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The relationship between spatially distributed fMRIpatterns and experimental stimuli or tasks offers insights into
cognitive processes beyond those traceable from individual local activations. The multivariate properties of the
fMRI signals allow us to infer interactions among individual regions and to detect distributed activations of
multiple areas. Detection of task-specificmultivariate activity in fMRI data is an important openproblem that has
drawn much interest recently. In this paper, we study and demonstrate the benefits of random forest classifiers
and the associatedGini importancemeasure for selecting voxel subsets that form amultivariate neural response.
The Gini importance measure quantifies the predictive power of a particular feature when considered as part of
the entire pattern. Themeasure is based on a random sampling of fMRI time points and voxels. As a consequence
the resulting voxel score, orGini contrast, is highly reproducible and reliably includes all informative features. The
method does not rely on a priori assumptions about the signal distribution, a specific statistical or functional
model or regularization. Instead, it uses the predictive power of features to characterize their relevance for
encoding task information. The Gini contrast offers an additional advantage of directly quantifying the task-
relevant information in a multiclass setting, rather than reducing the problem to several binary classification
subproblems. In a multicategory visual fMRI study, the proposed method identified informative regions not
detected by the univariate criteria, such as the t-test or the F-test. Including these additional regions in the feature
set improves the accuracy of multicategory classification. Moreover, we demonstrate higher classification
accuracy and stability of the detected spatial patterns across runs than the traditional methods such as the
recursive feature elimination used in conjunction with support vector machines.
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Introduction

Functional magnetic resonance imaging (fMRI) allows us to study
the relationship between experimental conditions and the brain
response at different locations. The traditional analysis methods
analyze the data in a univariate fashion, that is, they examine the
contributions of different experimental conditions to the fMRI
response of each voxel separately (Friston et al., 1994). Recently, a
new approach, often referred to as multivariate pattern analysis
(MVPA), has emerged that considers patterns of responses across
voxels that carry information about different experimental conditions
(Haxby et al., 2001). In the multivariate pattern analysis framework,
the response of each voxel is considered relevant to the experimental
variables not only on its own but also in conjunction with the
responses of other spatial locations in the brain. Most multivariate
pattern analysis methods train a classifier on a subset of fMRI images
in an experiment and use the classifier to predict the experimental
conditions in the unseen subset. This approach has proved successful
in a variety of applications (Norman et al., 2006; O'Toole et al., 2007).
One of the major challenges of multivariate pattern analysis is that
fMRI images contain a large number of uninformative, noisy voxels
that carry no useful information about the category label. At the same
time, voxels that do contain information are often strongly correlated.
When trained with a relatively small number of examples, the
resulting classifier is likely to capture irrelevant patterns and suffer
from poor generalization performance. To mitigate the first problem,
feature selection must be performed before, or in conjunction with,
training (De Martino et al., 2008; Pereira et al., 2009).

Furthermore, the ultimate goal of most fMRI experiments is not to
achieve high classification performance but to characterize the
functional organization of the brain. Identifying the complete set of
task-dependent meaningful features promises not only to improve
the generalization performance of the learning algorithms but also to
provide insights into the structure of the functional areas in the brain.
Specifically, a feature selection method can identify regions that
process information related to specific stimuli. In light of this
exploratory goal, feature selection becomes more than a mere tool
in optimally regularizing the learning algorithm, but the main aim of
the analysis.

In this paper, we focus on the problem of reproducible feature
selection and examine a fully multifeature, multiclass method in
application to fMRI analysis that improves upon the previous
activation using Gini contrast, NeuroImage (2010),
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approaches in terms of the generalization ability of the resulting
classifiers, the robustness and completeness of the selected voxel sets,
and the stability of the voxel score patterns. We employ the Gini
importance measure derived from a random forest (RF) classifier
(Breiman, 2001) or Gini contrast to quantify the predictive power of
voxels in the selection procedure. This measure captures multivariate
and nonlinear relationships among fMRI activations and conditions. The
measure is robust to noise, exhibits stability across datasets without a
need for explicit regularization, and captures the most informative
voxels more accurately than previously demonstrated approaches.

We demonstrate the method on a visual multicategory fMRI study
of object perception and recognition. Our experimental results
indicate that the proposed method outperforms the commonly used
univariate and multivariate feature selection algorithms in terms of
reproducibility and ranking of voxels.

This paper is organized as follows. In the next section, we review
existing pattern analysis methods used for multivariate pattern
analysis in fMRI studies. In the Methods section, we present the
training procedure for the random forest classifiers and define the
Gini contrast we use for selecting voxels. The same section also
reviews our methodology for the empirical comparison across
methods. The section on Image Data contains detailed information
on the imaging study we used for empirical evaluation of the
methods. The Results section reports the experimental results,
followed by the Discussion section. We conclude in the last section.

Background and related work

Conventional localization approaches for fMRI analysis focus on
explaining the variation in the response of individual voxels.
Univariate statistical tests detect voxels whose fMRI response is highly
correlated with the experimental variable of interest in a linear model
(Friston et al., 1994). Most methods select a subset of the detected
voxels that form contiguous blobs in relevant anatomical locations. For
example, in the studies of visual object recognition, the localization
approach was used to identify category-selective functional regions,
such as the fusiform face area (FFA) and the parahippocampal place
area (PPA) in the ventral visual pathway (Epstein and Kanwisher,
1998; Kanwisher et al., 1997; Kanwisher, 2003).

