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In this paper, we analyze Markov Random Field (MRF) as a spatial regularizer in fMRI detection. The low
signal-to-noise ratio (SNR) in fMRI images presents a serious challenge for detection algorithms, making
regularization necessary to achieve good detection accuracy. Gaussian smoothing, traditionally employed
to boost SNR, often produces over-smoothed activation maps. Recently, the use of MRF priors has been
suggested as an alternative regularization approach. However, solving for an optimal configuration of
the MRF is NP-hard in general. In this work, we investigate fast inference algorithms based on the Mean
Field approximation in application to MRF priors for fMRI detection. Furthermore, we propose a novel
way to incorporate anatomical information into the MRF-based detection framework and into the tradi-
tional smoothing methods. Intuitively speaking, the anatomical evidence increases the likelihood of acti-
vation in the gray matter and improves spatial coherency of the resulting activation maps within each
tissue type. Validation using the receiver operating characteristic (ROC) analysis and the confusion matrix
analysis on simulated data illustrates substantial improvement in detection accuracy using the anatom-
ically guided MRF spatial regularizer. We further demonstrate the potential benefits of the proposed
method in real fMRI signals of reduced length. The anatomically guided MRF regularizer enables signif-
icant reduction of the scan length while maintaining the quality of the resulting activation maps.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Functional magnetic resonance imaging (fMRI) provides a non-
invasive dynamic method for studying brain activation by captur-
ing changes in the blood oxygenation level. In this paper, we focus
on intra-subject fMRI activation detection and aim to improve the
accuracy of the activation localization in individual subjects. Most
fMRI detection methods operate by comparing the time course of
each voxel with the experimental protocol, labelling as ‘‘active”
those voxels whose time courses correlate significantly with the
protocol. The commonly used general linear model (GLM) (Friston
et al., 1995; Worsley et al., 2002) further models the fMRI signal
as an output of a linear system driven by the stimulus. Application
of GLM to an fMRI time series results in the so-called statistical
parametric map (SPM), which is often thresholded to produce a bin-
ary map of active areas or, more generally, areas that show different
activation levels under different conditions during the experiment.
However, because of low signal-to-noise ratio (SNR), the binary
maps typically contain many small false positive islands.

One approach to reducing such false positives is to enforce
spatial continuity of the data or the estimated activations as a
ll rights reserved.
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pre-processing or post-processing step, respectively. Among the
pre-processing approaches, smoothing with a Gaussian filter is
the most popular method. It effectively increases the SNR of the
signal. Unfortunately, Gaussian smoothing can produce overly
smoothed SPMs, leading to a loss of details in the resulting binary
activation maps. Alternatively, Descombes et al. (1998) employed
the Markov Random Field (MRF) model to smooth the data, but
their model required large amount of computation due to the
application of MRF to the entire 4D fMRI volume. In contrast to
smoothing in the spatial domain, Van De Ville et al. (2007) pro-
posed a wavelet-based method to capture the underlying smooth
activation pattern. As a post-processing step, Friston et al. (1993)
proposed an adaptive thresholding method that assesses the statis-
tical significance of active regions according to their size based on
the Gaussian Random Field theory.

An alternative is to integrate a model for spatial coherency of
activation into estimation to avoid the above two-step procedure,
in which the smoothing step in general may not adequately com-
pensate for the estimation errors. MRFs and Laplacian models are
widely used for encouraging spatial continuity. Penny et al.
(2005) employed a hierarchical model that imposed a Laplacian
spatial prior on the regression coefficients of the GLM detector.
Without the hyper prior, their approach effectively smooths the
regression coefficients with a fixed spatial kernel that penalizes
large magnitudes of the first order spatial derivatives of the
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regression coefficients. The hyper prior helps to obtain appropriate
weights for the smoothing. Flandin and Penny (2007) extended this
approach to the wavelets domain. Svensen et al. (2000) applied the
MRF prior to the parameters of the hemodynamic response func-
tions (HRF) in order to recover the missing activation regions in a
fixed-HRF detector. Cosman et al. (2004), Rajapakse and Piyaratna
(2001), and Woolrich et al. (2005) employed the MRF model to
encourage adjacent locations to share similar activation states,
for binary (Cosman et al., 2004; Rajapakse and Piyaratna, 2001)
and trinary (Woolrich et al., 2005) activation models.

Motivated by the MRF model in (Cosman et al., 2004), we focus on
MRFs for modeling spatial coherence of the activation maps and
study their performance in conjunction with a refined version of
the MRF model. Despite recent algorithmic development in captur-
ing ‘‘continuous” activations, many fundamental neuroscience and
surgical applications still employ binary activation maps to make
inference about functional areas in the brain. In particular, neurosci-
entists and neurosurgeons are interested in identifying voxels that
are consistently activated in a certain task (Amedi et al., 2001; Ash-
tari et al., 2005). Since the fMRI voxels are relatively large, a one-to-
two voxel shift often leads to activation localization in a different
anatomical region. Therefore, there is still a real need to improve
detector accuracy in delineating active/not active regions in an fMRI
volume. Similar to previous work (Cosman et al., 2004; Rajapakse
and Piyaratna, 2001; Woolrich et al., 2005), we assume that given
the activation state of each voxel, the time courses of different voxels
are conditionally independent. From the detection point of view, our
model directly regularizes the detection results rather than a set of
nonlinear HRF parameters implicitly connected to the activation
maps of interest (Svensen et al., 2000). More complex temporal
models commonly used in fMRI detection, e.g., the autoregressive
(AR) models (Burock and Dale, 2000), can be easily integrated into
our framework by applying a pre-processing whitening step.

MRFs are known to be much more computationally intensive
than linear filters, including the commonly used Gaussian filter.
For an MRF with binary states, an exact solution can be obtained
in polynomial time (Greig et al., 1989), but it is still too computation-
ally demanding for fMRI detection applications due to a large num-
ber of voxels. An fMRI detection algorithm based on the GLM statistic
and the binary activation states was demonstrated in (Cosman et al.,
2004). If one wants to go beyond binary states (e.g., treating posi-
tively and negatively activated voxels differently or including states
corresponding to anatomical segmentation), estimation of the opti-
mal activation configuration becomes intractable and approxima-
tion algorithms must be used. Prior work in solving the MRF
model employed simulated annealing (Descombes et al., 1998;
Rajapakse and Piyaratna, 2001), the iterated conditional mode algo-
rithm (Besag, 1974; Salli et al., 2001), and the graph cuts algorithm
(Boykov et al., 2001). Recent work by Woolrich et al. (2005) pro-
posed to approximate the MRF using a mixture model. It effectively
converts discrete inference into inference in Gaussian Random
Fields in order to approximate the partition function. Although the
method is computationally efficient, the results depend on the non-
linear logistic transform in the approximation, and the accuracy of
the approximated partition function is not quantified. In this work,
we adopt the Mean Field approach, developed in statistical physics
(Parisi, 1998), and widely employed in MRF-based image processing
applications (Kapur et al., 1998; Langan et al., 1992; Pohl et al.,
2002). We note that Svensen et al. (2000) also used Mean Field in
application of MRFs to spatial regularization of the HRF shape.

We further refine the activation prior by incorporating anatom-
ical information. Similar to the atlas-based segmentation that em-
ploys spatially varying priors on tissue types, the anatomy can
provide prior information on the activation map. Intuitively speak-
ing, we want the prior to reflect the fact that activation is more likely
to occur in gray matter than in white matter, and is not at all likely in
cerebrospinal fluid or bone. In addition, we expect the activation to
be spatially coherent within each tissue type but not across tissue
boundaries. We use a hidden state variable to encode both the tissue
type and the activation state. Segmentation provides an additional,
potentially noisy, observation at each node. We derive the detection
algorithm for this model and evaluate it on simulated and real data,
achieving high detection accuracy with significantly shorter time
courses when compared to the standard GLM detector.

