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Abstract. We present a method for discovering patterns of activation
observed through fMRI in experiments with multiple stimuli/tasks. We
introduce an explicit parameterization for the profiles of activation and
represent fMRI time courses as such profiles using linear regression esti-
mates. Working in the space of activation profiles, we design a mixture
model that finds the major activation patterns along with their localiza-
tion maps and derive an algorithm for fitting the model to the fMRI data.
The method enables functional group analysis independent of spatial cor-
respondence among subjects. We validate this model in the context of
category selectivity in the visual cortex, demonstrating good agreement
with prior findings based on hypothesis-driven methods.

1 Introduction

In contrast to early fMRI studies that commonly used a simple task-versus-
fixation setup to localize functional areas of interest, modern fMRI experiments
aim to explore and understand brain activations induced by an increasing num-
ber of tasks or stimuli. In this paper, we introduce a representation for fMRI
activations that naturally lends itself to exploratory analysis of the space of
observed activation patterns. We demonstrate a method for such analysis in in-
dividual subjects and in a population, using visual fMRI experiments to validate
our approach.

Our motivation comes from fMRI studies of category selectivity in visual cor-
tex (high level vision) where subjects are presented with several categories of
visual stimuli. Using hypothesis-driven localization methods [1], investigators
discovered regions with specific category selectivity which consistently appear
in most subjects. For instance, the well-known fusiform face area (FFA) is as-
sociated with higher response to faces when compared to other visual stimuli.
In addition, the parahippocampal place area (PPA), and extrastriate body area
(EBA) exhibit high selectivity for places, and body parts, respectively [2].

While hypothesis-driven methods provide a convenient tool for testing highly
specific hypotheses about activations, they usually consider and compare only
two experimental conditions (categories) at a time. Spatial consistency of the
localization maps across subjects serves as evidence for the validity of the cor-
responding hypothesis. With the increasing number of conditions or tasks, it
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becomes more challenging with these methods to search the entire set of possi-
ble activations, for instance, all hypothetical areas activated by more than one
condition. Moreover, this approach leaves out the question of what constitutes a
good hypothesis. This is in stark contrast with the goals of a fMRI experiment
aiming to model visual processing in the brain by finding structure in the space
of activations due to visual stimuli.

An alternative approach is to employ exploratory, unsupervised learning meth-
ods, which can be broadly grouped into two classes. The first class of methods
works on the raw time courses and uses clustering [3,4,5] or Independent Compo-
nent Analysis [6,7] to estimate a decomposition of the data into a set of distinct
time courses of interest and their localization maps. However, this framework of-
fers no clear mechanism for characterizing the relationship between the multitude
of experimental conditions and the noisy representative time courses identified
in such analysis. The second group of exploratory methods uses the information
from the experimental setup to define a measure of similarity between voxels,
effectively projecting the original high-dimensional time courses onto a low di-
mensional feature space, followed by clustering in the new space [3,8,9].

Here, we present an exploratory method that aims to identify patterns of
activation (e.g., patterns of category selectivity in high level vision) in com-
plex experimental setups. We introduce an activation profile, a low-dimensional
representation that directly reflects the effects of experimental conditions. Work-
ing in the space of activation profiles, we employ mixture modeling to find the
strongest patterns of activation present in the data. Rather than relying on spa-
tial consistency to establish the validity of the detected activation pattern, we
employ functional consistency across subjects to evaluate the robustness, and
therefore relevance, of the detected profiles. Thus, we obtain a fully functional
characterization of the data.

We emphasize that our goal is to find patterns of activation in complex ex-
perimental setups, unlike previous feature-based clustering methods [8,9] that
mainly focused on identifying the “active” voxels in simple experiments. In the
case of high level vision, our results agree with the findings in the field that were
established as a result of numerous hypothesis-driven fMRI studies.

2 Methods

We present our method in three steps. First, we introduce the space of activa-
tion profiles, our representation of fMRI data. Then, we describe our mixture
model which finds the prototypical activation profiles and their corresponding
localization maps. Finally, we discuss our approach to group analysis.

