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Abstract

We present a model that describes the structure in the responses of different brain
areas to a set of stimuli in terms ofstimulus categories(clusters of stimuli) and
functional units(clusters of voxels). We assume that voxels within a unit respond
similarly to all stimuli from the same category, and design anonparametric hier-
archical model to capture inter-subject variability amongthe units. The model ex-
plicitly encodes the relationship between brain activations and fMRI time courses.
A variational inference algorithm derived based on the model learns categories,
units, and a set of unit-category activation probabilitiesfrom data. When applied
to data from an fMRI study of object recognition, the method finds meaningful
and consistent clusterings of stimuli into categories and voxels into units.

1 Introduction

The advent of functional neuroimaging techniques, in particular fMRI, has for the first time provided
non-invasive, large-scale observations of brain processes. Functional imaging techniques allow us to
directly investigate the high-level functional organization of the human brain. Functional specificity
is a key aspect of this organization and can be studied along two separate dimensions: 1) which sets
of stimuli or cognitive tasks are treated similarly by the brain, and 2) which areas of the brain have
similar functional properties. For instance, in the studies of visual object recognition the first ques-
tion defines object categories intrinsic to the visual system, while the second characterizes regions
with distinct profiles of selectivity. To answer these questions, fMRI studies examine the responses
of all relevant brain areas to as many stimuli as possible within the domain under study. Novel
methods of analysis are needed to extract the patterns of functional specificity from the resulting
high-dimensional data.

Clustering is a natural choice for answering questions we pose here regarding functional specificity
with respect to both stimuli and voxels. Applying clustering in the space of stimuli identifies stimuli
that induce similar patterns of response and has been recently used to discover objectcategories
from responses in the human inferior temporal cortex [1]. Applying clustering in the space of brain
locations seeks voxels that show similar functional responses [2, 3, 4, 5]. We will refer to a cluster
of voxels with similar responses as afunctional unit.

In this paper, we present a model to investigate the interactions between these two aspects of func-
tional specificity. We make the natural assumptions that functional units are organized based on
their responses to the categories of stimuli and the categories of stimuli can be characterized by the
responses they induce in the units. Therefore, categories and units are interrelated and informative
about each other. Our generative model simultaneously learns the specificity structure in the space of
both stimuli and voxels. We use a block co-clustering framework to model the relationship between
clusters of stimuli and brain locations [6]. In order to account for variability across subjects in a
group study, we assume a hierarchical model where a group-level structure generates the clustering
of voxels in different subjects (Fig. 1). A nonparametric prior enables the model to search the space
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Figure 1: Co-clustering fMRI data across subjects. The firstrow shows a hypothetical data set of
brain activations. The second row shows the same data after co-clustering, where rows and columns
are re-ordered based on the membership in categories and functional units.

of different numbers of clusters. Furthermore, we tailor the method specifically to brain imaging
by including a model of fMRI signals [7]. Most prior work applies existing machine learning algo-
rithms to functional neuroimaging data. In contrast, our Bayesian integration of the co-clustering
model with the model of fMRI signals informs each level of themodel about the uncertainties of
inference in the other levels. As a result, the algorithm is better suited to handling the high levels of
noise in fMRI observations.

We apply our method to a group fMRI study of visual object recognition where 8 subjects are
presented with 69 distinct images. The algorithm finds a clustering of the set of images into a
number of categories along with a clustering of voxels in different subjects into units. We find that
the learned categories and functional units are indeed meaningful and consistent.

Related Work Different variants of co-clustering algorithms have foundapplications in biological
data analysis [8, 9, 10]. Our model is closely related to the probabilistic formulations of co-clustering
[11, 12] and the application of Infinite Relational Models toco-clustering [13]. Prior work in the
applications of advanced machine learning techniques to fMRI has mainly focused on supervised
learning, which requires prior knowledge of stimulus categories [14]. Unsupervised learning meth-
ods such as Independent Component Analysis (ICA) have also been applied to fMRI data to de-
compose it into a set of spatial and temporal (functional) components [15, 16]. ICA assumes an
additive model for the data and allows spatially overlapping components. However, neither of these
assumptions is appropriate for studying functional specificity. For instance, an fMRI response that
is a weighted combination of a component selective for category A and another component selective
for category B may be better described by selectivity for a new category (the union of both). We
also note that Formal Concept Analysis, which is closely related to the idea of block co-clustering,
has been recently applied to neural data from visual studiesin monkeys [17].

