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Abstract. In this paper, we study Markov Random Fields as spatial
smoothing priors in fMRI detection. Relatively high noise in fMRI im-
ages presents a serious challenge for the detection algorithms, creating a
need for spatial regularization of the signal. Gaussian smoothing, tradi-
tionally employed to boost the signal-to-noise ratio, often removes small
activation regions. Recently, the use of Markov priors has been suggested
as an alternative regularization approach. In this work, we investigate
fast approximate inference algorithms for using MRFs in fMRI detec-
tion, propose a novel way to incorporate anatomical information into
the detection framework, validate the methods through ROC analysis on
simulated data and demonstrate their application in a real fMRI study.

1 Introduction

Functional magnetic resonance imaging (fMRI) provides a non-invasive dynamic
method for studying brain activation by capturing the change in the blood oxy-
genation level. Most fMRI detection algorithms operate by comparing the time
course of each voxel with the experimental protocol, labelling the voxels whose
time courses correlate significantly with the protocol as “active”. The commonly
used general linear model (GLM) [9] further assumes that the fMRI signal pos-
sesses linear characteristics with respect to the stimulus and that the temporal
noise is white. Application of GLM to an fMRI time series results in the so-called
statistical parametric map (SPM), which is often thresholded to produce a bi-
nary map of active areas. However, because of a low signal-to-noise ratio (SNR),
the binary maps typically contain many small false positive islands.

A common approach to reducing such false detections employs a Gaussian
filter to smooth the fMRI signal prior to applying the GLM detector. Unfortu-
nately, Gaussian smoothing, though intended to combat low SNR, leads to overly
smoothed SPMs and a loss of detail in the resulting binary activation maps. A
number of alternative approaches have explicitly incorporated spatial and tempo-
ral correlations into the estimation procedure. Examples include autoregressive
spatio-temporal models [4, 24], Markov Random Fields (MRFs) [5, 8, 7], Bayesian
models inferring hidden psychological states [15], adaptive thresholding methods
that adjust statistical significance of active regions according to their size, based
on the Gaussian Random Field theory [10]. In this paper, we focus on MRFs
for modeling spatial coherency, study their performance and develop several in-
creasingly rich spatial prior models. Following the formulation in [5], we assume
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that, given the activation state of each voxel, the time courses of different voxels
are conditionally independent and can be reduced to a sufficient statistic. This
work therefore concentrates on spatial regularization of the activation maps.
Temporal regularization models can be easily incorporated into our framework
by changing the activation statistic.

For MRFs with binary states, exact solution can be obtained in polyno-
mial time. An fMRI detection algorithm based on the GLM statistic and the
binary activation states was demonstrated in [5]. However, if one wants to go
beyond binary states (e.g., treating positively and negatively activated voxels
differently), the problem of estimating the optimal activation states becomes in-
tractable and approximation algorithms must be used. Prior work in MRF-based
fMRI detection employed simulated annealing [8, 21] and the iterated conditional
mode algorithm [22]. We adopt the Mean Field solver, introduced in statistical
physics [18], which has been widely used for image segmentation [16, 17, 20, 25].
In our experiments with binary MRFs, the Mean Field algorithm produced re-
sults comparable to those of the exact solver while reducing computation time
by one to two orders of magnitude1.

We further refine the activation priors by incorporating anatomical informa-
tion. Similarly to segmentation, where a probabilistic atlas serves as a spatially
varying prior on the tissue types, the anatomical information can provide a
prior on the activation map. Intuitively speaking, we want the prior to reflect
the fact that activation is much more likely to occur in gray matter than in
white matter, and not at all in cerebrospinal fluid (CSF) or bone. In addition,
the spatial coherency of activation is strong within each tissue and not across
tissue boundaries. In this model, the hidden nodes encode both the tissue type
and the activation state. Segmentation provides an additional, potentially noisy,
observation at each node. We derive the detection algorithm for this model and
evaluate it on simulated and real data, achieving high detection accuracy with
significantly shorter time courses compared to the standard GLM detector.