In contrast, multivariate pattern analysis aims to associate a robust
pattern of response across a large set of brain voxels with each
experimental condition. For example, to study the structure of object
representation in the visual cortex, this approach yields a distributed
pattern in the visual cortex as an alternative to the localized
representations implied by category-selective areas such as FFA and
PPA (Carlson et al., 2003; Cox and Savoy, 2003; Haxby et al., 2001).
Classification-based multivariate pattern analysis methods have been
employed in a wide variety of neuroscientific problems, including
decoding cognitive and mental states (Haynes and Rees, 2006;
Mitchell et al., 2004), lie detection (Davatzikos et al., 2005), and low
level vision (Haynes and Rees, 2005; Kamitani and Tong, 2005).

Multivariate fMRI analysis methods

Unlike the unified framework of the generalized linear models
(GLM) used by the univariate fMRI analysis (Friston et al., 1994), there
is considerable variety in the preprocessing stages and the classifica-
tion algorithms used for multivariate pattern analysis (Pereira et al.,
2009). Earlier studies employed simple correlation-based methods,
linear discriminant analysis (LDA), or multiple regression (Haxby et
al., 2001; Carlson et al., 2003; Ishai et al., 2000). A comprehensive
overview of the basic concepts and the relationship between
univariate and multivariate approaches can be found in Haynes and
Rees (2006) and Norman et al. (2006). Later work compared the more
sophisticated support vector machines (SVM) with simple algorithms
such as LDA, Gaussian naive Bayes (GNB), and the k-nearest neighbors
Please cite this article as: Langs, G., et al., Detecting stable distributed p
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(k-NN), commonly demonstrating advantages of the linear SVM,
which naturally imposes regularization on the learning problem (Cox
and Savoy, 2003; Mitchell et al., 2004; Mourão-Miranda et al., 2005).
These findings resulted in considerable interest in SVM classifiers for
fMRI analysis (LaConte et al., 2005; Mourão-Miranda et al., 2005;
Mourão-Miranda et al., 2007; Wang et al., 2007; Wang, 2009).

However, the application of linear SVMs to fMRI data presents
several challenges. First, the regularization used by the SVM training
procedure results in weights that are not directly informative as
spatial maps but require further processing. Examples of representa-
tions extracted from the classifier include sensitivity maps (Kjems et
al., 2002) and weighting of the feature space based on the distance to
the margin (LaConte et al., 2005). Second, the SVM classification
framework is intrinsically defined for two-category classification
problems. Additional constructs are needed to form multiclass
prediction from binary SVM classifiers. Finally, proper regularization
of nonlinear SVMs is challenging; linear SVMsmight be insufficient for
modeling nonlinear relationships between the experimental condi-
tions and the fMRI responses, in particular when working with more
than two categories.

Feature selection in fMRI studies

Most multivariate pattern analysis methods use voxels as features.
The problem of feature selection thus reduces to choosing a subset of
voxels to be used in the analysis (Cox and Savoy, 2003; Mourão-
Miranda et al., 2006; De Martino et al., 2008; Hardoon et al., 2007).
Numerous feature selection methods have been developed in
machine learning (Guyon and Elisseeff, 2003), many of which also
have been employed on the fMRI data (Pereira et al., 2009). Most
commonly, statistical significance tests or other univariate criteria are
used for selecting relevant voxels. However, this approach departs
from the core idea of multivariate pattern analysis and fails to fully
utilize the predictive power of the underlying signals.

Alternatively, multivariate feature selection methods, such as
recursive feature elimination (RFE), search for a set of voxels that
jointly provide the most information about the experimental condi-
tions (Hanson and Halchenko, 2008; De Martino et al., 2008). Given a
classifier of choice, typically a linear SVM, RFE starts with the set of all
voxels and incrementally removes voxelswith lowest weights (Guyon
et al., 2002). Since it is computationally infeasible to re-estimate the
classifier after removing each voxel, usually a subset of voxels is
removed in each step. However, since the SVM results degrade with
the increasing number of features, it is unclear whether the ranking
provided by the initially trained classifier is a reliable measure for the
elimination of voxels.

Sparse logistic regression with automatic relevance determination
(Yamashita et al., 2008) is also based on a regularized linear model.
Rather than successively remove features, it directly maximizes the
number of zero regression coefficients in the model. A more local
“search light” strategy was proposed in Kriegeskorte et al. (2006).
Rather than test individual voxels for correlation with the experimental
protocol, the search light selection procedure considers small neighbor-
hoods for inclusion in the analysis.Unfortunately, this approach still fails
to capture the joint patterns of response across distant locations in the
brain.

An alternative approach to feature selection is to compare the
performance of a classifier trained on the full data set with the
performance of the classifier on a data set with a particular feature
removed or the values of that feature permuted across training samples
(Hanson and Halchenko, 2008; Strobl et al., 2008; Archer and Kimes,
2008). The difference in classification performance is then used as a
measure of the feature importance. This perturbationmethod comes at a
high computational cost. Furthermore, it may fail to select relevant
variables if several features carry the same information and the removal
of one of them does not affect the classification performance
atterns of brain activation using Gini contrast, NeuroImage (2010),
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significantly, ultimately leading to low reproducibility of the detected
patterns. A related approach is discussed in (Kjems et al., 2002) where
sensitivity maps represent the sensitivity of class labels to the
modification of individual voxel values.

