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We propose a novel method, fMRI-Informed Regional Estimation (FIRE), which utilizes information from
fMRI in E/MEG source reconstruction. FIRE takes advantage of the spatial alignment between the neural and
the vascular activities, while allowing for substantial differences in their dynamics. Furthermore, with a
region-based approach, FIRE estimates the model parameters for each region independently. Hence, it can be
efficiently applied on a dense grid of source locations. The optimization procedure at the core of FIRE is
related to the re-weighted minimum-norm algorithms. The weights in the proposed approach are computed
from both the current source estimates and fMRI data, leading to robust estimates in the presence of silent
sources in either fMRI or E/MEG measurements. We employ a Monte Carlo evaluation procedure to compare
the proposed method to several other joint E/MEG-fMRI algorithms. Our results show that FIRE provides the
best trade-off in estimation accuracy between the spatial and the temporal accuracy. Analysis using human
E/MEG-fMRI data reveals that FIRE significantly reduces the ambiguities in source localization present in the
minimum-norm estimates, and that it accurately captures activation timing in adjacent functional regions.
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Introduction

The principal difficulty in interpreting electroencephalography
(EEG) and magnetoencephalography (MEG) data stems from the ill-
posed nature of the electromagnetic inverse problem: infinitely many
spatial current patterns can give rise to identical measurements
(Hadamard, 1902; Hämäläinen et al., 1993). Additional assumptions
about spatial current patterns, such as minimum energy (or l2-norm)
(Hämäläinen and Ilmoniemi, 1984; Wang et al., 1993) and minimum
current (Uutela et al., 1999; Ou et al., 2009a), must be incorporated
into the reconstruction process to obtain a unique estimate (Baillet
et al., 2001). The corresponding estimation methods belong to the
class of algorithms that model the sources as a spatial distribution, in
contrast to the dipole fitting approach where the E/MEG data is
explained by a small number of current dipole sources (Wood, 1982;
Scherg and Von Cramon, 1985; Mosher et al., 1992). In this work, we
focus on the distributed approach and aim to characterize activations
with non-trivial spatial extent.
In addition to these general assumptions about the spatial patterns
of activation, specific prior knowledge about activation locations can
be obtained from other imaging modalities. Among them, functional
Magnetic Resonance Imaging (fMRI) provides the most relevant
information for the reconstruction due to its good spatial resolution.
fMRI measures the hemodynamic activity, which indirectly reflects
the neural activity measured by E/MEG. Extensive studies of
neurovascular coupling have demonstrated similarity in spatial
patterns of these two types of activations (Logothetis and Wandell,
2004; Ou et al., 2009b). However, the dynamics of the neural and the
vascular activities differ substantially, and their exact relationship is
yet to be characterized in full, (see, e.g., Ou et al., 2009b). In addition to
the differences in their physiological origins, E/MEG and fMRI have
different sensitivity characteristics. For example, a brief transient
neural activity may be difficult to detect in fMRI while a sustained
weak neural activity may lead to relatively strong fMRI signals, but
might have a poor signal-to-noise ratio in E/MEG.

The most straightforward way to incorporate fMRI information into
E/MEG inverse estimation is the fMRI-weighted minimum-norm
estimation (fMNE) (Liu et al., 1998; Ahlfors and Simpson, 2004). This
method uses a thresholded statistical parametric map (SPM) from fMRI
analysis to construct weights for the standard minimum-norm
estimation (MNE), leading to significant improvements when the SPM
is accurate. However, the weights depend on arbitrary choices of the
threshold andof theweightingparameters.Moreover, theseweights are
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assumed to be identical for all time points in the E/MEG source
estimation, causing excessive bias in the estimated source timecourses.
Sato et al. (2004) combined the automatic relevance determination
(ARD) framework and fMNE to achieve more focal estimates. In this
method,whichwewill refer to as fARD, the parameters of a hyper-prior
are set based on the thresholdedSPM. Similar to fMNE, fARDdepends on
the arbitrary choice of the threshold for SPMs. fARD can be viewed as a
“soft” variant of fMNE from the modeling perspective; its inference
procedureoften leads to spatially sparse solutions (Wipf andRao, 2004).
The main limitation of fARD is that the estimates may be temporally
unstable, often reflected in the “spiky” estimated timecourses. fMRI
information has also been incorporated into the dipole fitting approach
as a constraint (George et al., 1995; Fujimaki et al., 2002; Vanni et al.,
2004) or a probabilistic prior (Jun et al., 2008).

Here, we propose a novel method, the fMRI-Informed Regional
Estimation (FIRE), to improve the accuracy of the E/MEG source
estimates. Fig. 1 illustrates themodel assumptions of FIRE. The regions
indicated by different colors are chosen based on the subject-specific
cortical parcellation. In this work, we choose to employ the parcella-
tion produced by FreeSurfer (Fischl et al., 2002), but themethod can be
readily applied with other parcellation models. Since the relationship
between the dynamics of the evoked neural and the evoked vascular
signals is largely unknown, we only model the similarity of spatial
patterns in the two processes, in contrast to a previously reported
Kalman filtering approach in Deneux and Faugeras (2006) and Liu and
He (2008). Furthermore, we expect the shape of the activation
timecourses to vary across brain regions, especially for the neural
activation. To account for this fact, FIRE treats the temporal dynamics
in different brain regions independently. In other words, there is no
constraint imposing similarity of the activation timecourses across
regions. We assume the shape of the activation timecourses to be
constant within a brain region, modulated by a set of location-specific
latent variables. Handling the temporal dynamics of the two types of
activities separately while exploiting their common spatial pattern
preserves the temporal resolution of E/MEG and helps to achieve
accurate source localization.

The prior on the latent variables encourages spatially smooth
current estimates within a brain region. The prior also encourages the
number of activated regions to be small, similar to the ARD approach
(Sato et al., 2004; Wipf and Nagarajan, 2009), except that our prior is
applied to each brain region rather than to each location. Both the
activation timecoursemodel and the choice of brain regions in FIRE are
similar to those employed in recent work by Daunizeau et al. (2007).
Fig. 1. Graphical illustration of the model assumptions in FIRE. The anatomical regions of
waveforms (top two panels) and the vascular waveforms (bottom two panels) for two
timecourses for two locations in each of the two highlighted regions are shown in blue an
corresponding region-specific waveforms.
However, Daunizeau et al. aim to symmetrically infer brain activities
visible in either EEG or fMRI data, resulting in an extra randomvariable
to model the vascular activity. The confidence of the estimated brain
activation is reduced when there are discrepancies between the EEG
and the fMRI measurements. Furthermore, due to the complexity of
this model, the estimation is limited to a coarse source space,
effectively underutilizing the high spatial resolution provided by
fMRI measurements. Instead of aiming at symmetrical inference, we
focus on the estimation of current sources. We incorporate the fMRI
information to reduce ambiguities in source localization typically
present in E/MEG source estimation.