Anatomical scans have certainly been used in fMRI analysis and visualization
before. Hartvig [14] used the anatomical information in his marked point pro-
cess spatial prior. Moreover, in some systems (e.g., BrainVoyager [1]), the sub-
ject’s anatomical image is transformed into a standard coordinate frame (such
as Talairach) and the functional activation map is displayed on the surface that
corresponds to the cortical sheet in that coordinate frame. Other systems (e.g.,
FSL [2]) rely on sophisticated segmentation algorithms to extract a topologically
correct representation of the cortical surface from the anatomical scan [6]. Per-
forming Gaussian smoothing on the surface eliminates irrelevant voxels from the
weighted average for the cortical locations. In contrast, our approach does not
require a surface extraction algorithm, but instead utilizes anatomical informa-
tion to inject the anatomically based coherency bias into the detection algorithm

1 We also experimented extensively with the Belief Propagation algorithm, which often
produces better approximations, but did not find it to be more accurate in this
application. We therefore present the results of the Mean Field solution only.
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while performing the computation directly on the volumetric data. The inspira-
tion for this work comes from the success enjoyed by MRFs in providing spatial
smoothing priors for image segmentation [16, 17, 20, 25].

In the next section, we briefly outline how the GLM detector can be aug-
mented with an MRF prior closely following the derivation presented in [5], re-
view the Mean Field algorithm, and present the empirical evaluation of the
detector on simulated data. In Section 3, we extend the Markov priors to in-
corporate the anatomical information and show the empirical evaluation of this
new, refined model. Section 4 illustrates the proposed detectors on a real fMRI
data set.

2 Markov Priors for Activation Maps

Background. An fMRI scan contains a time course yi ∈ R
T for each voxel i

(i = 1, ..., N), where T is the number of time samples and N is the number of
voxels in the scan. GLM models the fMRI signal as a linear combination of the
protocol-dependent component B, and the protocol-independent component A,
such as cardiopulmonary factors. The presence of the protocol-dependent signal
indicates that the corresponding voxel is active due to the stimulus. Let H1 be
the hypothesis that a voxel is active and H0 be the null hypothesis. Under GLM,

H0 : yi = Aαi + εi H1 : yi = Aαi + Bβi + εi

for i = 1, ..., N . For white temporal noise, εi ∼ N (0, σ2
i I). Least squares esti-

mates of the activation response βi and the protocol-independent factors αi are
found through a linear regression on the design matrix C = [A B]:

[α̂i β̂i] = (CTC)−1CTyi, (1)

and the corresponding F-statistic is given by Fi = β̂T
i Σ̂−1

βi
β̂i/Nβ, where Nβ is the

number of the regression coefficients in βi and Σ̂βi
is their estimated covariance.

Let random variable X = [X1, ...,XN ] represent an activation configuration
of all voxels in the volume, and x = [x1, ..., xN ] be one possible configuration i.e.,
the activation map. In the case of binary hypothesis testing, the random variable
Xi, which represents the activation state of voxel i, is also binary. Given an
fMRI scan [y1, ...,yN ], the GLM estimate of the activation map x∗ is obtained
by thresholding the statistic value Fi for all voxels in the volume at a certain
user-specified level.

It can be shown that the maximum log-likelihood ratio

zi = log
maxαi,βi,σ2

i
p(yi|H1)

maxαi,σ2
i
p(yi|H0)

= log
maxαi,βi,σ2

i
N (yi;Bβi + Aαi, σ

2
i I)

maxαi,σ2
i
N (yi;Aαi, σ2

i I)
(2)

is a monotonic function of the F statistic (see [5] for a detailed derivation). We
can therefore consider zi as an alternative statistic indicative of the activation
state of voxel i. We will use this fact in the derivations of the MRF-based de-
tection. If a different model of fMRI activation is proposed, it can be easily
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incorporated into our algorithm by formulating the corresponding maximum
log-likelihood ratio and using it in place of zi.