2.1 Space of Activation Profiles for Category Selectivity

We define an activation profile to be a vector whose components describe selec-
tivity to different categories. Given a set of raw fMRI time courses, we apply a
General Linear Model (GLM) analysis [1] at each voxel and form a vector con-
taining the estimated regression coefficients of the experiment stimuli. The norm
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Fig. 1. An artificial population of voxels illustrating the space of activation profiles.
The experiment presents three stimuli and evokes two distinct profiles. The blue, dashed
line shows an original vector of regression coefficients. A hypothesis test comparing the
first and second stimuli projects the vector of regression coefficients onto the dotted
line; the significance is a function of the projection coefficient. The red vectors are the
cluster mean profiles.

of these vectors is mainly a byproduct of irrelevant variables such as distance
from major vessels or, the overall magnitude of response to the type of stimuli
used in the experiment. Moreover, it is widely accepted that only relative values
of responses are important in characterizing selectivity to different stimuli. To
reflect these two properties in our representation, we choose to normalize the
activation profiles to be unit length vectors. This removes the effect of the mag-
nitude of activation while preserving the relative strength of activation across
categories. With D categories of visual stimuli present in the experiment, our
space of activation profiles is a unit sphere SD−1 in a D-dimensional space. A
unit vector in this space represents a specific form of category selectivity. For
instance, a profile completely parallel to a single dimension represents perfect
selectivity to the corresponding category.

When represented in the space of activation profiles, an fMRI data set becomes
a population of vectors on a unit sphere. Naturally, the interesting patterns of
selectivity in this population correspond to the directions with highest concen-
tration of data points around them (Fig. 1). It is easy to see that finding these
patterns can be thought of as clustering the activation profiles and estimating
the corresponding cluster means as described in the next section.

2.2 Estimating Patterns of Category Selectivity

Let {yv}V
v=1 be a set of activation profiles of V brain voxels on a SD−1 sphere.

We devise a mixture model based on correlation as the natural measure of sim-
ilarity for unit vectors. We assume the vectors are i.i.d. samples from a mixture
distribution
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p(y; {qk,mk}K
k=1, μ) =

K∑

k=1

qkf(y;mk, μ). (1)

where {qk}K
k=1 denotes the weights of K model components and f(y;m, μ) is a

distribution defined on a unit sphere. We choose the simplest such distribution,
von Mises-Fisher distribution [10]

f(y;m, μ) = CD(μ)eμ〈m,y〉 , CD(μ) =
μD/2−1

(2π)D/2ID/2−1(μ)
(2)

where 〈·, ·〉 denotes the inner product of two vectors and the normalizing constant
CD(μ) is defined in terms of the γ-th order modified Bessel function of the first
kind Iγ . This distribution is an exponential function of the correlation between
voxel activation vector y and the cluster activation profile m. The concentration
parameter μ controls the concentration of the distribution around the mean
direction m. In general, mixture components can have distinct concentration
parameters but in this work, we use the same parameter for all the clusters to
ensure a more robust estimation.

We use the EM algorithm [12] to solve the corresponding maximum likelihood
estimation. We define p(t)(k|yv) to be the posterior probability that voxel v is
associated with the mixture component k at step t. Through a bit of algebra,
we the update rules:

E-step: p(t)(k|yv) ∝ eμ(t)〈m(t)
k , yv〉, (3)

M-step: q
(t+1)
k =

1
V

V∑

v=1

p(t)(k|yv) , m(t+1)
k ∝

V∑

v=1

yvp(t)(k|yv) , (4)

ID/2(μ(t+1))
ID/2−1(μ(t+1))

=
1
V

K∑

l=1

V∑

v=1

p(t)(k|yv)〈m(t)
k , yv〉, (5)

where q
(t)
k , m(t)

k , and μ(t+1) are the parameter estimates at step t. We normalize
vectors m(t)

k in each step to unit length. The nonlinear equation (5) for the
estimation of μ(t+1) can be solved with a simple zero-finding algorithm. We
note that this model was independently developed previously in the context of
clustering text data [11].