Anatomical scans have certainly been used in fMRI analysis and
visualization before. Hartvig (2002) used anatomical information
in his marked point process spatial prior. Penny et al. (2007) ap-
plied a tissue-type prior to explain the observed spatial variability
in the temporal AR model. Mapping fMRI data to the cortical sur-
face extracted from an anatomical scan, followed by activation
detection on the surface, has been shown to achieve robust activa-
tion detection (Andrade et al., 2001; Kiebel et al., 2000). Moreover,
some systems, such as BrainVoyager and FSL, employ topologically
correct representation of the neocortex for fMRI analysis and visu-
alization (Dale et al., 1999; Goebel et al., 2006; Woolrich et al.,
2001). In contrast, our approach does not require a surface extrac-
tion algorithm but instead utilizes anatomical information to inject
coherency bias into the detection algorithm while performing the
computation directly on the volumetric data.

Similar to previous methods that rely on anatomical scans to
provide guidance and visualization for fMRI detection, our tech-
nique depends on registration of fMRI data to the anatomical scan
of the same subject. T2�-weighted echo-planar imaging (EPI) used
in fMRI typically suffers from signal distortion or drop-out in cer-
tain areas due to magnetic field inhomogeneities. Recent work in
parallel imaging acquisition promises to reduce such artifacts
(Lin et al., 2005). Moreover, artifact correction and EPI unwarping
based on field maps (Jezzard and Balaban, 1995) improve the qual-
ity of the fMRI alignment with anatomical MRI. In our real fMRI
experiments, field map based unwarping was included.

Lack of ground truth activation in real fMRI data presents a seri-
ous challenge for validation of detection methods. Previously pro-
posed methods for evaluating fMRI detectors (Genovese et al.,
1997; Liou et al., 2006; Strother et al., 2002) focus on quantifying
repeatability of the results on a large set of repeated trials. How-
ever, our model explicitly violates the voxel independence
assumption required by these evaluation methods. Instead, we
evaluate the detection results by comparing activation maps based
on reduced-length time courses with pseudo ground truth activa-
tion maps created from full length time courses over multiple runs.
This effectively evaluates how the reduction in observations de-
grades the ability of the method to detect activations.

This paper extends our preliminary results reported in (Ou
et al., 2005). Here we present an alternative formulation of the
observation model in order to make the MRF model more transpar-
ent and refine the procedure for estimating the model parameters,
leading to higher detection accuracy. In addition, we include an in-
depth discussion on estimating the model parameters.

In the next section, we briefly review GLM, MRF, and the Mean
Field algorithm. In Section 3, we demonstrate how to construct the
likelihood term, closely related to the GLM framework, for the MRF
model. Section 4 describes our MRF prior model for fMRI detection,
and Section 5 extends the MRF model to include anatomical infor-
mation. Section 6 reports experimental results on synthetic and
real fMRI data sets, followed by conclusions and the discussion of
future work in Section 7.
2. Background and notation

In this section, we introduce notation and briefly review
the necessary background on GLM detection, the MRF models,



Fig. 1. Graphical model for P~X;~Y . In fMRI detection, Xi is the hidden activation label,
and Yi is the observed fMRI time course.
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and the Mean Field approach to approximate inference on
MRFs.

Throughout the paper, we use bold face to denote vectors in
time, and ‘‘?” to denote vectors in space. We let random variable
X
!
¼ ½X1; . . . ;XN� represent an activation configuration of all N vox-

els in the volume, and let vector ~x ¼ ½x1; . . . ; xN� be one possible
configuration i.e., an activation map. In binary detection, the ran-
dom variable Xi, which represents the activation state of voxel i,
is also binary. We use random variable Yi to denote the time course
of voxel i (i ¼ 1; . . . ;N). We let vector yi 2 RT be the time course ob-
served for voxel i in the fMRI scan, where T is the number of time
samples in the scan. Given the fMRI scan~y ¼ ½y1; . . . ; yN�, our goal is
to produce an activation map ~x� that represents the best estimate
of the true activation map.

2.1. General linear model (GLM)

The GLM detector represents a time course as a linear
combination of the protocol-dependent component B, and the
protocol-independent component A, such as the cardiopulmonary
contributions to the fMRI signal. For our purposes, it is convenient
to represent activation detection as a binary hypothesis test for
the presence of the protocol-dependent component B:

H0 : Yi ¼ Aai þ �i ð1Þ
H1 : Yi ¼ Aai þ Bbi þ �i

for i ¼ 1; . . . ;N, and �i �Nð0;r2
i IÞ. Appendix A shows that this for-

mulation is equivalent to the more commonly used formulation of
GLM that employs a contrast matrix to construct the test statistic.
Matrix C ¼ ½AB� is referred to as the design matrix. The least squares
estimates of the activation response bi and the protocol-indepen-
dent factor ai

baibbi

" #
¼ ðCTCÞ�1CTyi ð2Þ

and the covariance of the estimates bRbi
are used to form the corre-

sponding F-statistic for rejecting the null hypothesis, Fi ¼ 1
Nb

bbT
i
bR�1

bi
bbi

with ðNb; T � rankðCÞÞ degrees of freedom, where Nb is the number
of regression coefficients in bi. A detailed discussion on the GLM
framework can be found in (Friston et al., 1995; Worsley et al.,
2002).

Given an fMRI scan ½y1; . . . ; yN�, the GLM detector produces an
activation map~x� by thresholding the statistic value for each voxel
at a user-specified level. Some variants of the GLM framework em-
ploy the Z-scores or the t-statistic instead. While the magnitude of
the statistic could provide additional information about the nature
of activation, the statistical framework above leads to a binary an-
swer that is a map of all voxels whose activation scores passed the
threshold for statistical significance. In this work, we adopt this
commonly used convention of modeling activation maps as binary
labels that contain voxels that are modulated significantly by the
experimental protocol.

2.2. Markov Random Fields (MRFs)

MRFs are widely used in computer vision (Boykov et al., 2001;
Freeman et al., 2000) as a prior for coherency of the underlying
structure. For illustration purposes, we couple the review of MRFs
with the concrete example of fMRI detection.

In this work, we impose the MRF prior on the hidden activation
configuration X

!
:

P
X
!ð~xÞ ¼ 1

Z

Y
hi;ji

Wijðxi; xjÞ
Y

i

UiðxiÞ; ð3Þ
where the singleton potential UiðxiÞ provides bias over state values
xi for voxel i, and the pairwise potential Wijðxi; xjÞ models the com-
patibility of a pair of neighboring voxels. Z is the partition function.
Here we consider two adjacent voxels as a clique of two, i.e., the
first product in Eq. (3) is restricted to adjacent voxels hi; ji. The Ising
model is an MRF with binary state variables Xi’s; the Potts model is
an MRF with discrete state variables distributed over a finite set of
values (Wu, 1982).

Given the time courses of all voxels ~y ¼ ½y1; . . . ; yN�, we seek
the maximum a posteriori (MAP) estimate of the activation
configuration:

~x� ¼ arg max
~x

P
X
!
j Y
!ð~xj~yÞ ¼ arg max

~x
P

X
!ð~xÞP

Y
!
j X
!ð~yj~xÞ

¼ arg max
~x

1
Z

Y
hi;ji

Wijðxi; xjÞ
Y

i

UiðxiÞPYi jXi
ðyijxiÞ; ð4Þ

where PYi jXi
is the probability of the fMRI signal given the activation

state of the voxel. The last equality is based on the assumption that
the observations at different voxels are independent given the acti-
vation state of each voxel. Fig. 1 shows the corresponding graphical
model, using a 2D grid for illustration purposes only. In all experi-
ments reported in this paper, we perform the estimation fully in
3D, with six immediately adjacent voxels as neighbors. The obser-
vation model PYi jXi

and the potentials Ui and Wij fully define the
MRF model. The specifics of the model depend on the application
of interest. This model explicitly introduces dependencies around
the time courses of different voxels Yi’s through the hidden activa-
tion state X

!
. We describe the details of MRF construction for fMRI

detection in Sections 3 and 4.
Direct search for the optimal activation configuration is intrac-

table in general. A polynomial-time algorithm for exact MAP esti-
mation exists for binary MRFs (Greig et al., 1989), based on a
reduction to the Minimum-Cut-Maximum-Flow problem. We refer
to this exact solver as Min–Max. Min–Max is still computationally
intensive when applied to the volumetric data. Our experimental
results in Section 6.2 show that the Mean Field solver provides a
close approximation to the Min–Max solutions but requires much
less computation.