Markov Priors. A Markov prior on the activation configuration X, PX(x) =
1
λ

∏
<i,j> Ψij(xi, xj)

∏
i Ψi(xi), is defined in terms of the singleton potentials Ψi(xi)

that provide bias over state values xi for voxel i, and the pairwise potentials
Ψij(xi, xj) (often referred to as the compatibility matrices) that evaluate the
compatibility of voxel i being in state xi and voxel j being in state xj for each
pair < i, j > of neighboring voxels. λ is a normalization constant, also called the
partition function. Given the activation statistic values z, we seek the maximum
a posteriori (MAP) estimate of the activation configuration:

x∗ = arg max
x

PX|Z(x|z) = arg max
x

PX,Z(x,z) = arg max
x

PX(x)PZ|X(z|x)

= arg max
x

1
λ

∏
<i,j>Ψij(xi, xj)

∏
iΨi(xi)PZi|Xi

(zi|xi) (3)

The last equality is based on the assump-
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Z1 Z2

X4 X3

X1 X2

Fig. 1. Graphical model for PX ,Z

tion that the observations at different vox-
els are independent given the activation
state of each voxel, and the likelihood
over the volume can therefore be written
as a product of the individual likelihood
terms for each voxel. Fig. 1 depicts the
corresponding graphical model, using a
two-dimensional grid for illustration pur-
poses only. The estimation is performed
fully in 3D in all experiment reported here. We assume a spatially stationary gen-
erative model, i.e., PZi|Xi

, Ψi, and Ψij are identical for all voxels in the volume.
The observations (the fMRI signal, and in Section 3, the anatomical information)
move the MAP estimate away from the spatially stationary configurations.

Direct search for the optimal activation configuration is intractable in gen-
eral. However, a polynomial-time algorithm for exact MAP estimation exists for
binary MRFs [13], based on a reduction to the Minimum-Cut-Maximum-Flow
problem. We refer to this exact solver as Min-Max throughout this paper. Min-
Max is still computationally intensive when applied to the volumetric data: in
our experiments, it took 1-3 hours, depending on the pairwise potential settings
and the initial threshold applied to the GLM statistic. On the other hand, the
Mean Field approximation for MRFs is fast (ten to hundred times faster than
Min-Max on the 3D grids we consider in this paper) and reasonably accurate,
as our results in the remainder of this section indicate.

Mean Field Solution. The Mean Field algorithm approximates PX |Z (x|z)

by a product distribution Q(x) =
∏

i bi(xi) through minimization of the KL-
Divergence between the two distributions:

D(Q||PX|Z) =
∑

xQ(x) log(Q(x)) − ∑
xQ(x) log(PX|Z(x|z)) (4)
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bi(xi) denotes the probability of voxel i being in state xi (often called the belief),
therefore

∑M
xi=1 bi(xi) = 1, where M is the number of possible states of Xi. The

KL-Divergence measures how closely Q approximates PX |Z ; it is non-negative
and is equal to zero only for Q = PX |Z . It is easy to see that the minimum of
D(·) is achieved for the same state configuration x that minimizes the so called
free energy, FMF = D(Q||PX |Z )) − log(PZ (z)) − log(λ), since the last two terms of
the latter function are independent of x. Substituting the product form for Q,
we obtain,

FMF (b) = −∑
i

∑
j∈N (i)

∑M
xi=1

∑M
xj=1bi(xi)bj(xj) log(Ψij(xi, xj))

+
∑

i

∑M
xi=1bi(xi)

[
log(bi(xi)) − log(PZi|Xi

(zi|xi)Ψi(xi))
]

(5)

Setting ∂FMF (b)/∂bi = 0 under the constrains
∑M

xi=1 bi(xi) = 1 ∀i yields the
following iterative update rule:

bt+1
i (xi) ← γ PZi|Xi

(zi|xi) Ψi(xi) e
∑

j∈N(i)
∑ M

xj=1 bt
j(xj) log Ψij(xi,xj) (6)

The normalization constant γ ensures the solution is a valid probability distri-
bution. N (i) is the set of voxel i’s neighbors. In each iteration of the Mean Field
algorithm, the voxel’s belief is updated according to the linear combination of its
neighbors’ beliefs in the previous iteration. The probability model (i.e., PZi|Xi

,
Ψi, and Ψij) determines the exact form of the update rule. Each voxel is assigned
the state value with the highest belief at the end of the procedure (for binary
MRFs, the voxel is set active if bi(1) > bi(0)).