2 Model

Our model consists of three main components:

I. Co-clustering structure expressing the relationship between the clustering of stimuli (cate-
gories) and the clustering of brain voxels (functional units),

II. Hierarchical structure expressing the variability among functional units across subjects,

III. Signal model expressing the relationship between voxel activations and observed fMRI
time courses.

The co-clustering level is the key element of the model that encodes the interactions between stim-
ulus categories and functional units. Due to the differences in the level of noise among subjects, we
do not expect to find the same set of functional units in all subjects. We employ the structure of the
Hierarchical Dirichlet Processes (HDP) [18] to account forthis fact. The first two components of the
model jointly explain how different brain voxels are activated by each stimulus in the experiment.
The third component of the model links these binary activations to the observed fMRI time courses
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xjis activation of voxeli in subjectj to stimuluss
zji unit membership of voxeli in subjectj
cs category membership of stimuluss
φk,l activation probability of unitk to categoryl
βj unit prior weight in subjectj
π group-level unit prior weight
α, γ unit HDP scale parameters
ρ category prior weight
χ category DP scale parameters
τ prior parameters for actviation probabilitiesφ
yjit fMRI signal of voxeli in subjectj at timet
ejih nuisance effecth for voxel i in subjectj
aji amplitude of activation of voxeli in subjectj
λji variance reciprocal of noise for voxeli in subjectj
µa

j , σa
j prior parameters for response amplitudes

µe
jh, σe

jh prior parameters for nuisance factors
κj , θj prior parameters for noise variance

Figure 2: The graphical representation of our model where the set of voxel response variables
(aji, ejih, λji) and their corresponding prior parameters(µa

j , σa
j , µe

h, σe
h, κj , θj) are denoted byηji

andϑj , respectively.

of voxels. Sec. 2.1 presents the hierarchical co-clustering part of the model that includes both the
first and the second components above. Sec. 2.2 presents the fMRI signal model that integrates the
estimation of voxel activations with the rest of the model. Sec. 2.3 outlines the variational algorithm
that we employ for inference. Fig. 2 shows the graphical model for the joint distribution of the
variables in the model.

2.1 Nonparametric Hierarchical Co-clustering Model

Let xjis ∈ {0, 1} be an activation variable that indicates whether stimuluss activates voxeli in
subjectj. The co-clustering model describes the distribution of voxel activationsxjis based on
the category and the functional units to which stimuluss and voxeli belong. We assume that all
voxels within functional unitk have the same probabilityφk,l of being activated by a particular
categoryl of stimuli. Let z = {zji}, (zji ∈ {1, 2, · · · }) be the set of unit memberships of voxels
andc = {cs}, (cs ∈ {1, 2, · · · }) the set of category memberships of the stimuli. Our model of
co-clustering assumes:

xjis | zji, cs,φ
i.i.d.
∼ Bernoulli(φzji,cs

). (1)

The setφ = {φk,l} of the probabilities of activation of functional units to different categories
summarizes the structure in the responses of voxels to stimuli.