2.3. The Mean Field solver

The Mean Field algorithm can be derived in a number of ways.
In Appendix B, we provide a detailed development based on the
variational approach of approximating the posterior probability
of configuration~x given observation ~y; P

X
!
j Y
!ð~xj~yÞ, by a product dis-

tribution Qð~xÞ ¼
QN

i¼1biðxiÞ through minimization of the KL-diver-
gence between the two distributions (Jaakkola, 2000). The
optimization leads to a fixed-point iterative update rule

btþ1
i ðxiÞ  c PYi jXi

ðyijxiÞ UiðxiÞe
2
P

j2NðiÞ

PM�1

xj¼0

bt
j ðxjÞ log Wijðxi ;xjÞ

ð5Þ
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where NðiÞ is the set of voxel i’s neighbors, and M is the number of
possible values the state variables Xi can take. The normalization
constant c ensures the solution is a valid probability distribution
(it sums to 1). At iteration t þ 1, the voxel’s belief is updated accord-
ing to a linear combination of its neighbors’ beliefs at iteration t. The
probability model (i.e., PYi jXi

; Ui, and Wij) determines the exact form
of the update rule. We stop the iterations when the belief for each
voxel changes less than a pre-selected threshold.

The resulting approximated posterior probability of activation
has two interpretations. First, if we are interested in the MAP solu-
tion, we can assign each voxel the state value with the highest
belief (for binary MRFs, voxel i is set active if bið1Þ > bið0Þ). Alterna-
tively, we can use the belief bi as a detection statistic. We follow
the latter strategy in the ROC analysis in Section 6.

3. Observation model

In this section, we construct the observation model PYi jXi
that is

consistent with the GLM framework for fMRI detection.
As demonstrated in (Cosman et al., 2004), the GLM detection

can be equivalently formulated as a Generalized Likelihood Ratio
(GLR) test:

‘ ¼
maxai ;bi ;r2

i
Nðyi; Bbi þ Aai;r2

i IÞ
maxai ;r2

i
Nðyi; Aai;r2

i IÞ : ð6Þ

It is easy to show that under the null hypothesis ‘ is a mono-
tonic function of the F-statistic under the white noise assumption
(Rencher, 2002). If the noise has an unknown covariance, there is
no longer an equivalence between the F-statistic and the GLR test.
Moreover, neither the numerator nor the denominator in Eq. (6) is
a proper probability distribution function since they violate the
normalization axiom. But since the maximum likelihood (ML) esti-
mators asymptotically converge to the true values of the parame-
ters under the correct hypothesis, maxai ;bi ;r2

i
Nðyi; Bbi þ Aai; r2

i IÞ
and maxai ;r2

i
Nðyi; Aai; r2

i IÞ are asymptotically equivalent to the
likelihood terms PYi jXi

ðyijxi ¼ 1Þ and PYi jXi
ðyijxi ¼ 0Þ, respectively.

To augment the GLM detector with an MRF prior, we choose to
approximate the observation model with the ML estimates of the
corresponding parameters. We set

PYi jXi
ðyjx ¼ 1Þ ¼Nðy; Bbbi þ Abai; br2

i IÞ; ð7Þ
PYi jXi

ðyjx ¼ 0Þ ¼Nðy; Abai; br2
i IÞ; ð8Þ

where bai; bbi, and bri are the ML estimates of the model parameters
for voxel i. Since PYi jXi

ðyjx ¼ 1Þ is greater than PYi jXi
ðyjx ¼ 0Þ in the

current likelihood setting, we design the prior on Xi to counter this
bias as shown in the next section. In Appendix C, we also show an
approach to constructing an MAP estimation procedure based on
a voxel-independent prior, instead of the MRF prior, that yields acti-
vation maps identical to those obtained through the standard GLM
detection.

4. Prior model

We aim to set the prior model parameters to represent our
knowledge about the statistical properties of the true activation
maps. In this work, we employ a spatially stationary prior by using
the same potential functions Ui and Wij for all voxels in the volume.
The observations (fMRI signals and anatomical information, if
available) move the MAP estimate away from the configurations
that are favored by the spatially stationary distribution. In this sta-
tionary model, the subscripts of the potential functions can be
removed.

Setting the prior model parameters is a major challenge in MRF-
based image analysis applications. Since no ground truth for fMRI
detection is available, we choose to learn the model parameters
from the data itself. While this approach represents an approxima-
tion for the optimal parameter setting, we found that it works rea-
sonably well in practice. We use the results of the voxel-wise
detector at a pre-specified threshold on activation values to esti-
mate the expected number of active voxels in the volume. More
specifically, we compute the GLR statistic in Eq. (6) and threshold
it to obtain an initial estimate of the activation map. We then use
the appropriate voxel counts to estimate the model parameters for
the MRF prior as described below.

We set the singleton potential UðaÞ to the expected percentage
of voxels in state a. For example, in the binary activation scenario

UðaÞ ¼ 1
N

XN

j¼1

dð~xj � aÞ; ð9Þ

where ~xj ¼ 1 if the GLR statistic of Eq. (6) at voxel j exceeds the
detection threshold and ~xj ¼ 0 otherwise. This effectively incorpo-
rates the detection threshold into the prior on the activation fre-
quency in the volume.

The pairwise potential function Wða; bÞ should encourage the
neighboring voxels to share the activation state. Ideally, we should
choose a value for the pairwise potential function in such a way
that samples drawn from the resulting prior model agree with
our notion of the spatial properties of true activation maps in fMRI
experiments. However, the relationship between the potential
functions and the statistical properties of samples drawn from
the model is a complex one. In our earlier work (Ou et al., 2005),
we used the frequency counts to set the pairwise potentials:

Wða;bÞ ¼ 1
2ðTotal number of edges in the imageÞ

X
hi;ji

dð~xi � aÞdð~xj � bÞ;

ð10Þ

where an edge connects a pair of adjacent voxels in a 6-voxel
neighborhood.

We observed in later experiments that it is easy to generate
undesired configurations whose posterior probability, P

X
!
j Y
!ð~xj~yÞ,

is greater than that of a desired configuration under this model.
A relatively large value of Wða; bÞ indicates that co-occurrence of
the corresponding states a and b is more likely than those with
smaller values of the pairwise potential function. A typical W esti-

mated from our real fMRI data is around 0:96 0:04
0:04 0:96

� �
. However,

the potential functions estimated from noisy frequency counts
can over- or under-emphasize the relative likelihood of certain
configurations. To enable training of the model, we add a modeling
parameter k that controls the overall ‘‘sharpness” of the joint com-
ponent of the prior, replacing Wða; bÞ with eWða; bÞ ¼ Wkða; bÞ. Vary-
ing this positive parameter k controls the degree to which more
favorable configurations are emphasized, but does not alter their
ranking order. This parameter is important especially when work-
ing with noisy data because it can alleviate the effects of inaccurate
estimation of W.

In synthetic experiments, we estimate k from half of the data by
performing an exhaustive search with respect to the true positive
rate while fixing the false positive rate at 10�3. Since ground truth
activations are not available in real fMRI experiments, we cannot
form a training set to estimate k. In this work, we apply the esti-
mated k from the synthetic data to activation detection in real fMRI
experiments. In order to obtain a sensible estimate of k, we match
the simulation parameters, such as the ratio of gray and white mat-
ter volumes and the proportion of active voxels, of the synthetic
data with the real one.

