) =
exp( corr(Ik,Il)

ε ), where ε is the speed of weight decay. We define a graph whose
vertices correspond to voxels and whose edge weights are determined by C. In
practice, we discard all edges with the weight below a chosen threshold and the
corresponding Euclidean distance between the two voxels above another constant
threshold to obtain a sparse graph.

We transform the graph into a Markov chain on the set of nodes by the
normalized graph Laplacian construction [10]. The degree of each node g(k) =∑

l c(k, l) is used to define the directed edge weights of the Markov chain as
p(k, l) = c(k,l)

g(k) , which can be interpreted as transition probabilities along the
graph edges. It also defines a diffusion operator Pf(x) =

∑
p(x, y)f(y) on the

graph vertices (voxels). The diffusion operator integrates all pairwise relations in
the graph and defines a geometry on the entire set of BOLD signals. The graph is
embedded in a Euclidean geometry by an eigenvalue decomposition of P [8]. The
eigenvalue decomposition of the operator P results in a sequence of eigen values
λ1, λ2 . . . and corresponding eigen vectors Ψ1, Ψ2, . . . that satisfy PΨi = λiΨi and
constitute the so-called diffusion map: Ψt , 〈λt

1Ψ1 . . . λt
wΨw〉T , where w ≤ T

is the dimensionality of the representation, and t is a parameter that controls
scaling of the axes in this newly defined space. Ψk

t ∈ Rw is the representation
of voxel k in the functional geometry, and is comprised of the kth components
of the first w eigenvectors. The global structure of the functional connectivity
is reflected in the point distribution Ψt. The dimensions of the eigenspace are
the directions that capture the highest amount of structure in the connectivity
landscape of the graph.

The geometry is governed by the diffusion distance Dt on the graph: Dt(k, l)
is defined through the probability of traveling between two vertices k and l
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Fig. 2. Maps of two subjects in the process of registration: Left and right the axial
and sagittal views of the points in the two brains are shown. The two central columns
show plots of the first three dimensions of the embedding in the functional geometry
after coarse rotational alignment. The colors indicate clusters which are only used for
visualization.

taking all paths of at most t steps into account. It corresponds to the operator
P t parameterized by t - the diffusion time:

Dt(k, l) =
∑

i=1,...,N

(pt(k, i)− pt(l, i))2

π(i)
where π(i) =

g(i)∑
u g(u)

. (1)

The distance Dt is low if there is a large number of paths of length t with high
transition probabilities between the nodes k and l.

The diffusion distance corresponds to the Euclidean distance in the em-
bedding space: ‖Ψt(k) − Ψt(l)‖ = Dt(k, l). The functional relations between
fMRI signals are translated into spatial distances in the functional geometry.
This particular embedding method is closely related to other spectral embed-
ding approaches [11], but the parameter t offers the possibility to control the
range of graph nodes that influence a certain local configuration. The embed-
ding reflects the mutual diffusion distance between points, but is not unique
up to rotation and the sign along individual coordinate axes. When comput-
ing the embedding, we flip the sign of each individual coordinate axis j so that
mean({Ψj(k)}) − median({Ψj(k)}) > 0,∀j = 1, . . . , w. Since the distributions
typically have a long tail, and are centered at the origin, this step disambiguates
the coordinate axis directions well. To facilitate notation, we assume the diffusion
time t is fixed in the remainder of the paper, and omit it from the equations. The
resulting maps are the basis for the functional registration of the fMRI volumes.

2.2 Functional Geometry Alignment

Let Ψ0, and Ψ1 be the functional maps of two subjects. Ψ0, and Ψ1 are point
clouds embedded in a w-dimensional Euclidean space. Since the points in the
maps correspond to voxels, registration of the maps establishes correspondences
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between brain regions of the two subjects. At this point we do not know one-to-
one correspondences of points in the two maps or of regions in the two volumes.
However, the map is a structured point distribution, and we assume it allows for
an unambiguous match between the two point clouds Ψ0 and Ψ1. We initialize
the registration with a coarse alignment of the two brains in the spatial coordi-
nate framework. Based on these initial correspondences the maps are rotated so
that the distance between a randomly chosen subset of points is minimized in
the functional space. For the subsequent non-linear registration of the functional
maps we employ the Coherent Point Drift algorithm [12]. We consider the points
in Ψ0 to be centroids of a Gaussian mixture model that are fitted to the points
in Ψ1 to minimize the energy

E(χ) = −
N1∑
k=1

log

(
N2∑
l=1

e−
1
2
‖x0

k−x1
l ‖

2

2σ2

)
+

λ

2
φ(χ), (2)

where φ is a function that regularizes the deformation χ of the point set.
Once the registration of the two distributions in the functional geometry is

completed, we assign correspondences between points in Ψ0 and Ψ1 by a simple
matching algorithm that for any point in one map chooses the closest point in
the other map.

2.3 Evaluation

To validate the localization of the functional regions quantitatively we regis-
ter pairs of subjects via the proposed functional geometry alignment, and the
anatomical non-rigid demons registration [13, 14]. We restrict the computation
to the grey matter. For computational reasons functional geometry embedding is
performed on a random sampling of 8000 points excluding those that exhibit no
activation (even with a liberal threshold of p = 0.15). We validate the accuracy
of localizing activated regions in a target volume: (i) we measure the average
correlation of the t-value maps (based on the standard General Linear Model
[15]) between the source and the corresponding target regions after registration.
A high value indicates that the aligned source t-maps have high predictive power
for the target fMRI data - even if the target fMRI signal is below the activation
threshold. (ii) We measure the overlap between regions in the target to which
the activated source regions are mapped, and the activated regions in the target
image.