Estimating Model Parameters. The potential functions Ψi, and Ψij and
the observation likelihood PZi|Xi

must correspond to our notions of the appro-
priate bias toward desired solutions. In this work, we follow a common prac-
tice of setting the potential functions (same for all voxels) to the corresponding
marginal probability distributions estimated from data: Ψi(xi) is set to the ex-
pected percentage of voxels in state xi, Ψij(xi, xj) is set to the joint frequency
of the states xi and xj , and PZi|Xi

is approximated by a smoother version of a
class-conditional histogram. Other forms of potential functions have also been
explored [7, 11, 12].

Lack of training data or ground truth necessary for estimating the marginal
frequencies is a more serious problem. Unlike the segmentation application,
where manual segmentations by experts can be used to construct priors on
the frequencies and co-occurrences of tissue types, in most fMRI experiments
even the experts cannot provide such information. Model parameters in the cur-
rently used detectors are either set using researcher’s intuition on the underlying
activation properties (e.g., the threshold in GLM or the kernel width in Gaus-
sian smoothing) or estimated from the input images (e.g., the noise variance in
GLM). We take a similar approach of first running the GLM detector without
smoothing and using the resulting SPM at a user-chosen threshold to estimate
the probability model. To study the sensitivity of the method to the parameter
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Fig. 2. ROC curves for different smoothing techniques, at two noise levels. False posi-
tive rate is shown on the log scale

settings, we ran experiments where the values of the singleton potentials and
the compatibility matrices varied substantially (0.1 to 2 times the estimated
frequencies). The variability in the detection accuracy (3-7%) was within the
variability across different data sets as reported below.

Empirical Evaluation. To quantitatively evaluate the performance of the
method, we generated realistic phantom data by applying EM segmentation [19]
to an anatomical MRI scan and placing activation areas of variable size (average
diameter of 15mm) randomly in the gray matter. We then downsampled the
scan to an fMRI resolution. The gray matter voxels represent 10% of the total
number of voxels in the volume, and the active voxels represent about 10%
of the gray matter voxels in these images. We then created simulated fMRI
scans based on a fixed parametric hemodynamic response function, an event-
related protocol, and varying levels of noise. We used the estimated SNR, ŜNR =
−10 log10(|Bβ̂|2)/σ̂2, to determine a realistic level of the simulated noise as the
true SNR is unaccessible for real fMRI scans. Since the signal and the noise
overlap in some frequency bands, part of the noise energy is assigned to the
estimated signal during detection. The estimated SNR is therefore an optimistic
approximation of the true SNR, which can still be used as a monotonic upper
bound of the true SNR. In our real fMRI studies, the estimated SNR is about
-5dB. Here, we illustrate the results for two levels of true SNR, -6dB and -9dB,
which correspond to estimated SNR of -4.3dB and -6.2dB respectively.

In all experiments, we used the same GLM detector based on a 10-bin non-
parametric hemodynamic response function. To create a baseline for comparison,
we ran the GLM detector with and without Gaussian smoothing. To evaluate
the Markov priors, we ran GLM coupled with the exact Min-Max solver and
with the approximate Mean Field solver on the same raw images. Fig. 2 shows
the ROC curves created for the four methods by varying the threshold applied
to the GLM statistic. Due to the large number of voxels in the volume and the
relatively small number of active voxels, only very low false positive rates are
of interest (we focus on the false positive rates below 0.1%, which corresponds
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to about 10% of the total number of the active voxels, or approximately 250
voxels). The error bars indicate the standard deviation of the true detection rate
over 15 different, independently created and processed, data sets. The Min-Max
ROC curve does not have the error bars, as the estimation takes too long (1
to 3 hours for a single run). Moreover, the Min-Max ROC curve is incomplete
because extreme threshold values cause it to run even longer (we stopped the
runs after 3 hours).