The detection performance reported in this paper represents
significant improvement over our earlier results (Ou et al., 2005),



322 W. Ou et al. / Medical Image Analysis 14 (2010) 318–331
which did not include this modeling parameter k (in other words, it
used k ¼ 1). The improvement is particularly large for low SNR
data. The augmented model also achieves a significant improve-
ment in the detection accuracy for real fMRI data.
5. Anatomically guided detection

The general nature of the MRF framework enables a straightfor-
ward extension of the probabilistic model in the previous section
to include a tissue type for each voxel. We define V

!
¼ ½V1; . . . ;VN�

to be the tissue types of all voxels, and W
!
¼ ½W1; . . . ;WN� to be

the tissue type observations, e.g., results of automatic segmenta-
tion of an MRI scan. Here we model both the hidden tissue type
variables V

!
and the observed anatomical labels W

!
on the same grid

of the fMRI scan.
Now each voxel has two hidden attributes: the activation state

Xi and the tissue type Vi. We combine these attributes into a single
hidden node Ui, as illustrated in Fig. 2. For example, for binary acti-
vation states (active or not active) and three tissue types (gray
matter, white matter, or other), Ui has six possible values. Since
the segmentation labels W

!
and the fMRI observation Y

!
are ob-

tained from two different images, it is reasonable to assume that
they are conditionally independent given the hidden state.

We choose to treat the segmentation results as a noisy observa-
tion rather than the true tissue type. Imperfect registration be-
tween the fMRI images and the anatomical scan, partial volume
effects, and the errors in the segmentation itself contribute to the
‘‘noise” in the anatomical information. Among these factors, partial
volume has the strongest influence in our experiments because
some brain structures have smaller dimensions than an fMRI voxel.
For example, since the highly folded cortical sheet is approximately
3 mm thick, an fMRI voxel (2–4 mm) may correspond to multiple
tissue types.

A straightforward extension of the model described in Section 2
leads to the MAP estimator for the new hidden variable

~u� ¼ arg max
~u

1
Z

Y
hi;ji

Wijðui; ujÞ
Y

i

UiðuiÞPYi jUi
ðyijuiÞPWi jUi

ðwijuiÞ ð11Þ

and the Mean Field update rule

btþ1
i ðuiÞ  cPWi jUi

ðwijuiÞPYi jUi
ðyijuiÞUiðuiÞe

2
P

j2NðiÞ

PM�1

uj¼0

bt
j ðujÞ log Wijðui ;ujÞ

:

ð12Þ

This update rule is similar to Eq. (5), with the exception of the
extra likelihood term PWi jUi

ðwijuiÞ for the tissue type observation.
The compatibility matrix Wij is M �M, where M is the number of
states in Ui.

Similar to the procedures for estimating the likelihood and prior
model parameters in Sections 3 and 4, we estimate the MRF model
Fig. 2. Graphical model for P~U;~Y; ~W .
from thresholded GLR images. We estimate the likelihood term for
the noisy segmentation W

!
given the true hidden states from the

corresponding counts of tissue labels in the high-resolution seg-
mentations, the coarse resolution subsampled images, and the ini-
tially thresholded GLM results. This accounts for the partial volume
effects between the anatomical and the functional data. We also
note that the inference framework can utilize probabilistic seg-
mentations by incorporating them into the likelihood model.

Our procedure for the construction of the MRF prior is as
follows:

(1) Register the EPI images and the anatomical scan.
(2) Downsample the anatomical images to fMRI resolution to

establish correspondence.
(3) Run standard GLM and obtain an SPM.
(4) Construct the probabilistic model for noisy segmentation

PWi jUi
ðwijuiÞ from the segmented anatomical scan and a

thresholded SPM obtained in Step (3).
(5) Estimate UiðuiÞ and Wijðui;ujÞ from the segmented anatomi-

cal scan and the thresholded SPM.
6. Experiments

In this section, we first quantitatively evaluate the proposed
spatial regularizers using synthetic data, followed by a comparison
between the detection results computed using the Min–Max and
the Mean Field solvers. We then present the experimental results
using real fMRI data from the functional Biomedical Informatics
Research Network (fBIRN) (Zou et al., 2005).

To compare the performance of the anatomically guided MRF
detection with the traditional methods, we also implemented
two types of anatomically driven extensions to the GLM detector
and the Gaussian filter. In anatomically guided GLM detection,
we suppress activations outside of the gray matter using the ana-
tomical information as guidance. In this case, ‘‘soft” masking can
also account for mis-registration and errors in segmentation. To
incorporate anatomical information into the Gaussian filter, we ad-
just the weights of the filter based on the tissue types of the voxel’s
neighbors. When evaluating the filter at voxel i, we assign higher
weights to the neighbors sharing the same segmentation results
as voxel i. In this implementation, neighbors sharing the same seg-
mentation results contribute twice as much as those sharing differ-
ent segmentation results. In the later sections, we will refer to
these two methods as GLM with anatomical information and ana-
tomically guided Gaussian smoothing, respectively.

We initialize the MRF by assigning equal beliefs to all states, i.e.,
biðaÞ ¼ 1=M for all activation states a. We stop the algorithm when
the belief for each voxel changes by less than 0.01 between consec-
utive iterations. In all experiments reported in this paper, the Mean
Field solver converged in 10–20 iterations.

6.1. Artificial data

To quantitatively evaluate the performance of the method, we
generated phantom data sets by applying the expectation-maximi-
zation (EM) segmentation algorithm (Pohl et al., 2004) to a 1 mm
isotropic anatomical MRI scan and randomly placing activation
areas of variable size (average diameter of 15 mm) in the gray mat-
ter. We then downsampled the scan to a typical fMRI resolution,
4 mm isotropic (64 � 64 � 64). In this synthetic data set, the gray
matter voxels represent 10% of the total number of voxels in the
volume, and the active voxels represent about 10% of the gray mat-
ter voxels. We then created simulated fMRI scans based on a fixed
parametric hemodynamic response function (the two-gamma
function) (Jezzard et al., 2002), using a block-design protocol. In
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Fig. 3. Example signals (blue, light) and their noise-free counterparts (black, dark) at two different SNR levels. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 4. ROC curves for GLM, GLM with Gaussian smoothing, the MRF-based detector and their anatomically guided variants. False positive rate, shown on logarithmic scale, is
computed using the brain voxels only.
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this simplified model, we used the same noise level for all voxels in
the volume to enable statistical comparison among different meth-
ods by averaging the detection rates over the volume.

In our real fMRI studies, the estimated SNR, dSNR ¼ 10log10

ðkBbbk2=br2Þ, varied from �4 dB to �6.5 dB across sessions and
across subjects. We used the estimated SNR to determine an ob-
served level of the simulated noise as the true SNR is unavailable
for real fMRI scans. To create realistic simulated signals, we used
two levels of noise in these experiments. The resulting noisy sig-
nals have the estimated SNR of �5.9 dB and �8.8 dB that bracket
the lowest SNR (�6.5 dB) in our real data. We chose such a conser-
vative range of noise levels since the true SNR is typically lower
than the estimated one in real fMRI data as part of the noise energy
is assigned to the estimated signal during detection when the sig-
nal and the noise overlap in some frequency bands. Fig. 3 shows
example signals from our simulated data sets.

To decouple testing from phantom generation, we used a GLM
detector based on a 10-bin finite impulse response (FIR) hemody-
namic response function in testing.