We use the stick-breaking formulation of HDP [18] to construct an infinite hierarchical prior for
voxel unit memberships:

zji | βj
i.i.d.
∼ Mult(βj), (2)

βj | π
i.i.d.
∼ Dir(απ), (3)

π | γ ∼ GEM(γ). (4)

Here,GEM(γ) is a distribution over infinitely long vectorsπ = [π1, π2, · · · ]
T , named after Griffiths,

Engen and McCloskey [19]. This distribution is defined as:

πk = vk

k−1
∏

k′=1

(1 − vk′) , vk | γ
i.i.d.
∼ Beta(1, γ), (5)

where the components of the generated vectorsπ sum to one with probability1. In subjectj,
voxel memberships are distributed according to subject-specific weights of functional unitsβj . The
weightsβj are in turn generated by a Dirichlet distribution centered around π with a degree of
variability determined byα. Therefore,π acts as the group-level expected value of the subject-
specific weights. With this prior over the unit memberships of voxels z, the model in principle
allows an infinite number of functional units; however, for any finite set of voxels, a finite number
of units is sufficient to include all voxels.

We do not impose a similar hierarchical structure on the clustering of stimuli among subjects.
Conceptually, we assume that stimulus categories reflect how the human brain has evolved to
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organize the processing of stimuli within a system and are therefore identical across subjects. Even
if any variability exists, it will be hard to learn such a complex structure from data since we can
present relatively few stimuli in each experiment. Hence, we assume identical clusteringc in the
space of stimuli for all subjects, with a Dirichlet process prior:

cs | ρ
i.i.d.
∼ Mult(ρ),

ρ | χ ∼ GEM(χ). (6)

Finally, we construct the prior distribution for unit-category activation probabilitiesφ:

φk,l
i.i.d.
∼ Beta(τ1, τ2). (7)

2.2 Model of fMRI Signals

Functional MRI yields a noisy measure of average neuronal activation in each brain voxel at different
time points. The standard linear time-invariant model of fMRI signals expresses the contribution of
each stimulus by the convolution of the spike train of stimulus onsets with a hemodynamic response
function (HRF) [20]. The HRF peaks at about 6-9 seconds, modeling an intrinsic delay between
the underlying neural activity and the measured fMRI signal. Accordingly, measured signalyjit in
voxel i of subjectj at timet is modeled as:

yjit =
∑

s

bjisGst +
∑

h

ejihFht + ǫjit, (8)

whereGst is the model regressor for stimuluss, Fht represents nuisance factorh, such as a baseline
or a linear temporal trend, at timet andǫjit is gaussian noise. We use the simplifying assumption

throughout thatǫjit
i.i.d.
∼ Normal(0, λ−1

ji ). In the absence of any priors, the responsebjis of voxel i
to stimuluss can be estimated by solving the least squares regression problem.

Unfortunately, fMRI signal does not have a meaningful scaleand may vary greatly across trials and
experiments. In order to use this data for inferences about brain function across subjects, sessions,
and stimuli, we need to transform it into a standard and meaningful space. The binary activation
variablesx, introduced in the previous section, achieve this transformation by assuming that in
response to any stimulus a voxel is either in an active or a non-active state, similar to [7]. If voxel
i is activated by stimuluss, i.e., if xjis = 1, its response takes positive valueaji that specifies the
voxel-specific amplitude of response; otherwise, its response remains0. We can writebjis = ajixjis

and assume thataji represents uninteresting variability in fMRI signal. When making inference on
binary activation variablexjis, we consider not only the response, but also the level of noise and
responses to other stimuli. Therefore, the binary activation variables can be directly compared across
different subjects, sessions, and experiments.

We assume the following priors on voxel response variables:

ejih ∼ Normal
(

µe
jh, σe

jh

)

, (9)

aji ∼ Normal+
(

µa
j , σa

j

)

, (10)

λji ∼ Gamma (κj , θj) , (11)

whereNormal+ defines a normal distribution constrained to only take positive values.

2.3 Algorithm

The size of common fMRI data sets and the space of hidden variables in our model makes stochastic
inference methods, such as Gibbs sampling, prohibitively slow. Currently, there is no faster split-
merge-type sampling technique that can be applied to hierarchical nonparametric models [18]. We
therefore choose a variational Bayesian inference scheme,which is known to yield faster algorithms.