The Mean Field detection accuracy is very close to the exact Min-Max solu-
tion, providing a reasonable approximation to the exact solution that also takes
much less time to compute (most Mean Field runs finished in a few minutes).
The Min-Max accuracy is sometimes lower than the Mean Field accuracy, which
appears to contradict the optimality of Min-Max. However, we note that both
algorithms solve a particular estimation problem that does not necessarily de-
scribe the ground truth precisely but rather approximates it using a Markov
model. Thus, the lowest energy state under this model might not be the best
detector in practice. It is still reassuring to see that the approximate solver per-
forms as well as the exact algorithm. It also suggests that more realistic spatial
priors could further improve the detection accuracy.

As expected, the accuracy of all methods improves with increasing SNR. At
high noise levels (low SNR), Gaussian smoothing outperforms MRFs. As the
simplest smoothing technique, Gaussian smoothing is more robust to noise. We
also believe that our current way of constructing the likelihood term in the
MRF model over-emphasizes the data evidence over the prior. We are inves-
tigating ways to compensate for this in the estimation of the model. As the
SNR increases, MRFs provide better regularization of the activation state (for
example, at SNR=-6dB, at the false positive rate of 0.01%, the MRF outper-
forms the Gaussian smoothing by about 15% in true detection accuracy; at 70%
true detection, the MRF approximately halves the false detections compared to
the Gaussian smoothing). With the improving scanning technology, we believe
MRFs will become even more helpful in reducing spurious false detection islands.

3 Anatomical Priors for Spatial Regularization

The general nature of the Mean Field
Z1 Z2

W1 W2

Z4

W3

Z3

U4 U3

U1 U2

W4

Fig. 3. Graphical model for PU ,Z ,W

algorithm allows straightforward exten-
sion of the probabilistic model in the pre-
vious section to include the tissue type
for each voxel. We define V = [V1, ..., VN ]

to be the tissue types of all voxels, and
W = [W1, ..., WN ] the tissue type obser-
vations, such as a result of an automatic
segmentation procedure. Wi’s are noisy
observations due to imperfect registra-
tion between the fMRI image and the anatomical scan, the mismatch in their
resolution and the noise in the segmentation itself. Now each voxel has two
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hidden attributes: the activation state Xi and the tissue type Vi. We combine
these attributes into a single hidden node Ui, as illustrated in Fig. 3. For exam-
ple, for a binary activation states (active or not active) and three tissue types
(gray matter, white matter, or other), Ui has six possible states. Similarly to the
derivations in the previous section, the MAP estimate in this case is as follows:

u∗ = arg max
u

PU |Z,W (u|z,w) = arg max
u

PU (u)PZ|U (z|u)PW |U (w|u)

= arg max
u

1
λ

∏
<i,j>Ψij(ui, uj)

∏
iΨi(ui)PZi|Ui

(zi|ui)PWi|Ui
(wi|ui) (7)

We assume that the segmentation W and the fMRI observation Z are condi-
tionally independent given the state of the voxel since they are obtained from
two different images. Similarly to the previous section, we derive the iterative
update step in the estimation procedure:

bt+1
i (ui) ← γPWi|Ui

(wi|ui)PZi|Ui
(zi|ui)Ψi(ui)e

∑
j∈N(i)

∑ M
uj=1 bt

j(uj) log Ψij(ui,uj)

(8)
This update rule is similar to Eq. (6), with the exception of the extra likelihood
term PWi|Ui

(wi|ui) for the tissue type observation. The compatibility matrix
Ψij(xi, xj) is M × M , where M is the number of states in Ui.

Empirical Evaluation. We used the same phantom data sets described ear-
lier to evaluate the performance of the anatomically-guided detectors. The basic
GLM with anatomical prior suppresses activations outside of the gray matter
using segmentation as a guidance (“soft” masking could also account for mis-
registration and errors in segmentation). To incorporate the anatomical infor-
mation into the Gaussian filter, we adjust the weights of the filter based on the
tissue types of the voxel’s neighbors: when evaluating the filter at voxel i, we
assign higher weights to the neighbors sharing the same segmentation results as
voxel i. Fig. 4 illustrates the ROC analysis for the three regularization methods
investigated in the previous section (solid lines) and their anatomically-based
variants (dashed lines). We omit the Min-Max solver for the MRF model, as it
cannot handle multi-valued states.