To compare the methods statistically, we generated 16 indepen-
dent artificial data sets using the procedure mentioned above. We
used eight data sets to learn the optimal model parameter k for the
MRF prior, as described in Section 4, and the remaining eight data
sets for the evaluation of the methods. In the training phase, we ex-
plored the range of values for k between 1 and 4. Most of our data
sets show the best performance when k is around 3. All 16 data sets
were employed to evaluate the GLM detector with and without
Gaussian smoothing, as well as their anatomically guided variants.
Gaussian kernels of 7 mm full-width-half-maximum (FWHM)
achieved the best performance in most simulated data sets when
we varied the kernel width from 4 mm to 12 mm. We therefore re-
port the results for the 7 mm FWHM Gaussian filter.

Fig. 4 illustrates the ROC analysis for GLM, GLM with Gaussian
smoothing, and GLM with MRF regularizer (solid curves) and their
anatomically guided variants (dashed curves). The ROC curves
were created by varying the threshold applied to the GLM statistic
or the posterior probability. The error bars indicate the standard
deviation of the true positive rate.

Since we expect only a small fraction of voxels in the image vol-
ume to be active, a low false positive rate is necessary to prevent
false detections from substantially outnumbering true detections
(Fig. 4). Here we focus on the false positive rates below 10�3, which
correspond to about 10% of the total number of the active voxels, or
approximately 250 voxels.

Let us first concentrate on the detection results without ana-
tomical information (solid curves in Fig. 4). As expected, the accu-
racy of all methods improves with increasing SNR. At high noise
levels (low SNR), Gaussian smoothing outperforms MRFs. As the
simplest smoothing technique, Gaussian smoothing is more robust
to noise. As the SNR increases, the MRF provides better regulariza-
tion of the activation state. For example, at SNR = �5.9 dB and at
the false positive rate of 10�3, the MRF outperforms the Gaussian
smoothing by about 30% in true detection accuracy; at 60% true
detection, the MRF approximately achieves one tenth of the false
detections compared to the Gaussian smoothing. We believe our
current estimation procedure for the MRF potential functions Wij

and Ui partially degrades the MRF performance when SNR is rela-
tively low. As mentioned earlier, these two parameters are esti-
mated from the thresholded GLM activation map. Higher noise
levels lead to increasingly inaccurate estimates for the model



Fig. 5. Axial slice of the ground truth, the segmentation and the estimated
activation maps at the false positive rate of 5� 10�4. True detections (yellow), false
positive (red), and false negative (green) areas are shown. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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parameters and to sub-optimal detection results. However, with
ongoing improvements of the imaging technology, we believe
MRFs will become even more helpful in reducing spurious false
detection islands.

Anatomical information significantly boosts the performance of
all detectors at all noise levels (dashed curves). At high noise levels
ðdSNR ¼ �8:8 dBÞ and false positive rates between 10�4 and 10�3

(26 and 262 false positive voxels, respectively), both Gaussian
smoothing and MRF gain at least 10% in true detection rate while
using the anatomical information. At the lower noise level
ðdSNR ¼ �5:9 dBÞ, the basic GLM detector augmented with anatom-
ical information exceeds the performance of the Gaussian smooth-
ing. Since false detections occur relatively uniformly throughout
the volume but activations are located in the gray matter, masking
out irrelevant regions improves the performance substantially. At
the 10�4 false positive rate, the anatomically guided MRF outper-
forms the anatomically guided Gaussian smoothing by about 20%
in true detection rate, achieving over 90% detection accuracy.

In addition to the quantitative ROC analysis, we find it useful to
visually inspect the resulting activation maps. Fig. 5 shows one ax-
ial slice of the activation phantom, the anatomical segmentation,
and the detection results for the three methods and their anatom-
ically guided versions at two different SNR levels. All the detections
were performed at the false positive rate of 5� 10�4. The basic
GLM produces a fragmented activation map that shows very little
of the original activation at low SNR (Fig. 5c) and contains frag-
mented activation islands at high SNR (Fig. 5i). Given either of
these maps, users would have trouble inferring the true activation
areas and disambiguating them from spurious false detections.
Gaussian smoothing leads to a reasonable estimate of the ground
truth; however, it tends to make the detections ‘‘spherical”, which
may change the shape of the detected activation areas (Fig. 5e and
k). Consequently, many false positive voxels in the Gaussian
smoothing occur at the boundaries of the activation regions. Ana-
tomical information reduces this over-smoothing effect for some
areas (Fig. 5f and l). At low SNR (�8.8 dB), the MRF model fills in
many of the active pixels that were missed by GLM (Fig. 5g). At
higher SNR (�5.9 dB), MRF produces relatively accurate results
(Fig. 5m). Not all of the scattered activation islands are removed
through regularization, but the activation map looks more similar
to the ground truth. The activation map is further improved when
the anatomical information is integrated into the model (Fig. 5h
and n). Similar to our findings from the ROC analysis, at low SNR
anatomically guided Gaussian smoothing achieves the best results,
while at high SNR the anatomically guided MRF outperforms the
rest of the detectors.

6.2. Comparison to the optimal solution

In the binary case, we can evaluate the quality of the Mean Field
solution by comparing it to the exact solution. The Min–Max solver
mentioned in Section 2.2 runs in polynomial time and finds the
activation map that achieves the global maximum of the posterior
probability distribution for binary MRFs. We refer the readers to
previously published work (Cosman et al., 2004) for implementa-
tion details on the Min–Max algorithm in application to MRF-based
detection in fMRI.

Fig. 6 shows the ROC curves for the Mean Field and the Min–
Max solvers applied to the binary activation data sets introduced
in Section 6.1. The Mean Field ROC curve is identical to the corre-
sponding one in Fig. 4. The error bars for the Min–Max ROC curve
were computed from the 16 artificial data sets. The Min–Max ROC
curve is incomplete for large false positive rates, because extreme
threshold values lead to demanding computation (more than 10 h
for a single threshold value), and their corresponding false positive
rate exceeds the acceptable region in practice. Because each run
takes a long time, we did not optimize the shaping parameter k
for the Min–Max algorithm. Instead, we experimented with differ-
ent values of k, and displayed the best performance. As presented
in Fig. 6, Min–Max solution is roughly 5% more accurate than the
Mean Field solution, suggesting that the Markov model captures
the underlying activation pattern reasonably well. On the other
hand, Min–Max’s computational requirements are too demanding
for the detection application. The Mean Field algorithm offers a
good approximation to the globally optimal solution.

The maximum flow in the Min–Max solver can be obtained via
Edmonds–Karp algorithm (Cormen et al., 1997). The run time com-
plexity of the algorithm is OðNE2Þ, where E is the number of edges
in the graph. In our case, the number of edges per node in the graph
is bounded by a constant, leading to OðN3Þ run time complexity.
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Fig. 6. ROC curves for the MRF-based detection results using the Mean Field and the
Min–Max algorithms. False positive rate is shown on logarithmic scale.
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The run time complexity of the Mean Field update is O(NM), where
M is the number of state values. In our experiments, the algorithm
converged in 10 to 20 iterations. Our Mean Field with Matlab
implementation usually converged in 5–10 min on a standard PC
(2 GHz CPU and 2 GB RAM), but it was slower than Gaussian
smoothing which took less than a second. The Min–Max solver
with Matlab implementation took 30–40 min for reasonable
thresholds. The Mean Field algorithm requires O( NM) memory,
which is comparable to the memory necessary to implement the
Gaussian smoother and the standard GLM detector.