To fit themodel to the data, we use the coordinate descentmethod,
alternating between the estimation of current sources and that of
other model parameters. This iterative update scheme is similar to the
re-weighted MNE methods, such as the FOCal Underdetermined
System Solver (FOCUSS) (Gorodnitsky and Rao, 1997). In contrast to
the re-weighted MNE, in our method the weights are jointly
determined using both the estimated neural activity and the vascular
activity measured by fMRI. Moreover, the estimates at different time
points influence each other. The computation of the weights is related
to problems arising in continuous Gaussian mixture modeling, which
can be efficiently optimized using the expectation–maximization
(EM) algorithm (Dempster et al., 1977).

This paper extends the preliminary results reported in the
conference paper (Ou et al., 2009c). Here we include detailed
derivations of the inference procedure and a modified version of
FIRE with a different initialization. We also present a more extensive
experimental evaluation, including Monte Carlo simulations and
experiments with human data based on somatosensory and atten-
tion-shift auditory paradigms. In the following, we first discuss the
model underlying FIRE, the inference procedure, and the implemen-
tation details. We then present the experimental comparisons
between FIRE and prior methods for joint E/MEG-fMRI analysis
using both simulated and human data, followed by a discussion and
conclusions.
Methods

In this section, we first present the model assumptions of FIRE by
dissecting its graphical model shown in Fig. 2. We then discuss the
priors, the parameter setting, and the inference procedure to estimate
the current source distribution.
the left hemisphere are depicted in the middle of the figure. Region-specific neural
separate regions are shown in black. Location-specific current timecourses and fMRI
d green. The current timecourses and the fMRI timecourses are scaled versions of the



Fig. 2. Graphical interpretation of FIRE. Circular nodes indicate random variables;
square nodes indicate model parameters. The hidden activity z models the
neurovascular coupling relationship. The hidden current source distribution J is
measured by E/MEG, producing observation Y. F denotes fMRI measurements. Vectors
u and v are the unknown region-specific neural and vascular waveforms, respectively.
The inner plate represents Nk vertices in region k; the outer plate represents K regions.
The bottom left and right plates represent TJ and TF time points in the neural and the
vascular measurements, respectively.
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Neurovascular coupling and data models

We assume that the source space comprisesN discrete locations on
the cortex parceled into K brain regions. We denote the set indexing
the discrete locations in region k by Pk and the cardinality of Pk by Nk.
Hence, the outer plate in Fig. 2 describes K regions, and the inner plate
captures Nk locations in region k.

The shapes of the source timecourses are identical within a region
but may vary across regions. Specifically, we let uk and vk be the
unknown waveforms in region k, associated with the neural and
vascular activities, respectively. Examples uk and vk in two separate
brain regions are illustrated as the black timecourses in Fig. 1. We
model the strengths of neural and the vascular activities through a
hidden vector variable Z=[z1, z2,…, zN]T, where zn indicates the
activation strength at location n on the cortical surface. Thus, the
probabilistic model for the neural activation timecourse jn and the
vascular activation timecourse fn at location n in region k can be
expressed as

p jn; fn jzn;uk; vk;η
2
k ; ξ

2
k

� �
= p jn jzn;uk;η

2
k

� �
p fn jzn;vk; ξ2k
� �

ð1Þ

= N jn; znuk;η
2
k I

� �
N fn; znvk; ξ

2
k I

� �
; ð2Þ

where ηk2 and ξk2 are noise variances. The blue and green timecourses
in Fig. 1 represent examples of jn and fn for two locations within each
region. Note that our neurovascular coupling model captures only the
spatial alignment between the two types of activities; it does not
impose temporal similarity of the signals. The neural timecourses jn
and the vascular signals fn are conditionally independent given the
hidden variable for brain activity zn. Although the parcellation is
optimal when each parcel includes one type of neural and vascular
waveform, our experimental results show that FIRE's performance is
comparable to other methods when multiple waveforms are present
within a parcel.

In themodel description below,we construct all matrices such that
rows represent locations or sensors and columns represent time
points. Thus, we letN×TJmatrix J=[j1, j2,…, jN]T be the hidden neural
current on the cortex for all TJ time points. We assume that the
vascular signal fn at location n is directly observable via fMRI. We let
N×TF matrix F=[f1, f2, …, fN]T be the fMRI measurements on the
cortex at all TF time points.

The neural currents jn detected with E/MEG are characterized by
the standard observation model. We let M×TJ matrix Y=[y(1), y(2),
…, y(TJ)] be the E/MEG measurements at all TJ time points. Column t
of matrix J, j(t), denotes the neural current distribution at time t. The
quasi-static approximation of Maxwell's equations states that E/MEG
signals at time t are instantaneous linear combinations of the currents
at different locations in the source space:

y tð Þ = Aj tð Þ + e tð Þ ∀t = 1;2;…; TJ; ð3Þ

where e(t) is the measurement noise at time t. The M×N forward
matrix A captures the electromagnetic properties of the head, the
geometry of the sensors, and the locations of the sources. Similar to
other source estimation methods, the forward matrix A is assumed to
be known.We assume spatial whitening in themeasurement (sensor)
space so that e(t)∼N (0, I). The number of sources N (∼104) is much
larger than the number of measurements M (∼102), leading to an
infinite number of solutions satisfying Eq. (3) even for e(t)=0. The
plate at the bottom left corner of Fig. 2 corresponds to TJ temporal
samples. In general, jn should be modeled as three timecourses
corresponding to the three Cartesian components of the current.
However, due to the columnar organization of the cortex, we can
further constrain the current orientation to be perpendicular to the
cortical surface and consider a scalar current value at each location.

Priors and parameter settings

To encourage the activation patterns to vary smoothly in space
within a region, we impose a prior on the modulating variables Z.
Specifically, we define z̲={zn}n∈ Pk and assume

p Z; γkf gKk = 1

� �
= ∏

K

k=1
p −zk;γk

� �
= ∏

K

k=1
N 0;γ2

kΓk
� �

; ð4Þ

where the variance γk
2 indirectly models the strength of the activation

magnitude zn in region k, and Γk is a fixed matrix that acts as a
regularizer by penalizing the sum of squared differences between
neighboring locations. This spatial prior is particularly important for
the brain regions where vascular activity is too weak to measure, but
the neural activity can be detected by E/MEG. Without this prior, the
estimated current source may have an unrealistic spatial distribution
due to the ill-posed nature of the E/MEG inverse problem.