In addition to the trends observed before, we note that the anatomical in-
formation significantly boosts the performance of all detectors at all noise lev-
els. At high noise levels (SNR = -9dB) and false positive rates between 0.01%
and 0.1%, all methods gain at least 10% in true detection rate when using
the anatomical information. The MRF model benefits more than the Gaussian
smoothing, but its detection accuracy is still lower. At the lower noise level
(SNR = -6dB), the basic GLM detector augmented with anatomical informa-
tion approaches the performance of the Gaussian smoothing. At 0.01% false pos-
itive rate, the anatomically-guided MRF outperforms the anatomically-guided
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Fig. 4. ROC curves for different smoothing techniques augmented with the anatomical
information, at two noise levels. False positive rate is shown on the log scale

Gaussian smoothing by about 15% in true detection rate, achieving over 90%
detection accuracy. The large boost experienced by the basic GLM when aug-
mented with anatomical information is easy to understand: since false detections
occur relatively uniformly throughout the volume, masking the gray matter im-
proves the performance substantially.

In addition to the quantitative analysis presented above, we find it useful
to visually inspect the resulting activation maps. Fig. 5 illustrates the detec-
tion results by showing one axial slice of the estimated activation map. The
top image shows the phantom activation areas that were placed in the volume
and used to generate the simulated fMRI scan. The middle and the bottom
rows show the same slice in the reconstructed volume at two different noise
levels. All the reconstructions were performed at 0.05% false positive rate. In
other words, each image in Fig. 5 shows one slice in the reconstructed volume
that corresponds to a point on the ROC curve of the respective detector at
0.05% false positive rate.

The basic GLM produces a fragmented activation map that contains a num-
ber of false detection islands at high SNR and shows very little of the original
activation at low SNR. Given either of these maps, the users would have troubles
inferring the true activation areas and disambiguating them from spurious false
detections. The Gaussian smoothing leads to a reasonable estimate of the ground
truth. Gaussian smoothing tends to make the detections “spherical”, which may
change the shape of the detected activations. The smoothing effectively over-
estimates the extent of the regions. Consequently, many false positive voxels
in the Gaussian smoothing occur at the boundaries of the activation regions.
Imposing anatomical information reduces this over-smoothing effect for some of
the areas. At low SNR (-9dB), the MRF model fills in many of the active pixels
that were missed by the GLM, but as we saw before, it does not produce as
accurate result as Gaussian smoothing. At higher SNR (-6dB), MRF produces
a relatively accurate result. Not all of the scatter activation islands are removed
through regularization, but the activation map looks more similar to the ground
truth. The activation map is further improved when the anatomical information
is incorporated into the model.
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Ground Truth

No Smoothing Gaussian Gaussian + Ana MRF MRF + Ana

SNR = -9dB
No Smoothing Gaussian Gaussian + Ana MRF MRF + Ana

SNR = -6dB

Fig. 5. One slice from estimated activation maps for the same ground truth at 0.05%
false positive rate. True and false detections are shown in yellow. The on-line version
shows true and false detections in different colors

4 Real fMRI Experiment

In real fMRI experiments, the ground truth is unavailable, and ROC analysis
is not possible. Instead, we visually compare the resulting activation maps pro-
duced by different detectors to evaluate their performance on reduced-length
time courses. This effectively evaluates the ability of each method to reconstruct
the true activation areas with less evidence on the strength of the signal.

In this fMRI study [23], the original scans were obtained during an auditory
“two-back” word experiment. Each experiment consisted of five rest epochs and
four task epochs, each epoch 30 seconds long. In the rest condition, the subjects
were instructed to concentrate on the noise of the scanner and lie still. In the task
condition, the subjects were presented with a series of pre-recorded single-digit
numbers, one number every three seconds. The subjects were asked to tap their
index finger to the thumb when hearing a number that was the same as the one
spoken two numbers before. The experiment was repeated ten times for each sub-
ject. The anatomical images were acquired on a 1.5 Tesla GE signa clinical MR
scanner (T1-weighted SPGR, 256×256, 124 slices, 1.5mm slice thickness). The
EPI images were acquired on the same scanner (axial, TR/TE=2500/50msec,
FA90, 64×64, 24 slices, 6mm slice thickness, no gap). The original study contains
nine subjects, but for the purposes of voxel-by-voxel comparison of the detectors,
we present the results for one subject across all detectors. The estimated SNR
when averaging over all voxels in the brain was -4.7dB (-2.3dB when averaging
voxels in selected ROIs relevant to the task).
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(a) No smoothing (long) (c) Gaussian (e) MRF