We note that the graph cuts algorithm (Boykov et al., 2001) is
an extension of the Min–Max solver to multi-state MRF; it employs
a series of binary Min–Max steps to achieve a good quality approx-
imation. But since even a single run of a Min–Max solver on a 3D
fMRI volume is quite slow, we did not explore the graph cuts algo-
rithms for approximate MRF inference any further.
6.3. Real fMRI experiments

We demonstrate the method in application to a sensory-motor
fMRI study. The study included five healthy right-handed subjects.
Each subject performed four identical runs of a sensory-motor task.
Each run consisted of nine rest epochs and eight task epochs (total
17 epochs), with each epoch lasting 15 s. A flashing checkerboard
Fig. 7. Our validation proce
and a series of tones were presented at 3 Hz during a task epoch,
and the subject was asked to tap along in a regular 3 Hz rhythm.
The original purpose of this fMRI study was to characterize
cross-scanner variability (Magnotta and Friedman, 2006; Zou
et al., 2005), but we only use data from one scanner in the study.
The fMRI images were acquired using a Siemens 3T machine
(TR = 3 s, 64 � 64 � 35, 3.4 mm � 3.4 mm � 5 mm, dual echo EPI,
echos at 20 and 50 ms, EPI bandwidth of 2441 Hz, 90� flip angle,
single channel head coil). The estimated SNR in expert-selected
ROIs relevant to the task varied between �4 dB and �6.5 dB. Each
subject also underwent anatomical scanning (transverse three-
dimensional magnetization prepared rapid acquisition gradient-
echo protocol, 9.8/minimum, 15� flip angle, 22 � 16.5 cm field of
view, 256 � 192 matrix, 124–128 sections, 1 mm � 1 mm �
1.2 mm, T1 = 300 ms, bandwidth of 15,625 kHz, two signals
acquired).

Since the ground truth activation is unknown in real fMRI
experiments, we cannot construct ROC curves. In this work, we
evaluated the proposed fMRI analysis methods with respect to
their ability to detect activations from reduced-length time
courses. Fig. 7 illustrates the flow chart of our evaluation process.
We first applied the GLM detector, parameterized by the two-gam-
ma function, without any smoothing to each of the four full-length
runs for the same subject. We then employed majority voting
among the resulting four activation maps to construct the pseudo
ground truth activation map for the experiment. To evaluate the
six methods we compared in Section 6.1, we first quantitatively
compared each of their activation maps produced with varying
length of time courses to the pseudo ground truth activation
map (Fig. 8). We then visually inspect the quality of the activation
maps shown in Figs. 9–11.

The pseudo ground truth activation map (Figs. 9–11a) exhibits a
substantial amount of fragmentation. It often shows bias towards
to the GLM detector, especially for the results obtained with rela-
tively long time courses. At the same time, other detectors might
produce perceptually more meaningful results. Hence, extra cau-
tion is needed while interpreting results based on this pseudo
ground truth reference.

In contrast to our experiments with synthetic data, where the
activation thresholds were chosen according to the required bound
on the false positive rate, in real data we chose to select the top 1%
of the voxels with the highest statistic or posterior probability
when comparing the activation maps across detectors. Sophisti-
cated threshold selection methods, such as controlling the false
discovery rate (Benjamini and Hochberg, 1995) or controlling fam-
ily-wise error rate, can be applied to statistics generated from the
GLM detectors. When we introduce smoothing or spatial prior, the
theory of statistical testing becomes substantially more complex.
For the purpose of comparing different detectors, our threshold
dure for real fMRI data.
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Fig. 9. Real fMRI study. One sagittal slice in the estimated activation maps. (a) Pseud
resolution segmentation result overlaid onto the corresponding MR image. (c)–(h) The ac
(d) A gray matter mask is employed to suppress GLM-detected activations which do not l
prior to the GLM detector. (f) A weighted Gaussian smoothing is applied prior to the GL
incorporates the anatomical information into the MRF prior.

Fig. 10. Real fMRI study. A coronal slice in the estimated activation maps
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selection method effectively reveals the detected voxels and the
spatial pattern when equal number of voxels pass the threshold.

Fig. 8 shows the fraction of detected activation matching with
those in the pseudo ground truth versus the number of epochs in-
cluded in the detection. We omit the corresponding figure for the
false positive rate as the false positive rate can be straightfor-
wardly derived from Fig. 8 since we select the same number of
voxels active in each experiment. We can see that spatial regular-
ization, of either MRF or Gaussian smoothing, is crucial for detec-
tion with short time courses. Based on three epochs, GLM
achieves 0.4 true positive rate, MRF and Gaussian achieve 0.48
and 0.44, respectively. The results of the MRF-based detectors
show a much better agreement with the pseudo ground truth than
the baseline methods. Furthermore, anatomical information signif-
icantly improves the performance of all detectors, boosting it by
additional 5–8%.

We now inspect the activation maps from the six detectors with
seven-epoch time courses (out of 17) in Figs. 9–11c–h. Subfigure
o ground truth created from four full-length sessions (17 epochs each). (b) High-
tivation maps obtained from the first seven epochs. (c) Plain GLM detection results.
ie in the gray matter. (e) Isotropic Gaussian smoothing with 7 mm FWHM is applied
M detector. (g) Generated by the GLM detector with MRF spatial prior. (h) Further

. The description of each subfigure follows the conventions of Fig. 9.



Fig. 11. Real fMRI study. An axial slice in the estimated activation maps. The description of each subfigure follows the conventions of Fig. 9.
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(b) in all three figures displays the high-resolution anatomical seg-
mentation. Without spatial regularization, the GLM detector yields
more fragmented activation map (c) due to loss in statistical power
from reducing the length of the signal. Spatial masking removes
some false detections outside of the gray matter in (d). Since we
keep the number of active voxels constant, extra gray matter vox-
els are labelled as active in (d). The other four images illustrate the
results of applying GLM with Gaussian smoothing and the MRF-
based detector, as well as their anatomically guided versions.
Although Gaussian smoothing (kernel width of 7 mm) removes
most of the single-voxel activation islands, its activation map in
(e) significantly over-smooths the activation areas when compared
to (a). Anatomical weighting somewhat reduces the over-smooth-
ing effect. MRF regularization ((g) and (h)) captures activations
with elongated spatial structures. This highlights the potential
benefit of using the Markov priors in fMRI detection. Furthermore,
Fig. 9h illustrates that a coherent activation pattern along the mo-
tor cortex is detected by the anatomically guided MRF detector.
Similar to the Gaussian smoothing, the MRF model benefits from
using anatomical information to remove spurious activations.
Our experiments demonstrate that employing anatomically guided
MRF spatial regularization leads to accurate detection from time
courses of substantially reduced length.

7. Discussion and conclusions

Our experiments confirm the importance of spatial regulariza-
tion in reducing fragmentation of activation maps. We investigated
two types of improvement in spatial modeling for fMRI detection:
MRF priors and anatomical bias. The MRF provides a spatial prior
that refines the structure of the resulting activation maps over
Gaussian smoothing, as demonstrated by our experiments on
phantom and real data. We explored the fast Mean Field approxi-
mate solver in application to MRF-based fMRI detection and
showed that it provides good detection accuracy while taking sub-
stantially less time to evaluate than the exact solution. We note
that since the Markov model itself is an approximation of the real
geometry of the activation regions, we should not dwell on the
small differences in the activation maps introduced by the approx-
imate solvers but rather focus on their performance relative to the
ground truth or the pseudo ground truth.

We also demonstrated that anatomical information provides
helpful bias in fMRI detection. We derived an algorithm for ana-
tomically guided MRF estimation and showed how Gaussian
smoothing can be straightforwardly augmented with anatomical
information by rescaling the coefficients of the smoothing kernel.
Partial volume effects in reducing the anatomical segmentations
to the fMRI resolution should be investigated further in the future.
In this work, we downsample the anatomical scan to match the
resolution of the functional scan. A better solution would be to
use the high-resolution anatomical scans to resolve the activation
in the functional voxels that are on the boundary of the gray mat-
ter, leading to a ‘‘super-resolution” detector.