Our Γk is similar to the regularizer used in the Low Resolution Brain
Electromagnetic Tomography (LORETA) (Pascual-Marqui et al., 1994),
except that we apply Γk to individual brain regions while LORETA's
spatial regularizer is applied to the whole brain. We assume separate
variance γk

2 for different brain regions since the strength of the
currents is expected to vary significantly between regions with and
without active sources. This choice is similar to the recent work in the
application of ARD to E/MEG reconstruction (Sato et al., 2004; Wipf
and Nagarajan, 2009), except that their work assumes independent
variance γ2 for each location in the brain.

Since the forward matrix A is underdetermined, the current
distribution J produced by our neurovascular couplingmodel can fully
explain the E/MEG data. In other words, without the noise term ηk2

(i.e., jn=znuk), the fMRI data can exert too much influence on the
reconstruction results. Althoughwe can estimate the noise variance of
the current source timecourses ηk2 by extending the inference
procedure, we find the corresponding estimate unstable without a
prior. Based on the preliminary empirical testing, we fix ηk2=1. With
proper temporal whitening of the fMRI data, we can also assume that
ξk2=ηk2. Fixing ηk2=ξk2 helps to significantly reduce the computational
burden of the estimation.

To summarize, our model can be mathematically expressed as

p F;Y; J;Z;Θð Þ = p Y jJð Þp J; F jZ;Θð Þp Z;Θð Þ; ð5Þ

where Θ=[θ1, θ2, …, θK] is the combined set of parameters, and θk=
[uk,vk,γk

2] is the set of parameters for region k. p(Y|J) is the E/MEG data
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model in Eq. (3). As shown in Fig. 2, the E/MEG observation Y is
conditionally independent of other variables given the hidden source
currents J. p(J, F|Z; Θ) is our neurovascular coupling model in Eq. (1),
and p(Z; Θ) is the prior on Z in Eq. (4). Combining these elements of
the joint likelihood model, we obtain

log p Y; J; F;Z;Θð Þ = log p Y jJð Þ + log p J; F jZ;Θð Þ + log p Z;Θð Þ

= ∑
TJ

t=1
logN yðtÞ;AjðtÞ; Ið Þ

+ ∑
K

k=1
∑
Nk

n=1
logN jn; znuk; Ið Þ + logN fn; znvk; Ið Þ½ �

+ ∑
K

k=1
logN −zk;0;γ

2
kΓk
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2

MTJ log 2πð Þ + ∑
TJ

t=1
‖y tð Þ−Aj tð Þ‖2

" #

−1
2
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K

k=1
NkTJ log 2πð Þ+∑

n∈Pk
‖fn−znvk‖

2+ NkTF log 2πð Þ+∑
n∈Pk

‖ jn−znuk‖
2

" #

−1
2
∑
K

k=1
Nk log 2πð Þ + Nk log γ2

k

� �
+ log det Γkð Þð Þ + −z

T
k
Γ−1
k −zk
γ2
k

" #

ð6Þ

where det(⋅) denotes matrix determinant. Note that although the
latent activation strength Z is independent across regions a priori, the
posterior estimates for J, Z, and Θ are spatially dependent due to the
measurements Y.

Inference

Our goal is to estimate the current source J and the timecourses u
and v. A standard inference procedure is to compute the maximum
likelihood (ML) estimate of Θ while jointly considering the current
source distribution J and the activation strength Z as hidden variables,
followed by a maximum a posteriori (MAP) estimation of J. However,
this leads to a computationally intractable algorithm, as we discuss in
Discussion. Instead, we alternate the optimization between estimat-
ing J and estimating Θ. While estimating Θ, we treat the activation
strength Z as an auxiliary variable, and marginalize it out in the
analysis. Our inference procedure can be thus formulated as

J*;Θ*f g = arg max
J; Θ

logp F;Y; J;Θð Þ ð7Þ

= arg max
J; Θ

log∫Zp Y jJð Þp F; J jZ;Θð Þp Z;Θð ÞdZ ð8Þ

= arg max
J; Θ

logp Y jJð Þ + log p F; J;Θð Þ: ð9Þ

In Eq. (9), p(F, J; Θ) acts as the prior for J. Since both J and F are
linear functions of Z, p(F, J; Θ) is a continuous Gaussian mixture
model.

The difficulty in estimating the proposed model from the data is
caused by the interactions between space and time variables, as
reflected by the intersection of the temporal plates and the spatial
plates in Fig. 2. It is easy to see from Eq. (3) that the output of a given
E/MEG sensor is a mixture of signals from the entire source space.
Moreover, F, J, and Y are jointly Gaussian. The correlation between
different time points (i.e., between two E/MEG time points, between
two fMRI time points, and between E/MEG and fMRI time points) is
generally not zero. Hence, the inference must be performed for all
time points and all locations simultaneously. FIRE is thus substantially
more computationally demanding than the standard temporally
independent E/MEG estimation or voxel-wise fMRI analysis that
ignore these dependencies in modeling the observed signals. The
benefit of this increased computational burden is more accurate
inference across time points.
Due to the special structure of our model, we can derive an
efficient gradient descent method with two alternating steps. In the
first step, we fix Θ and derive a closed-form solution for J. In the
second step, we fix J and show that Θ can be efficiently estimated via
the EM algorithm (Dempster et al., 1977).

For a fixed Θ= Θ̂, p(F, Y, J; Θ̂) is a jointly Gaussian distribution. As
shown in Appendix A, the estimate of J is therefore equal to its
conditional mean:

vec Ĵ
� �

= arg max
J

logp F;Y; J; Θ̂
� �

= E J jF;Y; Θ̂
h i

= ΓTW;JΓ
−1
W W; ð10Þ

where WT=[(vec(F))T(vec(Y))T] includes both E/MEG and fMRI
measurements. Operator vec(⋅) concatenates the columns of a matrix
into a vector. ΓW is the covariance matrix of W, and ΓW,J is the cross-
covariance matrix between W and vec(J). Appendix A presents the
detailed derivations for ΓW and ΓW,J. Eq. (10) implies that E/MEG and
fMRI measurements jointly determine the estimate of the neural
activity. This equation is similar to the standard MNE solution
(Hämäläinen et al., 1993), but also includes the correlation between
the observations Y and F and the correlation among different time
points of the neural current J.