Nonlinear feature selection methods promise to improve the
performance of the approaches based on linear classification models
(Davatzikos et al., 2005). For example, the algorithm developed in Lao
et al. (2004) approximates the nonlinear margin at each support
vector by a local linear function, and visualizes the features that
contribute the most to the separation between the classes. However,
relying on support vectors might overly emphasize the most extreme
representatives of each class (De Martino et al., 2008).

For completeness, we note that dimensionality reduction techni-
ques, such as PCA, can be used to reduce the number of features used
by the classifier and therefore improve its generalization performance
(Mourão-Miranda et al., 2005; Mourão-Miranda et al., 2007). But
since these exploratory methods do not reflect the structure of the
experimental design, their results are not necessarily predictive of the
experimental conditions (O'Toole et al., 2007).

Random forests and Gini contrast

In this paper, we propose to use the Gini contrast of the fMRI voxels
derived from a random forest (RF) classifier (Breiman, 2001) for
feature selection in multivariate pattern analysis in fMRI studies. The
inherently nonlinear multivariate Gini contrast promises to robustly
capture complex relationships between the experimental conditions
and the observed fMRI signals.

The method does not rely on neighborhood constraints, linearity,
specific kernels, or regularization. The core algorithm is simple and
requires onlyminimal parameter tuning. Moreover, the results appear
quite robust to the changes in the values of the parameters.

A random forest is an ensemble classifier that uses decision trees as
base learners (Breiman, 2001). Each decision tree is trained on a
random subset of the training set. The nodes of the decision tree
perform thresholding on individual features. To construct the next
node of a decision tree, the method searches over a random subset of
features (voxels in the fMRI context) to maximize separation among
the different classes. The features are tested effectively for their ability
to separate the classes, conditioned on the decisions at the higher
levels of the tree. The Gini importance of a particular feature
quantifies the gain in class separation due to that feature, integrated
over all the trees in the random forest.

In contrast to many other training methods, the independent
random draws enable highly correlated but predictive features to be
included in the classifier, a characteristic referred to as grouping effect.
This is particularly relevant when we are interested in detecting all
informative voxels in fMRI data as opposed to detecting a subset
sufficiently informative to perform accurate decoding. A direct
consequence is high reproducibility of the informative regions
detected by Gini contrast across trials.

Unlike the classification methods based on SVMs (Pereira et al.,
2009), the random forest classifiers naturally enable a multiclass
setup. As a result, the Gini contrast derived from such a classifier
simplifies the interpretation of the resulting feature rankings and
highlights the importance of features which are of mutual relevance
to differentiating several external stimuli. In addition, the Gini
importance measure has been shown to correlate well with measures
based on feature perturbations (Breiman, 2001; Archer and Kimes,
2008), providing a surrogate for computationally more expensive
statistical permutation tests.

Random forests often perform remarkably well, with very little
tuning required (Hastie et al., 2009). The Gini importance and related
importance measures derived from the random forest classifiers have
shown to be useful for feature selection in a variety of high-
dimensional learning tasks (Breiman, 2004). Examples include
Please cite this article as: Langs, G., et al., Detecting stable distributed p
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micro-array experiments (Diaz-Uriarte and Alvarez de Andres,
2006), chemometrical applications (Svetnik et al., 2003; Menze et
al., 2009), classification of spectra (Menze et al., 2007; Granitto et al.,
2006), classification of time series, and EEG signals (Shen et al., 2007).

Methods

In this section, we formally define the Gini contrast and discuss the
empirical evaluation procedure we used to compare different feature
selection methods. Our review of the random forest classifiers follows
(Breiman, 2001).1 (Hastie et al., 2009) offers an excellent introduction
to RF.

Random forests and Gini importance for feature selection

We let X = x1;…;xT½ �∈RVxT be the BOLD signal observed in an
fMRI experiment in V voxels over T time points. xtv represents the
response of voxel v at time t. In addition, we have access to the labels
[l1,…, lT] that specify the experimental condition (stimulus or task) for
each time point, lt∈{1,…,L}. We treat the fMRI pattern at each time
point as a separate data point for classification purposes. Feature
selection then becomes selecting voxels [v1,…,vK] whose fMRI
responses exhibit robust generalization.

A random forest classifier consists of decision trees (Fig. 1) for
predicting the category label l from the fMRI pattern x. Majority
voting rule yields the final category by integrating decisions over all
the trees in the forest. Each tree is trained on a random subset of
examples xt ; ltð Þ.

