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Abstract. We propose a novel method, fMRI-Informed Regional Esti-
mation (FIRE), which utilizes information from fMRI in E/MEG source
reconstruction. FIRE takes advantage of the spatial alignment between
the neural and the vascular activities, while allowing for substantial dif-
ferences in their dynamics. Furthermore, with the regional approach,
FIRE can be efficiently applied to a dense grid of sources. Inspection
of our optimization procedure reveals that FIRE is related to the re-
weighted minimum-norm algorithms, the difference being that the
weights in the proposed approach are computed from both the current
estimates and fMRI data. Analysis of both simulated and human fMRI-
MEG data shows that FIRE reduces the ambiguities in source localiza-
tion present in the minimum-norm estimates. Comparisons with several
joint fMRI-E/MEG algorithms demonstrate robustness of FIRE in the
presence of sources silent to either fMRI or E/MEG measurements.

Keywords: EEG, MEG, fMRI, Inverse Problem, Expectation-
Maximization.

1 Introduction

The principal difficulty in interpreting Electroencephalography (EEG) and mag-
netoencephalography (MEG) data stems from the ill-posed electromagnetic in-
verse problem: infinitely many spatial current patterns give rise to identical
measurements [10]. Additional assumptions on the spatial current patterns must
be incorporated into the reconstruction process to obtain a unique estimate [3].

In addition to the general assumptions about the spatial current patterns such
as minimum energy (or �2-norm), specific prior knowledge about activation lo-
cations can be obtained from other imaging modalities. Among them, functional
Magnetic Resonance Imaging (fMRI) provides the most relevant information for
the reconstruction due to its good spatial resolution. fMRI measures the hemody-
namic activity, which indirectly reflects the neural activity measured by E/MEG.
Extensive studies of neurovascular coupling have demonstrated similarity in spa-
tial patterns of these two types of activations [13]. However, the timecourses of
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the neural and the vascular activities differ substantially, and their exact rela-
tionship is yet to be characterized in full. In addition to the differences in their
physiological origins, E/MEG and fMRI have different sensitivity characteristics.
For example, a brief transient neural activity may be difficult to detect in fMRI
while sustained weak neural activity may lead to relatively strong fMRI signals
but might have a poor signal-to-noise ratio in E/MEG.

The most straightforward way to incorporate fMRI information into E/MEG in-
verse estimation is the fMRI-weightedMinimum-NormEstimation (fMNE), [1,12].
This method uses a thresholded Statistical Parametric Map (SPM) from fMRI
analysis to constructweights for the standardMinimum-NormEstimation (MNE),
leading to significant improvements when the SPM is accurate. However, the
weights depend on arbitrary choices of the threshold and weighting parameters.
Moreover, these weights are assumed to be time independent causing excessive
bias in the estimated source timecourses. Sato et al. [15] combined the Automatic
Relevance Determination (ARD) framework and fMNE to achieve more focal esti-
mates. In this method, which we will refer to as fARD, the parameters of a hyper-
prior are set based on the thresholded SPM. In addition to the arbitrary choice of
the threshold similar to that in fMNE, the estimates computed via fARD are often
unstable, especially in the regions where the vascular activity is weak.

Here, we propose a novel method, the fMRI-Informed Regional Estimation
(FIRE), to improve the accuracy of the E/MEG source estimates. Since the
relationship between the dynamics of the evoked neural and the evoked vascular
signals is largely unknown, we only model the similarity of spatial patterns in the
two processes, as opposed to the Kalman-filter approach in [6]. Furthermore, we
expect that the shape of the activation timecourses varies across brain regions,
especially for the neural activation timecourses. To account for this fact, FIRE
treats the temporal dynamics in different brain regions independently. In other
words, there is no constraint imposing similarity of the activation timecourses
across regions. We assume the shape of the activation timecourses to be constant
within a brain region, modulated by a set of location-specific latent variables. The
regions are chosen based on subject-specific cortical parcellation [7]. Handling the
temporal dynamics of the two types of activities separately while exploiting their
common spatial pattern helps to preserve the temporal resolution of E/MEG and
to achieve accurate source localization.