For a fixed J= Ĵ, we estimate the parameters Θ:

Θ̂ = arg max
Θ

logp F; Ĵ;Θ
� �

= arg max
Θ

∑
K

k=1
logp fn; ĵn

n o
n∈Pk

; θk

� �
:

ð11Þ

It is easy to see that this optimization can be done for each region
separately:

θ̂k = arg max
θk

logp fn; ĵn
n o

n∈Pk
; θk

� �
∀k = 1;…;K: ð12Þ

As can be seen in Fig. 2, when the current distribution J is fixed, the
E/MEG measurement Y does not provide additional information for
the parameter estimation. Furthermore, each set of parameters θk can
be efficiently estimated using the EM algorithm (Dempster et al.,
1977) by re-introducing the latent variable zk that describes activation
strength of vertices within region k. This method can be thought of as
an extension of the EM algorithm for probabilistic PCA (Tipping and
Bishop, 1999) to two sets of data (Bach and Jordan, 2005).

Specifically, the parameter estimates θ̂k for region k can be
obtained by optimizing the lower bound of the log-probability:

logp fn; ĵn
n o

n∈Pk
; θk

� �
≥∫

−zk
q −zk
� �

logp fn; ĵn
n o

n∈Pk
;−zk; θk

� �
d−zk

−∫
−zk
q −zk
� �

log p q −zk
� �� �

d−zk;

ð13Þ

where q(zk)=p(zk|{fn, jn}n∈ Pk
; θ̃k) is the posterior probability

computed in the E-step, and θ̃k is the estimate from the last EM
iteration. Since {fn, jn̂}n∈ Pk and zk are jointly Gaussian, q(zk) is also a
Gaussian distribution, and the M-step update depends only on the
first- and the second-order statistics of zk. Due to this special
structure, we first derive the M-step, followed by the E-step. To
simplify notation, we use 〈·〉q to denote the expectation with respect
to the posterior distribution q(zk), i.e., 〈·〉q≜E [·|{fn, jn}n∈Pk; θk̃].

In the M-step, we fix q(zk) and optimize the right-hand side of
Eq. (13), and get

θ̂k = arg max
θk

∫
−zk
q −zk
� �

logp fn; ĵn
n o

n∈Pk
; zn; θk

� �
d−zk ð14Þ
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= arg max
θk

Nk vTk fn + uT
k ĵn

� �
〈zn〉q−

Nk

2
vTkvk + uT

kuk

� �
〈z2n〉q

−1
2
〈−zTkΓ

−1
k −zk〉q
γ2
k

−Nk logγ
2
k :

ð15Þ

The detailed derivations of Eq. (15) are shown in Appendix B.
Setting the derivatives of Eq. (15) with respect to the model
parameter vector θk=[uk, vk, γk

2] to zero, we arrive at the update
rules:

ûk←
∑n∈Pk 〈zn〉q ĵn
tr 〈−zk−z

T

k〉q
� � ; v̂k←

∑n∈Pk 〈zn〉qfn

tr 〈−zk−z
T

k〉q
� � ; γ̂2

k←
〈−z

T

k
Γ−1
k −zk〉q
Nk

: ð16Þ

Since the M-step depends only on quantities 〈zkzkT〉q, 〈zk〉q, and
〈zkTΓk−1zk〉q, we only need to evaluate those quantities in the E-step:

〈−z k−z
T
k〉q←

1
γ2
k

Γ−1
k + vTkvk + uT

kuk

� �
I

" #−1

ð17Þ

〈−z k〉q←〈−zk−z
T
k〉q vTk f1 + uT

k ĵ1
� �

;…; vTk fNk
+ uT

k ĵNk

� �h iT ð18Þ

〈−zTkΓ
−1
k −z k

〉q←〈−z k〉
T
qΓ

−1
k 〈−zk〉q + tr Γ−1

k 〈−zk−z
T
k〉q

� �
: ð19Þ

We iterate the EM algorithm until convergence which usually
takes less than ten iterations. We then re-estimate J according to
Eq. (10).

To summarize, the FIRE inference algorithm proceeds as follows:

(i) Initialize Ĵ as the MNE estimate: J(MNE)=AT(AAT+λ2I)−1Y,
where λ2 is the regularization parameter related to the SNR of
the data.

(ii) Repeat until convergence:
1. Compute Θ̂using the EM algorithm:

(a) E-step: construct {q(zk)}k=1
K (Eqs. (17)–(19))

(b) M-step: estimate parameters Θ (Eq. (16))
2. Update Ĵ for Θ= Θ̂ (Eq. (10)).

We also examine FIRE with different initializations. In particular,
we use the fMNE estimate to initialize the algorithm and refer to this
method as fFIRE. The fMNE estimate can be expressed as J(fMNE)=RAT

(ARAT+λ2I)−1Y, where R is a diagonal matrix of size Nwhose values
depend on the thresholded fMRI-SPMs of the corresponding locations.
A standard choice, as proposed in Liu et al. (1998), is 1 for locations
with fMRI activation above a preselected threshold and 0.1 for those
below the threshold.

Implementation

For the computation of the forward matrix A, we need to specify
the E/MEG forward model and the source space. We employ the
single-compartment and the three-compartment boundary-element
models for MEG and EEG forward computations, respectively
(Hämäläinen and Sarvas, 1989; Oostendorp and Van Oosterom,
1989). For combined E/MEG inference we employ the three-
compartment model for both modalities. The source space is confined
to amesh on the cortical surfacewith an approximately 5-mm spacing
between adjacent source space points. The cortical regions for
modeling purposes are defined by parceling the cortical surface
using the FreeSurfer software, resulting in 35 parcels per hemisphere
(Fischl et al., 2002). The boundaries of adjacent parcels are defined
along sulci. We merge adjacent parcels that contain fewer than 30
vertices.
Under the orientation constrain, most forward models A follow a
local orientation convention: the currents flowing outward of the
cortex are considered positive and the currents flowing inward are
viewed as negative. That means if a region includes two sides of a
gyrus, the positive on the two sulcal walls corresponds to currents
flowing in opposite directions. Hence, the local time courses will have
opposite signals violating the assumption of a single time course. In
this work, we set the regional orientation reference to be the largest
left singular vector of the matrix formed by the outward cortical
normals within a region. We then modify the sign of the columns in
the forward matrix A corresponding to vertices based on the angle
between their normal vectors and the reference vector. We reverse
the sign of a column if the angle between the normal and the
reference vector is greater than 90°. To display the estimated current
J⁎, we reverse the sign alternation and display results using the local
orientation convention mentioned above.