Let nw be the total number of examples assigned to node w in the
tree and nw

l be the number of examples at node w that belong to
category l. Let pwl be the empirical frequency of category l at node w,
i.e., plw = nlw

nw
. The Gini impurity measures the degree of separation

among the classes achieved at a particular node:

i wð Þ = ∑
L

l=1
plw 1−plw

� �
: ð1Þ

Intuitively Gini impurity measures the probability that two indepen-
dentdraws fromthemultinomial distributiondefinedbypwl are fromtwo
different classes. Each node is associated with a feature (voxel) v and a
threshold value η. All the examples at node w are assigned to one of its
two children, w1 and w2, based on the outcome of the thresholding. We
can evaluate the decrease in Gini impurity between node w and its
children (w1,w2):

Δi w; v;ηvð Þ = i wð Þ−nw1

nw
i w1ð Þ−nw2

nw
i w2ð Þ: ð2Þ

During training of the tree, given node w, we choose a random subset
of features [v1,…,vK]. We then select a single feature v⁎(w) and a
threshold value η⁎(w,v⁎) that maximize the reduction in Gini
impurity for the node w. This selection defines the two children of
the node w. We repeat this procedure recursively, until all leaves of
the tree define unique categories.

Given the forest, the Gini importance or contrast of feature v is
defined as the reduction in the Gini impurity induced by the feature,
integrated over all the trees in the forest:

IG vð Þ = ∑
all trees

∑
fw : v⁎ wð Þ=vg

Δi w; v;η⁎ w; vð Þ
� �

: ð3Þ

In this work, we use the Gini importance to rank voxels for feature
selection.We refer to the value as the Gini contrast of a voxel with regard
atterns of brain activation using Gini contrast, NeuroImage (2010),
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Fig. 1. Random forest construction and Gini importance calculation.
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to the classes in the training set of the random forest (e.g., different image
categories). The underlying Gini impurity is related to the entropy of the
conditional distribution of the labels at node w, ie wð Þ = −∑L

i = 1p
l
wlogpi

by replacing the logarithm logpi by −(1−pi) (Raileanu and Stoffel,
2004). The decrease in Gini impurity quantifies the decrease of labeling
uncertainty caused by choosing the feature and the threshold. The Gini
contrast approximates theexpected informationgain in thedecision tree.
It enables selection of voxels that improve the separation among the
classes at some point of any of the hierarchical decisions imposed by
decision trees in the forest.

Gini contrast vs. univariate criteria

We compare Gini contrast to three univariate criteria for feature
selection: (i) the univariate t-test that compares the average response
to stimuli in a particular category to that of fixation, (ii) the omnibus
F-test that includes one regressor for each category in the linearmodel
of the signal, and (iii) random selection of features that provides an
uninformed baseline. We use identical classification setup, described
above, with all four feature selection methods.

We train a random forest of 40,000 trees to rank voxels based on
Gini contrast. The Matlab implementation on a standard workstation
(Intel Xeon, 8 cores, 2.8 GHz each) takes about 2.5 hours to train the
classifier.

To illustrate the regions selected by Gini contrast and univariate
scores, we use the Mutual Information between the labels and the
average fMRI signals in individual selected regions, or pairs of regions.

Gini contrast vs. recursive feature elimination

We compare the Gini contrast to recursive feature elimination
based on linear SVMs as described in Hanson and Halchenko (2008)
and Guyon et al. (2002).

During recursive feature elimination, we train a SVM with linear
kernel in every step, enforcing strong regularization by setting the
error penalty to 1010 and assigning equal weight to all features by
scaling each variable to unit variance. After training, we rank variables
according to the absolute value of the coefficient in the prediction
function. We remove the features with the lowest rank, retrain the
SVM using the remaining features and repeat the elimination process.
In each step, about half of the voxels are removed. The process yields
data sets with 40, 80, 160, 320, 640, 1280, 2560, 5120, and 10,240
voxels.
Please cite this article as: Langs, G., et al., Detecting stable distributed p
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When using recursive feature elimination, we select features for
each category separately, as choosing a unique feature set by merging
the feature rankings obtained for all binary subproblems (“one-vs-
all”) resulted in poor predictions. We used the same classification
setup with both feature selection procedures.

Classification setup

Once the ranking of all voxels is established, we proceed to train a
classifier based on the top K voxels while varying K. We decouple the
choice of the feature selection method from the classifier that uses the
features to assign novel examples to one of the categories. In this work,
we use three types of classifiers: the random forest (Breiman, 2001), the
linear SVM, and the Gaussian RBF SVM (Schoelkopf and Smola, 2002).

For each subject in the study, we train the classifier on the voxels
identified by the feature selection procedure using the first half of the
time courses and test it on the remaining time points.While the random
forest classifiers are inherently multi-class, the SVM classifiers are two-
way classifiers for each image category vs. all other categories. We
quantify the classification performance of the classifiers by the average
area under the ROC curve (AUC), averaged over all categories.

In the absence of ground truth for the regions related to stimuli
categories, we evaluate the information encoded in the selected
voxels by the classification performance. A fast classification perfor-
mance increase when starting with the top-ranked features indicates
that the top-ranked voxels contain highly relevant information.

Cross-validation scheme

We perform feature selection, classifier training, and testing in a two-
fold cross-validation fashion. For each subject, we divide the fMRI
sequence into two consecutive parts of equal length (300 time points).
We then use one of the halves for features selection and training and
apply the resulting classifier to theotherhalf.While the signalsof adjacent
time points in fMRI time courses are highly correlated, this subdivision
reduces the effects of correlations to a small region at the split point.