To assess the relationship between the source and registered target regions
relative to the fMRI activation, we measure the correlation between the BOLD
signals in the activated regions of the source volume and the BOLD signals at the
corresponding positions in the target volume. We are interested in two specific
regions: (i) activated regions in the target image that were matched to activated
regions in the source image, and (ii) non-activated regions in the target image
that were matched to activated regions in the source image. The latter are of
interest for the application of the method: they are candidates for activation
identified by the functional alignment, even though they do not pass detection
threshold in the target volume.
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c. Target: Functional Geometry Alignment d. Target: Anatomical Registration
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Fig. 3. Mapping a region by functional geometry alignment: a reference subject (a)
aligned to a tumor patient (b). The green region in the healthy subject is mapped
to the red region by the proposed functional alignment (c) and to the yellow region
by anatomical registration (d). Note that the functional alignment places the region
narrowly around the tumor location, while the anatomical registration result intersects
with the tumor. Quantitative results show the correlation distribution of corresponding
t-values after functional geometry alignment (FGA) and anatomical registration (AR)
for control-control and control-tumor matches (e). The correlation of the BOLD signals
for activated regions mapped to activated regions (left) and activated regions mapped
to sub-threshold regions (right) is shown in (f).

3 Results
We demonstrate the method on a set of 6 control subjects and 3 patients with
low-grade tumors in one of the regions associated with language processing. For
all 9 subjects fMRI data was acquired using a 3T GE Signa system (TR=2000ms,
TE=40ms, flip angle=90, slice gap=0mm, FOV=25.6cm, dimension 128×128×
27 voxels, voxel size of 2× 2× 4mm). The language task (antonym generation)
block design was 5 min 10 sec, starting with a 10 sec pre-stimulus period. 8 task
and 7 rest blocks each 20 sec. long alternated in the design. For each subject,
anatomical T1 MRI data was acquired and registered to the functional data. We
perform pair-wise registration in all 36 image pairs, 21 of which include at least
one patient.

Fig.3 (a-d) illustrates the effect of a tumor in a language related region,
and the corresponding registration results. An area of the brain associated with
language is registered from a control subject to a patient with a tumor. The
location of the tumor is shown in blue; the regions resulting from functional
and anatomical registration are indicated in red, and yellow, respectively. While
anatomical registration creates a large overlap between the mapped region and
the tumor, functional geometry alignment maps the region to a plausible area
narrowly surrounding the tumor.

Fig. 3 (e-f) reports quantitative comparison of functional alignment vs. anatom-
ical registration. Functional geometry alignment achieves significantly higher cor-
relation of t-values than anatomical registration (0.14 vs. 0.07, p¡10−17, paired
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t-test, all image pairs). Anatomical registration performance drops significantly
when registering a control subject and a tumor patient, compared to two control
subjects (0.08 vs. 0.06, p=0.007). For functional geometry alignment the differ-
ence is not significant (0.15 vs. 0.14, p=0.17). Functional geometry alignment
predicts 50% of the activated regions (p < 0.05, FDR corrected [16]) in the target
brain, while anatomical registration predicts 29%.

These findings indicate that the functional alignment based matching of lan-
guage regions among source and target subjects is affected less by the presence
of a tumor than the matching by anatomical registration. Furthermore the func-
tional alignment has better predictive power for the activated regions in the
target subject.

For activated source regions mapped to activated target regions the average
correlation between source and target BOLD is significantly higher for func-
tional geometry alignment (0.108 vs. 0.097, p=0.004 paired t-test). For acti-
vated regions mapped to non-activated regions the same significant difference
exists (0.020 vs. 0.016, p=0.003), but correlations are significantly lower. This
significant difference between functional geometry alignment and anatomical reg-
istration vanishes for regions mapped from non-activated regions. The baseline
of non-activated region pairs exhibits very low correlation (∼ 0.003) and no dif-
ference between the two methods. Note that we evaluate the quality of functional
registration based on correlation of the fMRI time courses in the matched region
across subjects as opposed to the correlation of fMRI signals in the same subject
that is used for functional connectivity calculation and forms the basis for the
embedding.

We demonstrate that our alignment improves inter-subject correlation for
activated source regions and their target regions, but not for the non-active
source regions. This suggest that we enable localization of regions that would
not be detected by the standard GLM analysis, but whose activations are similar
to the source regions in the normal subjects.

4 Conclusion

In this paper we propose and demonstrate a method for registering neuroanatomy
based on the functional geometry of fMRI signals. The method offers an alter-
native to anatomical registration; it relies on matching a spectral embedding of
the functional connectivity patterns of two fMRI volumes. Initial results indi-
cate that the structure in the diffusion map that reflects functional connectivity
enables accurate matching of functional regions. When used to predict the ac-
tivation in a target fMRI volume the proposed functional registration achieves
higher predictive power than the anatomical registration. Moreover it is more
robust to pathologies and the associated changes in the spatial organization of
functional areas. The method offers advantages for the localization of activated
but displaced regions in cases where tumor induced changes of the hemodynam-
ics make direct localization difficult. In such cases the alignment can contribute
evidence from healthy control subjects. Further research is necessary to evaluate
the predictive power of the method for localization of specific functional areas.
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