In this paper, the detection method treats the anatomical seg-
mentation as a noisy observation of the true tissue types. In addi-
tion, it utilizes anatomical information to estimate the pairwise
and the singleton potential functions Wij and Ui. If we treat the seg-
mentation labels as the true tissue types for inference purposes,
i.e., employ the graphical model from Fig. 1 with spatially variant
potential functions based on the segmentation label at each voxel,
the method fails to produce accurate results. We believe that the
mis-registration and subsampling noise in producing anatomical
data on the same grid with fMRI measurements requires additional
modelings and cannot be ignored in anatomically guided fMRI
analysis. We can also use the anatomical information for inference
only, but employ spatially stationary potential functions that are
ignorant of anatomy. The structure of the corresponding graphical
model is similar to that in Fig. 2, except that each hidden node con-
tains the activation state Xi only. In this model, the tissue type does
not propagate between voxels. The resulting MRF prior does not
encourage strong spatial coherency within tissue types and weak
spatial coherency across tissue types. In our experiments, we found
this method to produce similar results to those of the full model. To
summarize, modeling the mismatch in alignment and resolution
between the two modalities is crucial for accurate anatomically
guided fMRI detection.

It has been suggested that anatomical information can be ob-
tained from breath-hold fMRI experiments (Li et al., 1999), which
would remove the effects of mis-registration and resolution mis-
match between the functional data and the anatomical structure.
The BOLD signal in the gray matter is highly correlated with the
breath-hold experimental protocol, allowing gray matter segmen-
tation with an appropriately selected threshold. In addition, a
rough gray matter segmentation can be extracted from the AR(1)
temporal model of noise (Worsley et al., 2002). In our experiments,
we found that the anatomical prior produced by these two ap-
proaches in general was of much lower quality than that obtained
from anatomical segmentation followed by downsampling. We
therefore focused on anatomical segmentation as a source of tissue
type information.
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We evaluated the methods by performing the ROC analysis on
phantom data, and by studying their ability to recover activation
from significantly shorter time courses on real data. In the high
noise setting for the binary activation states, the Gaussian smooth-
ing outperformed other methods, but the difference between
Gaussian and MRF was marginal. As the SNR in the images in-
creased, the Markov prior offered a substantial improvement in
the detection accuracy.

Many fMRI studies aim to detect and characterize positive and
negative activations separately (Allison et al., 2000; Aron et al.,
2004; Seghier et al., 2004). The negatively activated regions have
also been shown to correlate with disease-induced neurodegener-
ation (Buckner et al., 2005; Greicius et al., 2004). Most literature
defines positive/negative activations as a comparison of responses
to two different stimuli or as a comparison of responses to a stim-
uli versus baseline. Our model can capture both definitions by
extending the activation state variables Xi to three states, i.e.,
{�1,0,1}. If more than one comparison of stimuli is of neuroscien-
tific interest, our model can be adapted by handling each compar-
ison independently. Recent work by Makni et al. (2008) and
Vincent et al. (2007) jointly estimate the positive/negative activa-
tions and the shape of HRF through a bilinear model. Their work
requires an estimation on a set of pre-defined regions, such as
the cortical parcellation from anatomical scans. We have
completed preliminary evaluation of the six detectors discussed
in Section 6.1 in the context of positive/negative activations (Ou,
2005). The overall performance of these detectors is similar to
the results for the binary activation cases, except that the MRF-
based detectors show better performance in preserving the bound-
ary between positively and negatively activated regions while
Gaussian smoothing tends to average away positive and negative
activation signals.

We used block design experiments to validate the method. We
expect the MRF regularizer to perform somewhat worse in the
event-related paradigms due to lower SNR. In our experiments,
we observed that the proposed regularization methods improve
detection accuracy at both SNR levels, but the effect is more sub-
stantial for higher SNR levels, suggesting that the utility of the
method in analyzing real fMRI data will grow as the quality of
the data improves.

We also note that localization response curve (LROC) analysis
(Swensson, 1996) could explicitly incorporate location information
into the ROC analysis for simulated data. In general, it is easy to de-
tect some active voxels in or near the real activation region. How-
ever, correctly detecting the boundaries of the activation region is
difficult, and it is not captured by the LROC. Our current approach
to quantifying the detection performance by averaging the perfor-
mance at each voxel using a standard ROC approach lacks the local-
ization information, but it serves as a better evaluation tool as
improving the boundary detection is one of the main goals of this
work.

Evaluation is challenging in real fMRI data since no ground truth
is available even for limited experiments. Alternative evaluation
methods for fMRI detectors have been proposed, based on repeat-
ability of activation results over multiple sessions (Genovese
et al., 1997). By modeling the distribution of detection results for
a voxel over all sessions as a mixture of two binomial distributions,
this method estimates the ROC curve. The underlying hidden acti-
vation state is estimated as part of the mixture model. Unfortu-
nately, this model relies on a large number of independent
sessions and on independence among voxels to provide reasonable
estimates. Both assumptions may be too optimistic in fMRI experi-
ments, and were certainly violated by our data and methods. Exten-
sions of this procedure address multiple tasks (Liou et al., 2006) and
non-parametric models (Strother et al., 2002) and allow character-
ization of prediction accuracy and the SNR associated with repro-
ducible SPMs. However, the detectors in our comparison produce
substantially different types of statistics (F-statistic for the GLM
and posterior probability for the MRF-based detectors), presenting
additional challenges for such methods. Here we chose to compare
the method’s ability to detect activations from reduced-length time
courses as an evaluation criterion; further work in comparing acti-
vation detectors is needed. Maitra et al. extended work in (Genov-
ese et al., 1997) to handle spatially-dependent fMRI detection
(Maitra et al., 2002), and it is of our interest to compare their ap-
proach with ours in future work.

The anatomically guided Markov spatial prior enabled us to
shorten the fMRI scan length from four runs of 17 epochs to
nine-or-fewer epochs in one run while still retaining comparable
detection power. We expect a similar effect to occur with respect
to the spatial resolution when we extend the method to utilize
the anatomical information at the original scan resolution. As the
quality of the scanning equipment improves, the sophisticated spa-
tial models, such as MRFs, will become even more important in
recovering the details of the activation regions.
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Appendix A. Alternative GLM formulation

Here we show that the formulation of Eq. (1) is equivalent to the
more typically employed application of a contrast matrix in con-
junction with GLM. GLM models the BOLD response as a linear
time-invariant system (Friston et al., 1995):

y ¼ Hbþ � ðA:1Þ

where y is the voxel’s fMRI time course and H is the design matrix,
which may contain responses to different tasks or the same task but
different types of stimulus. Since GLM models each voxel sepa-
rately, we omit the voxel index i in the derivations here. Noise �
is assumed to be i.i.d. Gaussian noise. The vector of regression coef-
ficients b includes both the coefficients in the signal space and the
nuisance parameters. The contrast row vector c is defined to select
the relevant components of the ML estimate of the regression vectorbb for statistical testing. For example, we can construct the t-statistic

as t ¼ ðcbbÞ= ffiffiffiffiffiffiffiffibRcb

q
with T � rankðCÞ degrees of freedom, and bRcb is

the estimated variance of cbb.
To show that Eq. (1) is equivalent to this GLM formulation, we

introduce transformation matrix TH . The first row of matrix TH is
identical to the contrast row c; the remaining Nb � 1 rows are con-
structed such that each row in TH is orthonormal to the remaining
rows. We now consider ~b ¼ THb. The first element of ~b is the pro-
jection of the regression vector onto the signal space of interest,
defined by c. The remaining elements of ~b can be considered nui-
sance parameters. Therefore, we can rewrite Eq. (A.1) in the form
of Eq. (1) by setting eH ¼ HT�1

H :



W. Ou et al. / Medical Image Analysis 14 (2010) 318–331 329
y ¼ Hbþ � ¼ eH~bþ � ¼ eHð1Þ~bð1Þ þ eHð½2;���;Nb �Þ~bð½2;���;Nb �Þ þ �: ðA:2Þ

The first term in the resulting sum corresponds to the signal space
components. The second term in the sum represents contributions
orthogonal to the signal space of interest.