We apply the standard preprocessing to fMRI data, then estimate
the hemodynamic response function (HRF) at each voxel with a finite
impulse response regressor covering a 20-s time window using the
FS-FAST software (MGH, Boston, MA). The estimated HRF is used as
the hemodynamic data fn in our model.

For a source space of N∼10,000 vertices and timecourses of
TJ∼100 and TF∼10 samples, FIRE takes less than 20 iterations until the
energy function is reduced by less than 0.1% in the next iteration. In
each iteration of the coordinate descent algorithm, the estimation ofΘ
takes 30 s; the estimation of J takes 4 min on a standard PC (2.8 GHz
CPU and 8 GB RAM), leading to the total run time of approximately
1.5 h. Estimating J involves an inversion of an (MTJ+NTF)×(MTJ+
NTF) dense symmetric matrix ΓW, which is too large to store in
memory. Instead, we employ the conjugate gradient descent method
to solve the corresponding system of linear equations. It usually takes
100 iterations until convergence. Using the same computational
resources, the run time for fARD is shorter since it estimates the
current source distribution at each time point separately, ignoring the
dependencies in the signal across time. The total run time for fARD
with 10 iterations is about 5 min.

Results

We first compare FIRE and fFIRE to MNE, fMNE, and fARD using
simulated data, including three scenarios closely related to those
typically observed in human experiments. We employ a Monte Carlo
procedure to estimate performance statistics for each method. We
then proceed to a comparison of the methods using human E/MEG-
fMRI data from a somatosensory study and an attention-shift auditory
study.

Simulation studies

To simulate MEG measurements, we created two patches on the
cortical surface, with current source orientation along the outward
normal to the cortical surface. As shown in the lateral–occipital view
of the right hemisphere (Fig. 3), patch A contains 20 vertices and is
located in the inferior parietal region. Patch B contains 32 vertices and
is located in the superior parietal region. The selection of the source
patches is independent of the anatomical parcellation used in the
source estimation. The anatomical parcels are used in the inference
only. We simulated neural and vascular timecourses in these two
patches for three different scenarios: no silent activity, silent vascular
activity, and silent neural activity. In the two cases with silent
activities, we kept the activity of patch B unchanged while silencing
neural or vascular activity in patch A. The simulated neural signals are
shown as solid black lines in the rightmost column of Fig. 3. The
activation maps corresponding to the peaks of the two simulated
neural signals are shown in the first column.



Fig. 3. Current source estimates in three scenarios. Lateral–occipital view of the right hemisphere is shown. Patch A and patch B are highlighted in the top left panel; the rest of the
figures follow the same convention. (Top) Neither neural nor vascular activity is silent. (Middle) Vascular activity in patch A is silent. (Bottom) Neural activity in patch A is silent. The
first column illustrates the simulated current distributions with a selected threshold at the peak activations. The next four columns show the estimates from MNE, fMNE, fARD, and
FIRE, respectively, for the time of peak activation for each patch. Hot/cold colors correspond to outward/inward current flow. The rightmost column shows the simulated (black
solid) and the estimated (dashed) timecourses from the most active vertices in patches A and B. The color of the time course matches with those used for the name of the
corresponding method.
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For the forward calculations, we employed the sensor configura-
tion of the 306-channel Neuromag VectorView MEG system used in
our human studies and added Gaussian noise to the signals. The
resulting signals have a SNR of 3 dB, within the typical SNR range of
real MEG data. Since the two patches are close to each other in the
highly folded cortex and they exhibit neural activity during over-
lapping time intervals, it is particularly difficult to obtain accurate
current source estimates for this configuration.

Columns two to five in Fig. 3 depict the current source estimates J⁎

obtained via different methods for the two time points corresponding
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to the peaks of activity. Following Liu et al. (1998), the fMNE
weighting parameters are set to 1 and 0.1 for active and inactive fMRI
locations, respectively. The hyper-parameters for fARD are selected
according to Sato et al. (2004).1 The results from FIRE and fFIRE are
quite similar in this simulation setting. We therefore defer the
evaluation of fFIRE to the Monte Carlo procedure presented later in
this session. Since the estimates from different methods are not
directly comparable in amplitude, the threshold for each method is
chosen to be 1/6 of themaximum absolute value of the corresponding
current source estimates. The rightmost column in Fig. 3 presents the
estimated timecourses (dashed) of the most active vertex, in terms of
energy, in both patches.

No silent activity
As shown in Fig. 3(top), the MNE estimates extend across adjacent

gyri. fMNE, fARD, and FIRE correctly localize the two patches at the
peak activation, but FIRE provides a better estimate of the spatial
extent of the activations. The fARD estimate is unstable, as reflected by
the large fluctuations in the estimated timecourses, especially in patch
B (Fig. 3(top), rightmost column, green).

Silent vascular activity
When the vascular activity in patch A is silent, fMNE shows

excessive bias towards patch B. Without a large weight, the amplitude
of the estimated timecourses (Fig. 3(middle), rightmost column, blue)
in patch A is significantly lower than the corresponding estimates in
patch B. It would be therefore easy tomiss neural activation in patch A
when interpreting the results (column three in Fig. 3(middle)). In
contrast, by combining neural and vascular information in the re-
weighted scheme, FIRE avoids such a bias. Its estimate in patch A
(column five) is similar to that obtained via MNE (column one). Since
the weight for patch B increases and the weight for patch A decreases
during the fARD updates, the estimate in patch B explains the
activation in patch A. As shown in the timecourse panel, the estimated
timecourse in patch B (green) is similar in shape to the simulated
timecourse in patch A (black solid). The change of sign is due to the
fact that the outward normals for patch A and patch B are in
approximately opposite directions.

Silent neural activity
As shown in Fig. 3(bottom), all methods correctly localize the

neural activity in patch B, except for the small false positive in patch A
for fARD. By assigning identical weights to patches A and B, fMNE
estimates a timecourse for patch A (blue) that is noisier than the
corresponding one produced by FIRE (red). FIRE suppresses the
weights for patch A since the current estimates in that patch are close
to zero; its results are closer to the simulations.

Monte Carlo simulation
We repeated the above experiments 100 times for each of the

three scenarios. For each run, the locations of the simulated patches
were randomly selected on the right hemisphere. Due to their spatial
extent, the selected patches are likely to span portions of multiple
anatomical parcels obtained from FreeSurfer: a patch on average
spans 3.5 anatomical parcels. Furthermore, in 30% of the trials in the
simulation, the two selected patches cover the same anatomical
parcel.