To formulate the inference for the hierarchical unit memberships, we closely follow the derivation
of the Collapsed Variational HDP approximation [21]. We integrate over the subject-specific unit
weightsβ = {βj} and introduce a set of auxiliary variablesr = {rjk} that represent the number
of tables corresponding to unit (dish)k in subject (restaurant)j according to the Chinese restaurant
franchise formulation of HDP [18]. Leth = {x,z, c, r,a,φ,e,λ, v, u} denote the set of all un-
observed variables. Here,v = {vk} andu = {ul} are the stick breaking fractions corresponding
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to distributionsπ andρ, respectively. We approximate the posterior distributionon the hidden vari-
ables given the observed datap(h|y) by a factorizable distributionq(h). The variational method
minimizes the Gibbs free energy functionF [q] = E[log q(h)]−E[log p(y,h)] whereE[·] indicates
expected value with respect to distributionq. We assume a distributionq of the form:

q(h) = q(r|z)
∏

k

q(vk)
∏

l

q(ul)
∏

k,l

q(φk,l)
∏

s

q(cs) ·
∏

j,i

[

q(aji)q(λji)q(zji)
∏

s

q(xjis)
∏

h

q(ejih)

]

.

We apply coordinate descent in the space ofq(·) to minimize the free energy. Since we explicitly
account for the dependency of the auxiliary variables on unit memberships in the posterior, we can
derive closed form update rules for all hidden variables. Due to space constraints in this paper, we
present the update rules and their derivations in the Supplementary Material.

Iterative application of the update rules leads to a local minimum of the Gibbs free energy. Since
variational solutions are known to be biased toward their initial configurations, the initialization
phase becomes critical to the quality of the results. For initialization of the activation variablesxjis,
we estimatebjis in Eq. (8) using least squares regression and for each voxel normalize the estimates
to values between0 and1 using the voxel-wise maximum and minimum. We use the estimates
of b to also initializeλ ande. For memberships, we initializeq(z) by introducing the voxels one
by one in random order to the collapsed Gibbs sampling scheme[18] constructed for our model
with each stimulus as a separate category and the initialx assumed known. We initialize category
membershipsc by clustering the voxel responses across all subjects. Finally, we set the hyperparam-
eters of the fMRI model such that they match the corresponding statistics computed by least squares
regression on the data.
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Figure 3: Comparison between our nonparametric
Bayesian co-clustering algorithm (NBC) and Block
Average Co-clustering (BAC) on synthetic data. Both
classiciation accuracy (CA) and noramlized mutual in-
formation (NMI) are reported.

We demonstrate the performance of the
model and the inference algorithm on
both synthetic and real data. As a base-
line algorithm for comparison, we use the
Block Average Co-clustering (BAC) al-
gorithm [6] with the Euclidean distance.
First, we show that the hierarchical struc-
ture of our algorithm enables us to retrieve
the cluster membership more accurately in
synthetic group data. Then, we present the
results of our method in an fMRI study of
visual object recognition.

3.1 Synthetic Data

We generate synthetic data from a stochastic process definedby our model with the set of parameters
γ = 3, α = 100, χ = 1, andτ1 = τ2 = 1, Nj = 1000 voxels,S = 100 stimuli, andJ =
4 subjects. For the model of the fMRI signals, we use parameters that are representative of our
experimental setup and the corresponding hyperparametersestimated from the data. We generate 5
data sets with these parameters; they have between5 to 7 categories and13 to 21 units. We apply
our algorithm directly to time courses in 5 different data sets generated using the above scheme. To
apply BAC to the same data sets, we need to first turn the time-courses into voxel-stimulus data.
We use the least squares estimates of voxel responses (bjis) normalized in the same way as we
initialize our fMRI model. We run each algorithm 20 times with different initializations. The BAC
algorithm is initialized by the result of a softk-means clustering in the space of voxels. Our method
is initialized as explained in the previous section. For BAC, we use thetruenumber of clusters while
our algorithm is always initialized with 15 clusters.