In addition to the classifier performance, we evaluate the stability of
the selection by comparing the overlap of the selected voxel subsets
between the two halves of the time courses. For each feature selection
method (Gini contrast and RFE), we use the Dice measure of overlap
(Dice, 1945)

Dice A;Bð Þ = 2 jA∩B j = jA j + jB jð Þ
atterns of brain activation using Gini contrast, NeuroImage (2010),
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to quantify the volume overlap between the two voxel sets identified
by themethod on the two training sets.We calculate the Dicemeasure
for different numbers of top-ranked voxels.
Image data

We evaluated the methods in a high-level vision fMRI study that
included five subjects (Kanwisher, 2003). The subjects viewed images
from eight different categories (Animals, Bodies, Cars, Faces, Scenes,
Shoes, Trees, and Vases) in a block-design protocol. During the
experiment, subjects viewed sets of eight blocks separated by a
fixation period. Each block lasted 16 s, during which 20 images of one
category were shown. Each block set contained one block for each
category, arranged in a random order. Subjects were shown between
8 and 9 blocks for each category. The fMRI data was acquired using a
Siemens 3-T scanner and a custom 32-channel coil (EPI, flip
angle=90°, TR=2 s, TE=30 ms, 28 axial 128×128 slices, voxel
size=1.5×1.5×2 mm). The image volume was restricted to the
occipital cortex and the temporal lobe.

For each subject, structural T1 MRI data was acquired and
coregistered to the functional data. We segmented the cortex in the
T1 image using the segmentation procedures in FreeSurfer2 and
transferred this segmentation to the functional images. All calculations
were restricted to the voxels on the cortex. We performed motion
correction, spike detection, intensity normalization, and Gaussian
smoothing with a 3 mm kernel using our standard pipeline employed
in localization studies. We discarded all runs that contained signal
spikes. In addition, we applied detrending to voxel time courses,
regressing out a constant baseline, a linear trend, and three linear
motion correction regressors, using FsFast.3

We calculated the classification labels by convoluting the block
labels with the hemodynamic response kernel and thresholding the
resulting values at 10% of the maximum value, to exclude ambiguous
sections close to the beginning and the end of each block. We
excluded the fixation periods from feature selection and classification.
Results

We first compare ranking by Gini contrast and univariate criteria
and examine the information contained in the regions selected only
2 http://surfer.nmr.mgh.harvard.edu.
3 http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast.
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by the multivariate criterium. Then, we compare Gini contrast to RFE
in terms of classification performance and reproducibility.

Gini contrast vs. univariate criteria

Fig. 2 reports the classification performance for random ranking, t-
test, F-test, and Gini contrast ranking. The mean performance over all
categories is shown for each subject, as well as the average
performance over all subjects. Starting with the highest ranked
voxels, the voxel sets used for classification have a size of 40, 80, 160,
320, 640, 1,280, 2,560, 5,120, and 10,240 (approximately a quarter of
all voxels). Random ranking provides a baseline for the information
contained in arbitrary subsets of voxels. As expected, all three feature
selection methods perform better than the random ranking. Since RF
performs an inherent feature selection during training, the accuracy of
RF on random ranking increases as more voxels are included. This is
not the case for SVM.When using SVM-RBF and RF classifiers, the Gini
contrast consistently outperforms t-test and F-test for all voxel
subsets. The accuracy of the classifiers based on Gini contrast peaks
between 200 and 400 voxels, while t-test and F-test reach their peak
performance only after 1000 voxels are included.

RF achieves the best classification results for all selection methods.
However, the differences between the feature selection methods
(random, t-test, F-test, and Gini contrast) are consistent across the
three classification methods.

The differences between the feature selection methods are most
pronounced for the small voxel sets. An RF classifier trained and tested
on the 40 top-ranked voxels yields an average 0.84 AUC for Gini
contrast ranking, 0.73 for the F-test, and 0.66 for the t-test. It takes 640
voxels for the F-test to reach classification accuracy comparable to
that of Gini contrast for 40 voxels, and the t-test ranking never reaches
this performance.

What is gained by multivariate regions?

When increasing size of the selected voxel set, starting from the
top-ranked voxels, the classification performance of Gini contrast
increasesmore rapidly, and reaches its peak earlier, than that for t-test
and F-test. The latter two capture large blobs in the data, while Gini
contrast selects parts of the same blobs, but ranks only a small portion
of each blob very high. At the same time, Gini contrast selects other
regions that are not identified by the t-test or the F-test.

Fig. 3 illustrates the regions selected by t-test and those selected by
Gini contrast but not by t-test. It also shows the detrended BOLD
atterns of brain activation using Gini contrast, NeuroImage (2010),
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signals for the regions selected by Gini contrast only. For one pair of
those regions, I(y ;x1), I(y ;x2), and I(y ;x1,x2) are reported. The
corresponding plots illustrate how the signals explain the presence
of faces jointly, while each of them alone does not exhibit high
selectivity to the stimulus.

In Fig. 4, the Gini contrast ranking is shown for subject 1 for all eight
image categories. The multiclass Gini contrast takes the interaction
between the classes into account and reflects the differentiating
features accordingly. In Fig. 5, t-test and Gini-only regions are shown
for all five subjects in the study. The regions selected only by Gini
contrast exhibit a considerable level of consistency across subjects.