Using the above algorithm, we find K representative activation profiles mk

and a set of soft assignments p(k|yv). The assignments define localization maps
of different activation profiles.

2.3 Group Analysis of the Activation Profiles

Since we aim to discover activation patterns that robustly appear in brain acti-
vations, it is reasonable then to assume that the space of activation profiles is
shared across subjects.

We denote a voxel in an experiment with S subjects by ys
v, where s ∈

{1, · · · , S} is the subject label and v is the voxel index as before. If the set
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of vectors mk truly descbribes all noteworthy activation profiles of the brain,
each voxel ys

v could be thought of as an independent sample from the same dis-
tribution (1). Thus, we can combine the data from several subjects to form the
group data, i.e., {{ys

v}Vs
v=1}S

s=1, to perform our analysis across subjects. Applying
the same algorithm on the group data, the resulting {p(k|yv,s)}Vs

v=1 defines the
localization map of activation profile k in subject s. We note that no spatial
registration of subjects is required for this step.

3 Experimental Results

We demonstrate our method on the data from a block design fMRI experiment
on 9 subjects using five categories of images: bodies, faces, objects, scenes, and
scrambled images. Each block lasts 16 seconds and contains 20 images from one
category with an interval of fixation separating it from other blocks. Each run
contains two blocks of each category; blocks of the same category do not share
images. We perform motion-correction, spike detection, intensity normalization,
and Gaussian smoothing with a kernel of 3-mm width using the standard pack-
age FreeSurfer. We apply General Linear Model [1] to estimate 5 regression
coefficients for the stimulus categories and form a 5-dimensional vector for each
voxel. To discard the voxels not activated by any of the visual categories, we
run a t-test comparing the response of each voxel to fixation, keeping only the
voxels which show significance with p ≤ 10−4. The resulting data is a set of
5-dimensional vectors corresponding to the voxels that demonstrate significant
response to at least one category of presented images.

3.1 Activation Profiles

Since our main goal is to discover important patterns of activation, we first exam-
ine the resulting cluster profiles. Fig. 2 (Left) shows the selectivity profiles for the
clusters found in the data from one of the subjects found for K = 8. The largest
cluster corresponds to the visually responsive voxels that do not show differential
response to the variety of categories presented in this experiment. Such a cluster
appears in all our results from single-subject and group data sets. The smaller
clusters exhibit the selectivity patterns expected based on the previous studies.
According to the rough definition commonly used in the field, the response of a
selective region to its category is at least two times stronger than that of any other
category. We find such selective clusters for bodies (clusters 2, 5, and 6,) scenes
(clusters 3 and 7,) and faces (clusters 4 and 8,) corresponding to the EBA, PPA,
and FFA, respectively. These profiles only differ in their strengths of selectivity.
The interesting aspect of this result is that we do not find clusters corresponding
to the types of category selectivity not observed before. For instance, no scrambled-
image-selective region or double-category selectivity is observed.

Using the data from all 9 subjects, we run a group data analysis. Fig. 2
(Right) shows the resulting group profiles. The group profiles are very similar
to the ones found in the single subject data, supporting our assumption that
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Fig. 2. Cluster profiles for (Left) a single subject and (Right) group data for 9 subjects.
The clusters are ordered based on their estimated weight in the model.

the space of activations is shared across subjects. However, we also expect to see
some differences due to factors such as subject variablitity and noise. Group data
yields more robust estimates of the cluster profiles by providing more samples
per cluster.

3.2 Spatial Maps

We examine the spatial maps our algorithm associates with cluster profiles by
comparing them with the standard maps of FFA, PPA, and EBA. To find these
standard maps, we apply t-tests comparing each voxel’s response for faces, scenes,
and bodies, to its response for objects, and threshold the resulting significance
maps at p = 10−4. From our algorithm’s results, we accept any profile whose
component for one of the three categories of interest is at least 1.5 times all other
components. The cluster assignments found in our method represent probabil-
ities over cluster labels. Here, we assign each voxel to its corresponding MAP
cluster label to find a binary map. Fig. 3 shows the standard map of face se-
lective region (FFA) for the same subject in Fig. 2 (Left). It also shows the
voxels assigned by our method to clusters 4 and 8 in Fig. 2 (Left). These clus-
ters are face-selective according to the above definition. Although the two maps
are derived with very different assumptions, they clearly agree.