Appendix B. Mean Field derivation

In this appendix, we demonstrate one possible derivation of the
Mean Field iteration as a variational approximation of the original
MAP problem, closely following the development in (Jaakkola,
2000). The basic idea is to approximate the posterior probability
P

X
!
j Y
!ð~xj~yÞ by a simpler distribution Qð~x;~bÞ ¼

QN
i¼1biðxiÞ through min-

imizing the KL-divergence between them and to use the mode of
Qð�;~bÞ as an approximation for the mode of P

X
!
j Y
!ð�j~yÞ. ~b ¼

½b1; b2; . . . ; bN� is the vector of belief functions: biðaÞ denotes the

probability that voxel i is in state a. Clearly,
PM�1

a¼0 biðaÞ ¼ 1, where
M is the number of possible values that the state variable Xi can
take. For example, M ¼ 2 for binary MRFs. We note that the result-
ing distribution Qð�;~bÞ implicitly depends on the observations ~y.

The KL-divergence

DðQkP
X
!
j Y
!Þ ¼

X
~x

Qð~xÞ log
Qð~xÞ

P
X
!
j Y
!ð~xj~yÞ

0@ 1A ðB:1Þ

serves as a distance between Qð�;~bÞ and P
X
!
j~Y
ð�j~yÞ; it is non-negative

and is equal to zero only if Q ¼ P
X
!
j Y
!. As an aside, the statistical

inference theory implies that we should minimize the KL-diver-
gence DðP

X
!
j Y
!kQÞ, which often leads to intractable problems. To

overcome this difficulty, variational methods are usually formu-
lated as a minimization of the KL-divergence DðQkP

X
!
j Y
!Þ.

It is easy to see that the minimum of DðQð�;~bÞkP
X
!
j Y
!Þ is achieved

for the same belief vector ~b� that minimizes the so-called free
energy,

FMFð~bÞ ¼ D QkP
X
!
j Y
!

� �
� log P

Y
!ð~yÞ

� �
� logðZÞ ðB:2Þ

since the last two terms are independent of~b. Substituting the def-
initions for Qð~x;~bÞ and for P

X
!
j~Y
ð~xj~yÞ, we obtain,

FMFð~bÞ ¼ �
X

i

X
j2NðiÞ

XM�1

xi¼0

XM�1

xj¼0

biðxiÞbjðxjÞ logðWijðxi; xjÞÞ

þ
X

i

XM�1

xi¼0

biðxiÞ logðbiðxiÞÞ � logðPYi jXi
ðyijxiÞUiðxiÞÞ

� �
ðB:3Þ

leading to the following constrained optimization problem:

~b� ¼ arg min
~b

FMFð~bÞ ðB:4Þ

s:t:
XM�1

a¼0

biðaÞ ¼ 1; 8i:

Using Lagrange multipliers, we reduce the problem above to
minimize

Jð~bÞ ¼ �
X

i

X
j2NðiÞ

XM�1

xi¼0

XM�1

xj¼0

biðxiÞbjðxjÞ logðWijðxi; xjÞÞ

þ
X

i

XM�1

xi¼0

biðxiÞ logðbiðxiÞÞ � logðPYi jXi
ðyijxiÞUiðxiÞÞ

� �
þ
X

i

ni

XM�1

xi¼0

ðbiðxiÞ � 1Þ:
Differentiating with respect to bkðxkÞ yields

@Jð~bÞ
@bkðxkÞ

¼ �2
X

j2NðkÞ

XM�1

xj¼0

bkðxkÞbjðxjÞ logðWkjðxk; xjÞÞ þ 1

þ logðbkðxkÞÞ � logðPYk jXk
ðykjxkÞUkðxkÞÞ þ nk: ðB:5Þ

By setting the derivatives to zero and manipulating the expres-
sion above, we arrive at the fixed-point iteration for the belief
functions

bkðxkÞ  e1þnk PYk jXk
ðykjxkÞUkðxkÞe

2
P

j2NðkÞ

PM�1

xj¼0

bjðxjÞ logðWkjðxk ;xjÞÞ

ðB:6Þ

that immediately leads to the Mean Field update rule of Eq. (5) if we
set c ¼ e1þnk .
Appendix C. Equivalence to the joint MAP solution

In this appendix, we present the connection between the MAP
solution and the classical GLM inference in the binary activation
scenario. In particular, we show that for a prior that models all vox-
els independently, there is a setting of the prior that forces the MAP
solution to coincide with the classical solution. Furthermore, the
two-step estimation procedure we outlined in Section 3, which
first finds the ML estimates of the GLM parameters fa; b; r2g
and then uses them in the MAP estimation of the state variables
X, is asymptotically equivalent to the optimal simultaneous MAP
estimation of the activation state and the regression parameters
in the case of the voxel-wise independent prior.

To simplify the derivations, we let H0i ¼ fai;r2
i g be the param-

eters of the likelihood under H0 for voxel i, H1i ¼ fai; bi;r2
i g be the

parameters of the likelihood under H1 for voxel i, bHMAP
0i ð bHML

0i Þ andbHMAP
1i ð bHML

1i Þ be the MAP (ML) estimates of H0i and H1i, respectively.
The activation state estimate obtained through the joint MAP esti-
mation of the activation state and the GLM parameters

f~x�~h�0 ~h1
�g ¼ arg max

~x;~h0 ;
~h1

P~X;~H0 ;
~H1 j~Yð~x;

~h0;~h1j~yÞ

¼ arg max
~x;~h0 ;

~h1

P~X;~H0 ;
~H1 ;

~Yð~x;~h0;~h1;~yÞ ðC:1Þ

can also be expressed as

~x� ¼ arg max
~x

max
~h0 ;

~h1

P~X;~H0 ;
~H1 ;

~Yð~x;~h0;~h1;~yÞ ðC:2Þ

¼ arg max
~x

P~Xð~xÞ
YN

i¼1

max
h0 ;h1

PH0i ;H1i ;Yi jXi
ðh0; h1; yijxiÞ ðC:3Þ

For a voxel-wise independent prior P~Xð~xÞ ¼
QN

i¼1PXi
ðxiÞ, the problem

above can be solved for each voxel separately. In the remainder of
this section, we omit the voxel index i.
x� ¼ arg max
x2f0;1g

PXðxÞmax
h0 ;h1

PH0 ;H1 ;YjXðh0; h1; yjxÞ ðC:4Þ

¼ arg max
x2f0;1g

PXðxÞmax
h

PY;Hx jXðy; hjxÞ ðC:5Þ

¼ arg max
x2f0;1g

PXðxÞPY;Hx jXðy; bHMAP
x jxÞ ðC:6Þ

¼ arg max
x2f0;1g

PXðxÞPYjHx ;Xðyj bHMAP
x ; xÞ ðC:7Þ

� arg max
x2f0;1g

PXðxÞPYjHx ;Xðyj bHML
x ; xÞ ðC:8Þ
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We obtained Eq. (C.6) by assuming a uniform prior distribution for
Hx. Eq. (C.8) is true asymptotically as the number of time points in a
time course increases. Alternatively, we can express Eq. (C.8) in
terms of hypothesis testing:

PYjXðyj bHML
1 ; x ¼ 1Þ

PYjXðyj bHML
0 ; x ¼ 0Þ

H1

?

H0

PXðx ¼ 0Þ
PXðx ¼ 1Þ : ðC:9Þ

As shown in (Rencher, 2002), the left-hand side of Eq. (C.9) is a
monotonic function of the F-statistic. Thus, we obtain the corre-
sponding hypothesis testing threshold, g, according to the selected
p value threshold in the classical GLM procedure:

PYjXðyj bHML
1 ; x ¼ 1Þ

PYjXðyj bHML
0 ; x ¼ 0Þ

H1

?

H0

g: ðC:10Þ

This implies that selecting PXðx ¼ 0Þ ¼ g
1þg and PXðx ¼ 1Þ ¼ 1

1þg
causes the MAP with independent prior and the classical inferences
to produce identical results.
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