Gini contrast vs. recursive feature elimination

Fig. 6 reports cross-validation results for the two multivariate
rankingmethods.Wefirst perform recursive feature elimination based
on a linear SVM. We stop removing features when the overall
predictive performance starts decreasing. We observe such a peak,
for most subjects, after removing 35,000 to 39,000 features. The
remaining 2000–5000 voxels form the feature set used for training of
the classifier.When testing the nonlinear classifiers on the same subset
of top RFE features the SVM-RBF holds a slight advantage over the
linear SVM and shows consistent improvement with the increasing
voxel set size. The RF is well within the performance range defined by
the two SVMs—with slightlyworse results on the larger sets of features
and better results on the smaller sets when compared to the SVM-RBF
classifier. The RF performswell as long as informative features are part
Univariate Gini cont

F
ac

e

F
ac

e

Regions

Fig. 3. Face category: Top row: top-ranked voxels by univariate t-test, Gini contrast, and exc
than 9 voxels detected by a univariate criterion (t-test, blue) and regions selected exclusiv
contribute multivariate relationships to the category. For one pair of regions the detrended B
category than random regions. Two example regions carrying joint information are indicat
mutual information vs. face images: I(face;red)=0.11, I(face;green)=0.054, pairwise mut
test; Gini only—selected only by Gini contrast.
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of the feature set it is applied to, with a slight decrease in performance
upon the injection of too many irrelevant “noisy” predictors. Many of
the 200–400 features required for an optimal RF classifier were
removed early in the RFE ranking. Overall, we find that the predictive
performance of the two nonlinear classifiers is very close to the
performance of the linear classifier which had been used to define the
feature ranking and the selected voxel sets. This also implies that
features whichmay be nonlinearly related to the categories have been
removed early in the recursive feature elimination.

The random forest classifier achieves the best classification
performance for both ranking schemes (Gini and RFE) (Fig. 6). More
importantly, the Gini contrast ranking has an advantage over the RFE
ranking for small voxel sets regardless of which of the two nonlinear
classifiers (RF and SVM-RBF) is used for classification. That is, both
nonlinear classifiers can take advantage of the information in the
voxels ranked high by Gini contrast. Gini contrast ranking together
with random forests achieves the best classification performance in
the entire experiment.

We find the peak performance of the nonlinear classifiers to be at
about 200–400 features, i.e., when using atmost 1% of the features. The
observed advantage of the RF classifier may be attributed to thematch
between the feature importance measure and the classifier. The two
SVMs exhibit comparable performance on larger feature sets, but we
observe a significant advantage of the nonlinear classifier on small
feature sets. Specifically SVM-RBF with the top 400 features performs
equally or better than the linear SVM with any of the voxel subsets
selected by Gini contrast or RFE. Overall, the Gini contrast seems to
rast Gini contrast only

F
ac

e

F
ac

e

Gini contrast only

Univariate

lusively Gini contrast. Second row: comparison between connected regions with more
ely by Gini contrast (red). The additional regions detected by Gini contrast primarily
OLD values are illustrated. Together, they hold significantly more information about the
ed by red and green curves. They exhibit characteristic joint behavior for faces: single
ual information vs. face images: I(face;red,green)=0.213. U—selected by univariate t-

atterns of brain activation using Gini contrast, NeuroImage (2010),

http://dx.doi.org/10.1016/j.neuroimage.2010.07.074


1: Animals

3: Cars

5: Scenes

7: Trees

2: Bodies

3: Faces

6: Shoes

8:  Vases

Fig. 4. Gini contrasts for all eight classes shown in 3D at their positions on the cortex.
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identify features relevant to nonlinear relations between observations
and stimuli, better than the recursive feature elimination.

In summary, for all classifiers in the experiment, the maximum
classification performance is reached by Gini ranking with smaller
numbers of voxels than what is required by other rankings. The
observations regarding linear SVM and SVM-RBF accuracy are
consistent with the expectation that Gini contrast selects voxels
with both linear and non-linear relationship to the class label, while
RFE with linear SVMs selects those features with a linear relationship
to the class label.
Consistency of the selected regions across data

Fig. 7 shows the top 1% of voxels for two folds of the cross-
validation for the Gini contrast (top row) and RFE (bottom row). Here
we examine face-selective areas of the brain. For each number of
chosen voxels, we compute the Dicemeasure of volume overlap (Dice,
1945) between the sets of top-ranked voxels in the two training sets.
The average Dice coefficient between the two sets is 0.35 (ranging
from 0.21 to 0.54) for Gini contrast, and 0.06 (ranging from 0.05 to
0.08) for RFE. Fig. 8 reports the Dicemeasure of overlap between voxel
subsets selected by RFE and Gini contrast on two different parts of the
fMRI data. For RFE, the amount of overlap scales linearly with the
number of selected voxels, indicating that randomness—or lack of
appropriate regularization—is present in the recursive feature
selection process. In contrast, for Gini contrast, we find a set of
several hundred top ranking features (less than 0.5% of the total
number of voxels) that are shared during cross-validation. The Dice
Please cite this article as: Langs, G., et al., Detecting stable distributed p
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scores behave distinctly different from the random scaling found for
RFE, until more than approximately 10% of total features are added,
which presumably contain more noise than the initial top features.