We evaluate the results of clustering with respect to both voxels and stimuli by comparing cluster-
ing results with the ground truth. Since there is no consensus on the best way to compare different
clusterings of the same set, here we employ two different clustering distance measures. LetP (k, k′)
denote the fraction of data points (voxels or stimuli) assigned to clusterk in the ground truth andk′
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in the estimated clustering. The first measure is the so-calledclassification accuracy(CA), which
is defined as the fraction of data points correctly assigned to the true clusters [22]. To compute this
measure, we need to first match the cluster indices in our results with the true clustering. We find
a one-to-one matching between the two sets of clusters by solving a bipartite graph matching prob-
lem. We define the graph such that the two sets of cluster indices represent the nodes andP (k, k′)
represents the weight of the edge between nodek andk′. As the second measure, we use thenormal-
ized mutual information(NMI), which expresses the proportion of the entropy (information) of the
ground truth clustering that is shared with the estimated clustering. We define two random variables
X andY that take values in the spaces of the true and the estimated cluster indices, respectively.
Assuming a joint distributionP (X=k, Y =k′) = P (k, k′), we setNMI = I(X;Y )/H(X). Both
measures take values between 0 and 1, with 1 corresponding toperfect clustering.

Fig. 3 presents the clustering quality measures for the two algorithms on the 5 generated data sets.
As expected, our method performs consistently better in finding the true clustering structure on data
generated by the co-clustering process. Since the two algorithms share the same block co-clustering
structure, the advantage of our method is in its model for thehierarchical structure and fMRI signals.

3.2 Experiment

We apply our method to data from an fMRI study where 8 subjectsview 69 distinct images. Each
image is repeated on average about 40 times in one of the two sessions in the experiment. The data
includes 42 slices of 1.65mm thickness with in plane voxel size of 1.5mm, aligned with the tempo-
ral lobe (ventral visual pathway). As part of the standard preprocessing stream, the data was first
motion-corrected separately for the two sessions [23], andthen spatially smoothed with a Gaussian
kernel of 3mm width. The time course data included 120 volumes per run and from 24 to 40 runs
for each subject. We registered the data from the two sessions to the subject’s native anatomical
space [24]. We removed noisy voxels from the analysis by performing an ANOVA test and only
keeping the voxels for which the stimulus regressors significantly explained the variation in the time
course (thresholdp=10−4 uncorrected). This procedure selects on average about 6,000 voxels for
each subject. Finally, to remove the idiosyncratic aspectsof responses in different subjects, such as
attention to particular stimuli, we regressed out the subject-average time course from voxel signals
after removing the baseline and linear trend. We split trials of each image into two groups of equal
size and consider each group as an independent stimulus forming a total of 138 stimuli. Hence, we
can examine the consistency of our stimulus categorizationwith respect to identical trials.

We useα = 100, γ = 5, χ = 0.1, andτ1 = τ2 = 1 for the nonparametric prior. We initialize our
algorithm 20 times and choose the solution that achieves thelowest Gibbs free energy. Fig. 4 shows
the categories that the algorithm finds on the data from all 8 subjects. First, we note that stimulus
pairs corresponding to the same image are generally assigned to the same category, confirming the
consistency of the resuls across trials. Category 1 corresponds to the scene images and, interestingly,
also includes all images of trees. This may suggest a high level category structure that is not merely
driven by low level features. Such a structure is even more evident in the 4th category where images
of a tiger that has a large face join human faces. Some other animals are clustered together with
human bodies in categories 2 and 9. Shoes and cars, which havesimilar shapes, are clustered
together in category 3 while tools are mainly found in category 6.

The interaction between the learned categories and the functional units is summarized in the poste-
rior unit-category activation probabilitiesE[φk,l] ( Fig. 4, right ). The algorithm finds 18 units across
all subjects. The largest unit does not show preference for any of the categories. Functional unit 2
is the most selective one and shows high activation for category 4 (faces). This finding agrees with
previous studies that have discovered face-selective areas in the brain [25]. Other units show selec-
tivity for different combinations of categories. For instance, Unit 6 prefers categories that mostly
include body parts and animals, unit 8 prefers category 1 (scenes and trees), while the selectivity of
unit 5 seems to be correlated with the pixel-size of the image.