When comparing different estimationmethods, we evaluated both
the temporal and the spatial properties of the results. We used the
correlation coefficient between the estimated timecourses and the
ground truth ones, in the two patches separately, to evaluate the
ability of the methods to reproduce the timecourses of the activity
1 We set the fARD parameters according to Eq. (32) of Sato et al. (2004), with
αmin=10−3 and αmax=10 as suggested in the Discussion section of Sato et al. (2004).
Moreover, spatial smoothing is included in fARD.
(Fig. 4, leftmost column). To compare spatial accuracy of the methods,
we computed the receiver operating characteristic (ROC) curve
(Fig. 4, middle column) and the average distance between the
simulated patches and the falsely detected locations (Fig. 4, right
column). To compute the ROC curve, we selected the current
estimates J⁎ at two time points corresponding to the peak activation.
For each time point, we then separately varied the threshold and
compared it with the ground truth to compute the true positive and
false positive rates. To compute the distance to false positives, we
varied the false positive rate, and computed the average distance
between the falsely detected vertices and the ground truth activation
patches.

We first focus on the temporal correlation (Fig. 4, left column). For
the three scenarios, FIRE and fFIRE achieve the highest temporal
correlation (approximately 0.65), for patches exhibiting both neural
and vascular activities (rows 1–3 and 5). The combination of static
fMRI-SPM and the shrinkage prior in the ARD framework causes
unstable timecourse estimates, reflected in low temporal correlation
for fARD. When the patch exhibits neural activity, but no vascular
activity, the temporal correlations are similar across all source
estimation algorithms we examined (approximately 0.55).

The ROC curves (Fig. 4, middle column) demonstrate that fARD,
fMNE, and fFIRE achieve similar detection accuracy for patches
exhibiting both neural and vascular activities. When a patch shows
neural activity, but no vascular activity, all algorithms have similar
detection accuracy. As shown in the right column of Fig. 4, the falsely
detected locations obtained fromMNE, FIRE, and fFIRE tend to be close
to the ground truth patches. In contrast, the falsely detected locations
for fARD are relatively far away from the simulated patches, 5 to 6 cm
on average. The standard error decreases as the false positive rate
increases as there are more false positives involved in the computa-
tion of the average distance. Among all algorithms that we examined,
fFIRE provides the best trade-off between the spatial and the temporal
accuracy.

We analyzed separately the performance of the 30% of the trials
where the two source patches are located within the same anatomical
parcel. Since the two activations are close to each other in space, the
current estimation is particularly challenging in this case. We see
significant reduction in performance across all methods, and their
performance becomes more similar: the temporal correlation coeffi-
cients are 0.16 for MNE and fMNE, and 0.18 for FIRE and fFIRE; at false
positive rate 0.005, the true positive rates are 0.20 for fMNE and fFIRE,
0.13 for FIRE, and 0.06 for MNE. We observe that the results for FIRE
and fFIRE are quite robust with respect to the choice of anatomical
parcellations. Although FIRE and fFIRE use a less-than-optimal
parcellation in these 30% trials, the performance is equivalent to
that of MNE and fMNE.

Human experiments

We also tested the method using human experimental data. E/MEG
and fMRI measurements were obtained in separate sessions. The MEG
data were acquired using a 306-channel Neuromag VectorView MEG
system; the EEG data were acquired simultaneously with a 70-channel
MEG-compatible EEG system. A 200 ms baseline before the stimulus
was used to estimate the noise covariance matrix of the MEG sensors
andEEGelectrodes. fMRIdatawereobtainedwith a3 T SiemensTimTrio
scanner. Anatomical images, from a 3 T scanner, were used to construct
the source space and the forward model. Informed consent in
accordance with theMassachusetts General Hospital ethical committee
was obtained from subjects prior to participation.

Median-nerve experiments
Themedian nerve at the right wrist was stimulated according to an

event-related protocol, with a random inter-stimulus-interval ranging
from 3 to 14 s. This stimulus activates a complex cortical network



Fig. 4. Performance statistics in the three scenarios. Left: the correlation coefficients between the estimated timecourses and the ground truth ones in patch A (top) and patch B
(bottom). Middle: the ROC curves evaluated at the peak activation of the two patches. Right: the average distance from the simulated patches to the falsely detected locations.
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(Hari and Forss, 1999), including the contralateral primary somato-
sensory cortex (cSI) and bilateral secondary somatosensory cortices
(cSII and iSII).

An average MEG signal, computed from approximately 100 trials,
was used as the input to each method. In this experiment, EEG data
were not acquired. The fMRI images were acquired using a Siemens
3 T scanner (TR=1.5 s, 64×64×24, 3×3×6 mm3, single channel
head coil).

In the leftmost column in Fig. 5, the approximate locations for cSI
(solid), cSII (dashed), and iSII (dashed) are highlighted on the fMRI
activation maps (p≤0.005 uncorrected). Given the expected activa-
tions, we partitioned the contralateral activation into two regions,
separately covering cSI and cSII. Note that in the noisy SPM, the sites of
fMRI activations do not exactly agree with the locations of the
expected current sources.

Columns two to five in Fig. 5 present the estimates at 75 ms after
stimulus onset. At this time, cSI, cSII, and iSII should be activated. The
threshold was set separately for each hemisphere since the activation
in iSII is much weaker than that in cSI and cSII. For each method, the
threshold is set to be 1/6 of the maximum absolute value of the
corresponding current estimates. MNE produces a diffuse estimate,
including physiologically unlikely activations at the gyrus anterior to
the cSI area. In contrast, FIRE and fFIRE pinpoint cSI to the post-central
gyrus. With the prior knowledge from fMRI, the detected cSII and iSII
activations using fMNE, fARD, FIRE, and fFIRE are within the expected
areas. The fMNE and fARD show stronger weighting toward the fMRI,
reflected by the activations in the temporal lobes. fFIRE further detects
activation in the visual area, the middle temporal area (MT) of the left
hemisphere. This false detection is primarily caused by the strong
activation in this area present in the initialization for fFIRE. Due to the
highly folded nature of the cortex and uncertainties in MRI-fMRI
registration, fMRI cannot distinguish between the walls of the central
sulcus and the post-central sulcus, causing both walls to show strong
vascular activity after mapping of the fMRI volume onto the cortex.
Hence, fMNE, fARD, FIRE, and fFIRE estimates extend to both sulcal
walls.