Discussion

The premise of employing multivariate pattern analysis in fMRI
studies is that the relationship between BOLD signals and stimuli can
be captured by multivoxel classifiers. Furthermore this approach
assumes that the patterns detected reveal information about the role
of brain regions during cognitive processes.

The search for selective, or diagnostic regions in the neuroscientific
context, is equated with the selection of informative features—a
preprocessing step for classification. There are different approaches
for selecting features, or voxels, driven by the objective to improve the
classifier performance. The individual time courses of the selected
voxels do not necessarily correlate with the experimental protocol but
are a part of potentially complex patterns that predict the stimulus.

The approaches used in the neuroscientific community transi-
tioned from including anatomical regions known a priori to employing
univariate criteria to select regions (Friston et al., 1994) and then to
recursive feature elimination schemes that take the properties of a
specific classifier explicitly into consideration (Hanson and Hal-
chenko, 2008). This has made the relationship between feature
selection and the detection of active regions more complex and
subject to potential bias introduced by the feature selection method
(Norman et al., 2006).

In this paper, we use the Gini contrast to rank voxels according to
their potentially nonlinear andmultivariate relationship to the set of the
stimuli in the experiment. The scoring is inherently multiclass and
captures both the relationship of a voxel's time course to individual
categories of stimuli (in our case, different visual object categories) and
its contribution for the differentiation among categories. We do not
perform any preselection of the regions other than confining the
analysis to an anatomical segmentation of the cortex in the recorded
fMRI data. No parameter optimization or regularization was performed
as part of the Gini contrast computation. The classification of the visual
categories is not the focus of this paper but only ameans to quantify the
information encoded in the voxels in a comparative way. To obtain a
balanced view and avoid bias towards a specific classifier and feature
selection pair, we performed validation with three different classifiers.

Experimental findings

The experiments revealed several interesting findings.

1. Multivariate nonlinear scoring of voxels identified regions related
to the stimuli that are consistent across cross-validation trials and
across subjects. Some of these regions are missed by univariate
criteria.
This suggests that the Gini contrast score yields a more accurate
indication of the relation between voxels and stimuli than the t-
test and the F-test. Specifically, Gini contrast captures multivariate
relationships that cannot be detected by univariate criteria. The
results substantiate this hypothesis. The performance of the
classifiers trained on the voxel sets selected based on the Gini
contrast tends to peak at high accuracy for relatively small feature
set sizes (Fig. 2), implying that the information about the stimulus
in the highest ranked voxels is higher than for univariate criteria.
The t-test and F-test do not capture multivariate relations, and
thus, comparable sizes of top-ranked voxel sets include possibly
noisy voxels with weak univariate relationships to the stimuli.
Comparing voxel selection by Gini contrast and univariate criteria
(t-test and F-test) based on the classification performance of the
classifier on a separate test set reveals two important differences in
the ranking. The Gini contrast selects regions if they exhibit strong
atterns of brain activation using Gini contrast, NeuroImage (2010),
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univariate or multivariate relation to the stimulus differentiation.
Most of the regions selected by a t-test are also selected by Gini
contrast. However, with equal number of top-ranked voxels, Gini
contrast additionally selects regions that exhibit primarily a
multivariate relation to the stimulus and are completely ignored
by the univariate criteria. In a related phenomenon, the voxels
selected by the Gini contrast form tighter spatial clusters.
An example of this behavior is illustrated in Fig. 3. The two individual
highlighted regions do not differentiate between face and nonface
with sufficient specificity to be selected by the t-test. However as a
joint feature set, they do relate to faces. The corresponding mean
BOLD signals reveal this form of relationship. Fig. 5 depicts the
regions selected by Gini contrast but not by the t-test for all subjects
in the study. There is a qualitative level of consistency across subjects,
which indicates that themultivariate regions are characteristic to the
face stimuli across subjects.

2. The ranking of the voxels by a multivariate nonlinear criterion like
Gini contrast more accurately captures the information contained
in individual voxels. We quantitatively compared the feature
selection methods based on the score assigned to the voxels by
random ranking, t-test, F-test, and Gini contrast. We used the
Please cite this article as: Langs, G., et al., Detecting stable distributed p
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classification performance in a two-fold cross-validation as an
indicator for the information captured in the selected voxels. Fig. 2
shows that the methods outperform random ranking, as expected.
The important difference between the univariate rankings and Gini
contrast is in the highest ranked voxels. We note that Gini contrast
yields higher-classification accuracy. The advantage is particularly
pronounced in the top 2% of the voxels. While the classifiers based
on the univariate criteria gradually improve the performance, as
more voxels are included, theGini contrast selection leads to a fairly
early peak in classification accuracy.
It is interesting to compare the classifiers' performance for the
random ranking. In contrast to the SVMs, random forests utilize the
information in the randomly selected 10,000voxels (approximately
a quarter of all voxels) to achieve competitive classification
performance, although most of the included voxels are not
informative. This phenomenon is related to the observations
made in De Martino et al. (2008): high-classification performance
indicates presence of informative voxels not the absence of noise.