We quantify the agreement between these binary, spatial maps by measuring
their uncentered correlation. For example, the correlation between the two maps
presented in Fig. 3 is 0.29. We also form the map associated with the largest
cluster as another case for comparison and call it the non-selective profile. Table 1
shows the resulting correlation values averaged across all subjects for K = 7, 8,
and 9.
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Fig. 3. Spatial maps of the face selective regions found by the statistical test (red) and
the mixture model (dark blue). The same slices from the two maps are presented in
alternating rows. The mask of visually responsive voxels is shown in different colors
(yellow for the hypothesis test, and light green for ours) in the backgound of the two
maps to help the visual comparison.

We first note that the correlation between the functionally related regions
is significantly higher than the other ones. Moreover, the spatial correlation is
insensitive to the number of clusters. In genereal, we observed that increasing
the number of clusers results only in the split of some clusters, and does not
significantly alter the pattern of the discovered profiles. In the table, we also
present the spatial correlations obtained from subject-specific activation profiles.
The correlation values are quite similar to the group analysis, which suggests
that by forming the group data, we have not lost the accuracy of our method
in identifying the functional areas in individual subjects. Moreover, we have
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Table 1. Correlation between the spatial maps constructed with our method and those
from the t-test. Values are averaged across all 9 subjects in the experiment.

Group K = 7 FFA PPA EBA

Face Profile 0.37 ± 0.09 0.00 0.04 ± 0.03

Scene Profile 0 0.31 ± 0.14 0.00 ± 0.01

Body Profile 0.04 ± 0.03 0.00 0.51 ± 0.07

Non-sel. Profile 0.05 ± 0.04 0.06 ± 0.04 0.04 ± 0.04

Group K = 8 FFA PPA EBA

Face Profile 0.37 ± 0.10 0.00 0.04 ± 0.03

Scene Profile 0 0.31 ± 0.14 0.00 ± 0.01

Body Profile 0.05 ± 0.04 0.00 0.47 ± 0.08

Non-sel. Profile 0.05 ± 0.04 0.06 ± 0.04 0.02 ± 0.03

Group K = 9 FFA PPA EBA

Face Profile 0.36 ± 0.10 0.00 0.04 ± 0.03

Scene Profile 0 0.31 ± 0.14 0.00 ± 0.01

Body Profile 0.03 ± 0.03 0.00 0.48 ± 0.08

Non-sel. Profile 0.05 ± 0.04 0.06 ± 0.04 0.02 ± 0.03

Indiv. K = 8 FFA PPA EBA

Face Profile 0.31 ± 0.13 0.00 0.02 ± 0.02

Scene Profile 0 0.30 ± 0.13 0.00

Body Profile 0.03 ± 0.04 0.00 0.49 ± 0.09

Non-sel. Profile 0.04 ± 0.04 0.06 ± 0.04 0.02 ± 0.01

established correspondence among these functionally defined areas, as all of them
are now associated with the same profile of activation in the group data.

We emphasize that from our perspective, the statistical significance maps are
not the ground truth but rather a competing hypothesis for explaining the data.
In fact, the neuroscientific definition of the selective regions only includes a subset
of the standard map, identified by the experts based on prior knowledge of the
approximate locations. Therefore, we do not seek a perfect agreement between
the spatial maps.

4 Conclusion

We presented a mixture-model algorithm which finds the profiles of fMRI acti-
vation due to different experimental condition. It enables group analysis without
spatial co-registration of subjects. Our algorithm promises benefits in discovering
new category selective regions in high level vision and other problems with com-
plex experimental setup. Representing the fMRI data in the space of activation
profiles makes it possible to define the consistency of a discovered profile aross
subjects as an alternative for the traditionally used registration-based spatial
consistency. We are currently working on methods for investigating cross-subject
consistency in this space.
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