Attention-shift auditory experiments
An auditory attention task was utilized to investigate activations

elicited by occasional attention shifting cues during dichotic stimu-
lation. These activations were presumed to spread from the primary
auditory cortex (Heschl's gyrus, HG) to surrounding association areas
within the superior temporal plane (superior temporal gyrus, STG;
planum temporale, PT) (Ahveninen et al., 2006; Hart et al., 2002;
Rauschecker, 1998) and the superior temporal sulcus (STS) (Altmann
et al., 2008; Lu et al., 1992; Williamson et al., 1991) before extending
Fig. 5. Human median-nerve experiments. In the first column, approximate locations for cS
(p≤0.005). Columns two to five show the current estimates obtained via MNE, fMNE, fARD,
outward/inward current flow.
to higher-order parieto-frontal areas associated with attention
shifting. Functional characterization of different subregions of the
auditory cortex has been difficult in humans. In this experiment, we
focus on the performance of each source estimation method in
characterizing different activation patterns in the auditory cortex.

Three subjects were recruited for this study, and their task was to
press a button upon hearing a target stimulus (quarter-tone or
semitone deviants among standard tones) in the designated ear and
to ignore sounds in the opposite ear. The stimulus of interest was an
occasional “novel” buzzer sound that instructed the subject to shift
attention to the cued ear. During E/MEG acquisition, the cue was
presented after every 30 s. During fMRI acquisition, attention shifting
cues were presented between clustered EPI acquisitions, after every
other TR.

An averageMEG signal, computed from approximately 40 trials, was
used as the input to eachmethod. In a separate session, sparse-sampling
(Hall et al., 1999) auditory fMRI data was acquired with a block design
(3 T Siemens TimTrio, TR=11.7 s, TE=30ms; 48 axial slices 2.25 mm
thick, 0.75 mm gap, 3×3 mm2 in-plane). Each run was composed of
three blocks, and each block consisted of two active stimulation periods
(11.7 s each) interleaved with one silent baseline period (11.7 s).

The top panel in Fig. 6 shows the fMRI activation maps (p≤0.0005
uncorrected), with approximate locations for HG and STS areas
highlighted. In this noisy SPM, some strong vascular activity appears
in unexpected locations.

The bottom panel of Fig. 6 presents the current source estimates at
92, 125, and 225 ms after stimulus onset for different methods. The
threshold is set to be 1/6 of the maximum absolute value of the
corresponding current estimates, similar to other experiments
presented in this section. Similar to the previous experiments, the
results obtained from MNE are too diffuse, especially for the late time
frames. The detected areas using fARD are spatially sparse. fMNE, FIRE,
and fFIRE produce physiologically sound estimates. Compared to fMRI,
FIRE and fFIRE remove several diffuse activation areas in MNE results;
the resulting estimates are more similar to fMRI-SPM. Both FIRE and
fFIRE consistently retain the anterior-frontal area, which is present in
MNE but not in fMRI-SPM, indicating that the vascular activation in
this area is too weak for the fMRI measurements.

We further analyzed the estimated timecourses in Heschl's gyrus
(HG) and the STS (Fig. 7). The neural timecourses in the auditory
cortex estimated using different methods are similar, with the peak
time at 92 ms (Fig. 7(a)). However, MNE, fMNE, and fARD cannot
distinguish the later activity in STS from the early activity in HG,
reflected in a strong estimated activation before 100 ms in the STS
timecourses. In contrast, FIRE and fFIRE differentiate activations in
these two areas, detecting the activation in STS that peaks at
I (solid), cSII (dashed), and iSII (dashed) are highlighted on the fMRI activation maps
FIRE, and fFIRE respectively, at 75 ms after the stimulus onset. Hot/cold colors indicate



Fig. 6. Human attention-shift auditory experiments. The top panel shows the fMRI activation maps associated with the attention left-shifting task (p≤0.0005). The bottom panel
shows the current estimates obtained via MNE, fMNE, fARD, FIRE, and fFIRE at 92, 125, and 225 ms after stimulus onset, respectively. Hot/cold colors indicate outward/inward
current flow.
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approximately 120 ms. The results for the other two subjects we
analyzed are similar to those presented here. Their early auditory
activation in HG peaks at 93 and 97 ms, and STS peaks at 120 and
111 ms, respectively.

Discussion

The coupling between the spatial and temporal domains in the
joint E/MEG-fMRI analysis has restricted many previous models to
operate on a coarse source space. The use of a regional neurovascular
coupling model proposed in this paper reduces the computational
burden, leading to a tractable reconstruction on a densely sampled
source space, similar to that typically used in MNE.

In practice, it is often necessary to use slightly different experimental
designs for fMRI and MEG. In this work, we used two types of
Fig. 7. Estimated neural activity timecourses at the auditory cortex and STS using
different methods.
experiments to test FIRE: (a) a somatosensory experiment with
identical MEG and fMRI paradigms and (b) an auditory experiment,
whichprovides anexample of a situationwhere exactmatching fMRI vs.
MEG paradigms may be suboptimal. Specifically, in the auditory
experimentwe used a blocked sparse-sampling fMRI design tomitigate
acoustical scanner noise; adding similar interleaved EPI noise/silent
baseline periods would have made the corresponding MEG measure-
ment simply too long for the subjects. These experimental designswere
based on previous studies (Ahveninen et al., 2006; Jääskeläinen et al.,
2004). Although the general activation patterns are the same across
different modalities, we expect that minor discrepancies remain. Thus,
the question on how well we can deal with such differences using FIRE
depends on the underlying theoretical neurophysiological assumptions.
One of the major advantages of FIRE is that its underlying generative
model does not force perfect match in activations (Eq. (1)), avoiding
excessive bias toward fMRI information.

As mentioned earlier, a more standard inference procedure for our
graphical model would jointly consider J and Z as latent variables in
the EM framework, while maximizing the log likelihood with respect
to the model parameters Θ. Since [J, Z] and the measurement are
jointly Gaussian given the model parameters Θ, the posterior
probability distribution of the latent variables [J, Z] is also Gaussian,
leading to a closed-form update. Similar to the derivations in Eq. (16),
the M-step updates depend on the first- and second-order statistics of
the latent variables, computed in the E-step. Since J is not fixed in this
EM procedure, the estimate at each location depends on the estimate
at all other locations in the source space, as opposed to the region-
based estimation in Eq. (12) when J is fixed. Computing the second-
order statistics involves solving NTJ+N systems of linear equations,
each of which is of size NTF+MTJ. In other words, we need to apply
the conjugate gradient solver NTJ+N times, exacerbating thememory
and runtime requirements for the procedure similar to the bottleneck
step in our coordinate descent approach (Step ii-2 in the algorithm
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summary). Therefore, treating both J and Z as hidden variables is
infeasible except for an extremely coarse discretization of the source
space. Similarly, it is currently computationally infeasible to compute
the variance of vec(Ĵ), since it requires applying the conjugate
gradient solver NTJ times. Instead of the variance of the estimate,
we provide an alternative way to study the sensitivity of the solver
through Monte Carlo simulations.