3. Gini contrast outperforms RFEwith linear SVMs in terms of ranking
and selection of informative voxels and in terms of stability of the
selection. The effect is similar to but less pronounced than what we
atterns of brain activation using Gini contrast, NeuroImage (2010),
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observed in comparisons to univariate criteria. RFE reaches the
peak performance for larger sizes of the selected voxel sets than
Gini contrast. Furthermore, the regions selected by Gini contrast
Faces - Gini contrast rank top 1%  

Subject 1 Subject 2 Sub

First half of fMRI sequence Sec

Top 1% features only fold 1 Top 1% features only f

Faces -  SVM-RFE rank top 1%

Fig. 7. Consistency across trials: Gini contrast ranking vs. SVM RFE ranking of voxels. Top 1%
half of the time course in blue. The overlap between the two sets is shown in green. In the
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exhibit better stability than those selected by RFE (Fig. 7). While
the RFE regions have only small overlap between training sets, Gini
contrast regions show significantly higher overlap. Since both
ject 3 Subject 4 Subject 5

ond half of fMRI sequence

old 2 Overlap of fold 1 and 2

of the voxels is shown for the first half of the time course in red, and that for the second
bottom row, the voxel sets for subject 1 are shown on the 3D view of the cortex.

atterns of brain activation using Gini contrast, NeuroImage (2010),
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methods yield similar classification performance, this calls for
caution using classification performance as a singular criterion, if
voxel identification is the primary aim. Despite of comparable
classification performance, the repeatability of the voxel sets is
substantially different for the two ranking methods. Similar
observations have been made in prior literature (Kjems et al.,
2002; LaConte et al., 2003; Strother et al., 2002; Pereira et al.,
2009). The nonlinear classifiers like SVM-RBF and random forests
reveal a quantitative classification difference favoring the Gini
contrast regions. This is in agreement with the high overlap of the
selected regions in different training sets of the cross-validation
and gives reason for confidence in the identified brain regions. It is
consistent with the hypothesized robustness of the Gini contrast
measure for ranking of the voxels in fMRI.

Pitfalls of multivariate pattern analysis

There is a conceptual difference between the activations detected
by a general linear model (GLM) that takes the increase of
oxygenation as an indicator for the relationship to the stimulus and
the classifier-based identification of multivariate patterns (Haynes
and Rees, 2006; Norman et al., 2006). While the former associates the
correlation of BOLD signal increase with a specific stimulus, the latter
uses multiple voxels to differentiate between stimuli. One criticism of
GLM is noted in Hanson and Halchenko (2008) where the authors
conclude that, for example, the efficiency of a brain region in terms of
energy consumption can confound the significance of the GLM
paradigm. In contrast, multivariate patterns aim to differentiate
between stimuli, or conditions, by using BOLD signals in multiple
voxels together with statistical classifiers. While this approach makes
the observation of complex and interconnected characteristics
possible (i.e., beyond the correlation between a single BOLD signal
and the stimulus), it can lead to ambiguous results if used for the
identification of informative voxels. The patterns might include voxels
that are not informative but do not deteriorate the classification
results. It can also exclude parts of informative but highly correlated
voxels. Both cases result in only partial overlap between regions
identified by the algorithm and those actually related to the stimulus.

For example, a method that treats the reduction in classification
performance when a certain voxel is excluded as an indicator of the
voxel's diagnostic value can detect informative voxels. But such a
methodwould exclude voxels that are informative but highly correlated
Please cite this article as: Langs, G., et al., Detecting stable distributed p
doi:10.1016/j.neuroimage.2010.07.074
to other informative voxels. SVM-based rankings tend to score
informative but highly correlated voxels lower than single voxels with
the samecontribution to classificationperformance that arenot strongly
correlatedwith other voxels in the volume. Oneway of constraining the
voxel selection and minimizing this ambiguity is a tolerant univariate
activation detection by a standard GLM and only a subsequent
restriction of the analysis to the selected regions. In (De Martino et al.,
2008; Haynes et al., 2007) a GLM-based detection of voxels that exhibit
anactivation effect precedes themultivariate pattern analysis. However,
the disadvantage of this strategy is that it can exclude regions with low
univariate characteristics but highmultivariate predictive power. In our
experiments, we did not perform a prior exclusion of regions based on
GLM.

In contrast to the methods above, Gini contrast exhibits a grouping
effect. It ranks informative voxels equally high, even if their time
courses are strongly correlated. Furthermore, bagging and random
feature selection during the random forest training and Gini contrast
calculation provides robustness against noise and ensures stability
even though the size of the training set is small (300 time points)
compared to the dimensionality of the data (40,000 voxels).

Conclusion

Identification of diagnostic brain regions by means of classifiers
and multivariate patterns requires careful choice of the classifier, the
voxel selection criterion, and the inference made from the selected
regions. In our experiments, we observed that Gini contrast as a voxel
selection score identifies regions detected by univariate criteria and
additional informative regions consistently missed by univariate
criteria. Regions selected by the Gini contrast measure exhibit
substantial overlap for different fMRI data trials for the same subject
and across subjects. Gini contrast is a multiclass multivariate criterion
that eliminates the need for regularization or preselection of regions.
The results indicate that it is a promising choice for the detection of
multivariate patterns in fMRI data.
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