(b) No smoothing (d) Gaussian + Ana (f) MRF + Ana

Fig. 6. Real fMRI study. One slice in the estimated activation map. (a) No spatial
smoothing, using the entire time course. (b)-(f) Estimation based on the first five
epochs of the time course using different spatial smoothing methods

Fig. 6a shows one axial slice in the reconstructed activation map using GLM
without any spatial smoothing on the full-length fMRI signal (all 9 epochs).
The ground truth for this scan is unknown, but we can use this map as a vi-
sual reference when evaluating the performance of the detectors on the time
course of reduced length. For example, Fig. 6b shows the result of applying the
same GLM detector to the first 5 epochs of the time course. This map is more
fragmented due to loss in SNR from reducing the length of the signal. The
other four images illustrate the results of applying GLM with the Gaussian
smoothing and the MRF priors, as well as their anatomically augmented ver-
sions. Although Gaussian smoothing removes most of the single voxel activation
islands, its activation map (Fig. 6c) is an overestimate compared with Fig. 6a.
Anatomical weighting slightly reduces the overestimate in the Gaussian smooth-
ing. MRF regularization (Fig. 6e,f) yields reconstruction results that are close to
the activation map estimated from the full-length signal, but do not look overly
smoothed. This highlights the potential benefit of using the Markov priors in
fMRI detection. Similarly to the Gaussian smoothing, the MRF model benefits
from using anatomical information to remove spurious activations.

5 Discussion and Conclusions

Our experiments confirm the importance of spatial regularization in reducing
fragmentation of the activation maps. This paper investigates two improvements
in spatial modelling for fMRI detection: Markov priors and anatomical bias. An
MRF provides a spatial prior that refines the structure of the resulting acti-
vation map over the Gaussian smoothing, as demonstrated by our experiments
on phantom and real data. In this work, we explored fast approximate solvers
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in application to MRF-based fMRI detection and showed that they provide rea-
sonably accurate approximations to the exact solution while taking substantially
less time to evaluate. We also note that since the Markov model itself is an ap-
proximation of the real geometry of the activation regions, we should not dwell
on the small differences in the activation maps introduced by the approximate
solvers but rather focus on their performance relative to the ground truth.

A separate insight of this paper is that we can use anatomical information to
bias the fMRI detector. Gaussian smoothing can be straightforwardly augmented
with the anatomical prior by rescaling the coefficients of the smoothing kernel.
Moreover, we derived an algorithm for anatomically-guided MRF estimation.
One of the problems that should be investigated in the future is the partial
voluming effects. The anatomical information comes at much higher resolution
than the fMRI signals. Right now, we downsample the anatomical scan to match
the resolution of the functional scan. A better solution would be to use the high-
resolution anatomical scans to resolve the activation in the functional voxels that
are on the boundary of the gray matter, leading to a “super-resolution” detector.

We evaluated the methods on phantom data by performing ROC analysis
and on real data by studying their ability to recover activation from signifi-
cantly shorter time courses. While in high noise settings the Gaussian smoothing
outperformed other methods, as the SNR in the images increased, the Markov
priors offered a substantial improvement in the detection accuracy. Using this
smoothing prior enabled us to shorten fMRI scan length by half while retaining
the detection power comparable with the full-length fMRI scan. We expect a
similar effect to occur with respect to the spatial resolution when we extend the
method to utilize the anatomical information at the original scan resolution. As
the quality of the scanning equipment improves, the sophisticated spatial mod-
els, such as MRFs, will become even more important in recovering the details of
the activation regions.
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