The estimation of uk and vk is closely related to the Canonical
Correlation Analysis (CCA), which seeks vectors for projecting two
high dimensional data sets ({ĵn}n Pk and {fn}n Pk in our case) to a low
dimensional space so as to maximize the correlation coefficient
between the resulting projection coordinates. The probabilistic
interpretation of CCA, established in Bach and Jordan (2005), offers
a generative perspective on the method. Moreover, the probabilistic
interpretation also helps to naturally extend the CCA model by
incorporating prior information such as prior distributions on the
waveforms U and V.

Since the cost function is not convex, our method depends on the
initialization. MNE estimate is a reasonable choice for initialization
since it is unbiased while fMNE is a good alternative as MNE estimates
may be too diffuse in certain brain regions. Moreover, maximizing the
cost function does not necessarily correspond to the best ROC
performance. For the Monte Carlo simulation trials where value of
the likelihood achieved by fFIRE is greater than that of FIRE, the ROC
performance of fFIRE is often better than that of FIRE. A good ROC
performance indicates the results are close to the ground truth, but it
is not perfectly correlated with the likelihood values, which are based
on an approximate model inference.

The results reported above are based on Freesurfer parcellation
with 35 parcels per hemisphere. We also tried another parcellation
provided by FreeSurfer with 85 parcels per hemisphere, and the
resulting detection accuracy is similar to those obtained using the 35
parcel setting. For the estimated timecourses, the results using the 85
parcel setting is slightly less stable compared to the results computed
using the 35 parcel setting, reflected by a slightly smaller correlation
coefficient between the estimated timecourses and the ground truth
timecourses. FIRE is also compatible with a data-driven parcellation.
However, this approach may create an undesirable bias due to the use
of the data in both parcel generation and current estimation. This bias
can be avoided if the data-driven parcellation is obtained using a
separate independent functional data set.

Our neurovascular coupling model is designed for fixed-orienta-
tion current estimates, since the latent-variable model assumes that
the spatial concordance of neural and vascular activities is character-
ized by a scalar. For free-orientation current estimates, the neurovas-
cular coupling model would have to be adjusted to handle the
correspondence between the current flow in three directions and a
single vascular activation timecourse at a certain location. Moreover,
FIRE assumes a single activation waveform pair, u and v, in a region.
The validity of this assumption depends on the size of the region and
the distance between two activation sources. We cannot easily extend
FIRE to multiple activation waveform pairs per region, since such an
extension does not capture the fact that the shape of the vascular
activation timecourses from two distinct sources is often highly
similar but the neural processes are different. In the situation where
there are two distinct current sources in one region, our preliminary
results demonstrate that FIRE can localize the two current sources, but
the estimated timecourses are combinations of the true timecourses.
We defer the extension for free-orientation estimate and the
extension for multiple activation sources per region to future work.

Conclusions

In contrast to most joint E/MEG-fMRI models, we explicitly take
into account the inherent differences in the data measured by E/MEG
and fMRI, allowing for common situations in real experiments where
either neural or vascular activity is silent. The current source
estimates can be computed efficiently with an iterative procedure
which bears similarity to the re-weighted MNE methods, except that
the weights are based on both the current estimates in the last
iteration and the fMRI data via the proposed spatial neurovascular
coupling model. This construction of the weights reduces the
excessive sensitivity to fMRI present in many joint E/MEG-fMRI
analysis methods and leads to more accurate current estimates as
demonstrated by our experimental results with both simulated and
human data.
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Appendix A

In this Appendix, we describe the estimation procedure for J based
on the standard jointly Gaussian distribution. As mentioned before,W
and J are jointly Gaussian. For fixed Θ̂, if we define

W = fT 1ð Þ;…; fT TFð Þ; yT 1ð Þ;…; yT TJ
� �h iT

; ð20Þ

then

W∼N 0; ΓWð Þ = N 0;
ΓF ΓF;Y

ΓTF;Y ΓY

" # !
ð21Þ

where ΓX,Y are the covariance matrix of the corresponding random
variables X and Y. Furthermore,

WT
; jT 1ð Þ;…; jT TJ

� �h iT∼N 0;
ΓW ΓW;J

ΓTW;J ΓJ

" # !
: ð22Þ

Here, we only show the derivations of the covariancematrices for a
single region (K=1). The extension to multiple regions is straight-
forward. Based on the definition of covariance, we obtain

ΓF = vvT + ξ2ITF
� �

⊗IN

ΓY = uuT + η2ITJ
� �

⊗AAT + IMTJ

ΓF;Y = vuT
� �

⊗AT

ΓW;J = vuT
� �

⊗IN ; uuT + η2ITJ
� �

⊗A
h i

ð23Þ

where IN indicates an identity matrix of size N. Eq. (25) assumes a
normalized E/MEG sensory noise with unit variance. Matrix Kro-
necker product ⊗ stems from the interactions between space and
time in the model.

We can then express the conditional distribution p(J|W) using the
Bayes' rule:

p vec Jð Þ jWð Þ = p W; vec Jð Þð Þ
p Wð Þ = N ΓTW;JΓ

−1
W W; ΓJ−ΓTW;JΓ

−1
W ΓW;J

� �
:
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Appendix B

In this Appendix, we derive the M-step for estimating Θ. When Ĵ is
fixed, we employ the EM algorithm to optimize the model parameters
θk=[uk, vk, γk] for each region separately:

θ̂k = arg maxθk∫−zk
q −zk
� �

logp fn; ĵn
n o

n∈Pk
; zn; θk

� �
d−zk ð24Þ

= arg max
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q −zk
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n o
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Eq. (25) is obtained with parameter setting ηk2=ξk2=1 as
discussed in Methods. Therefore, we only need to updates 〈zn〉q,
〈zn

2〉q, and 〈zkTΓk−1zk〉q in the E-step. By equating the derivatives of
Eq. (26) with respect to uk, vk, and γk

2 to zero, we obtain the M-step
updates in Eq. (16).
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