Our method further learns sets of variables{q(zji=k)}
Nj

i=1
that represent the probabilities that dif-

ferent voxels in subjectj belong to functional unitk. Although the algorithm does not use any
information about the spatial location of voxels, we can visualize the posterior membership proba-
bilities in each subject as a spatial map. To see whether there is any degree of spatial consistency in
the locations of the learned units across subjects, we alignthe brains of all subjects with the Montreal
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Figure 4: Categories (left) and activation probabilities of functional units (E[φk,l]) (right) estimated
by the algorithm from all 8 subjects in the study.
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Figure 5: (Left) Spatial maps of functional unit overlap across subjects in the normalized space. For
each voxel, we show the fraction of subjects in the group for which the voxel was assigned to the
corresponding functional unit. We see that functional units with similar profiles between the two
datasets show similar spatial extent as well. (Right) Comparison between the clustering robustness
in the results of our algorithm (NBC) and the best results of Block Average Co-clustering (BAC) on
the real data.

Neurological Institute coordinate space using affine registration [26]. Fig. 5 (left) shows the average
maps across subjects for units 2, 5, and 6 in the normalized space. Despite the relative sparsity of
the maps, they have significant overlap across subjects.

As with many other real world applications of clustering, the validation of results is challenging
in the absence of ground truth. In order to assess the reliability of the results, we examine their
consistency across subjects. We split the 8 subjects into two groups of 4 and perform the analysis
on the two group data separately. Fig. 6 (left) shows the categories found for one of the two groups
(group 1), which show good agreement with the categories found in the data from all subjects (cat-
egories are indexed based on the result of graph matching). As a way to quantify the stability of
clustering across subjects, we compute the measures CA and NMI for the results in the two groups
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Figure 6: Categories found by our algorithm in group 1 (left)and by BAC in all subjects for(l, k) =
(14, 14) (right).

relative to the results in the 8 subjects. We also apply the BAC algorithm to response values esti-
mated via least squares regression in all 8 subjects and the two groups. Since the number of units
and categories is not known a priori, we perform the BAC algorithm for all pairs of(l, k) such that
5 ≤ l ≤ 15 andk ∈ {10, 12, 14, 16, 18, 20}. Fig. 5 (right) compares the clustering measures for
our method with those found by the best BAC results in terms ofaverage CA and NMI measures
(achieved with(l, k) = (6, 14) for CA, and(l, k) = (14, 14) for NMI). Fig. 6 (right) shows the
categories for(l, k) = (14, 14), which appear to lack some of the structures found in our results.
We also obtain better measures of stability compared to the best BAC results for clustering stimuli,
while the measures are similar for clustering voxels. We note that in contrast to the results of BAC,
our first unit is always considerably larger than all the others including about70% of voxels. This
seems neuroscientifically plausible since we expect large areas of the visual cortex to be involved in
processing low level features and therefore incapable of distinguishing different objects.

4 Conclusion

This paper proposes a model for learning large-scale functional structures in the brain responses of
a group of subjects. We assume that the structure can be summarized in terms of functional units
with similar responses to categories of stimuli. We derive avariational Bayesian inference scheme
for our hierarchical nonparametric Bayesian model and apply it to both synthetic and real data. In
an fMRI study of visual object recognition, our method finds meaningful structures in both object
categories and functional units.

This work is a step toward devising models for functional brain imaging data that explicitly en-
code our hypotheses about the structure in the brain functional organization. The assumption that
functional units, categories, and their interactions are sufficient to describe the structure, although
proved successful here, may be too restrictive in general. Amore detailed characterization may
be achieved through a feature-based representation where astimulus can simultaneously be part of
several categories (features). Likewise, a more careful treatment of the structure in the organization
of brain areas may require incorporating spatial information. In this paper, we show that we can turn
such basic insights into principled models that allow us to investigate the structures of interest in
a data-driven fashion. By incorporating the properties of brain imaging signals into the model, we
better utilize the data for making relevant inferences across subjects.
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