The prior on the latent variables encourages spatially smooth current esti-
mates within a brain region. The prior also encourages the number of activated
regions to be small, similar to the ARD approach [17], except that our prior is
region-based rather than location-based. Both the activation timecourse model
and the choice of brain regions in FIRE are similar to those employed in recent
work by Daunizeau et al. [4]. However, Daunizeau et al. aim to symmetrically
infer brain activities visible in either EEG or fMRI data, resulting in an extra
random variable to model the vascular activity. The confidence of the estimated
brain activities reduces when there are discrepancies between the EEG and
the fMRI measurements. Furthermore, due to the complexity of this model,
the estimation is limited to a coarse source space. Instead of aiming at a
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symmetrical inference, we focus on the estimation of current sources. We incor-
porate the fMRI information to reduce ambiguities in source localization usually
present in E/MEG source estimation.

To fit the model to the data, we use the coordinate descent method, alternat-
ing between the estimation of current sources and of other model parameters.
This iterative update scheme is similar to the re-weighted MNE methods such
as FOCal Underdetermined System Solver (FOCUSS) [8]. In contrast to the re-
weighted MNE, in our method the weights are jointly determined using both the
estimated neural activity and the vascular activity measured by fMRI. Moreover,
the estimates at different time points influence each other. The computation of
the weights is related to problems arising in continuous Gaussian mixture mod-
eling, which can be efficiently optimized using the Expectation-Maximization
(EM) algorithm [5].

In the following, we first discuss the model underlying FIRE, the inference
procedure, and the implementation details. We then present the experimental
comparisons between FIRE and prior methods for joint E/MEG-fMRI analysis
using both simulated and human data, followed by a discussion and conclusions.

2 Methods

2.1 Neurovascular Coupling and Data Models

We assume that the source space comprises N discrete locations on the cortex
parcelled into K brain regions. We denote the set indexing the discrete locations
in region k by Pk and the cardinality of Pk by Nk.

Fig. 1 illustrates our model. The shape of the source timecourses is identical
within a region but varies across regions. Specifically, we let uk and vk be the

Fig. 1. Graphical interpretation of FIRE. The hidden activity z models the neurovas-
cular coupling relationship. The hidden current source distribution J is measured by
E/MEG, producing observation Y. F denotes fMRI measurements. Vectors u and v
are the unknown neural and vascular waveforms in a certain brain region, respectively.
The inner plate represents Nk vertices in region k; the outer plate represents K regions.
The bottom left and right plates represent TJ and TF time points in the neural and
the vascular measurements, respectively.
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unknown waveforms in region k, associated with neural and vascular activities,
respectively. We model the neural and the vascular activity strength through a
hidden vector variable z = [z1, z2, · · · , zN ]T. The continuous scalar zn indicates
the activation strength at location n on the cortical surface. Thus, the proba-
bilistic model for the neural activation timecourse jn and the vascular activation
timecourse fn at location n in region k can be expressed as

p
(
jn, fn|zn;uk,vk, η2

k, ξ2
k

)
= N

(
jn; znuk, η2

kI
)
N

(
fn; znvk, ξ2

kI
)
, (1)

where η2
k and ξ2

k are noise variances. We construct all matrices such that each
row represents a location or a sensor and each column represents a particular
time point. Thus, we let N × TJ matrix J = [j1, j2, · · · , jN ]T be the neural cur-
rent on the cortex for all TJ time points. We assume that the vascular signal
fn at location n is directly observable through fMRI. We let N × TF matrix
F = [f1, f2, · · · , fN ]T be the fMRI measurements on the cortex over TF time
points. Note that our neurovascular coupling model captures only the spatial
alignment between the two types of activities; it does not impose temporal sim-
ilarity between the signals.

The neural currents jn are detected with E/MEG described by the standard
observation model. We let M × TJ matrix Y = [y(1),y(2), · · · ,y(TJ)] be the
E/MEG measurements at all TJ time points. Column t of matrix J, j(t), denotes
the neural current distribution at time t. The quasi-static Maxwell’s equations
imply that E/MEG signals at time t are instantaneous linear combinations of
the currents at different locations:

y(t) = Aj(t) + e(t) ∀ t = 1, 2, · · · , TJ, (2)

where e(t) is the measurement noise. The M×N forward matrix A is determined
by the electromagnetic properties of the head, the geometry of the sensors, and
the locations of the sources. With spatial whitening in the sensor space, e(t) ∼
N (0, I). The number of sources N (∼ 103−104) is much larger than the number
of measurements M (∼ 102), leading to an infinite number of solutions satisfying
Eq. (2) even for e(t) = 0. In general, jn should be modeled as three timecourses
corresponding to the three Cartesian components of the current. However, due
to the columnar organization of the cortex, we can further constrain the current
orientation to be perpendicular to the cortical surface and consider a scalar
timecourse at each location.

2.2 Priors and Parameter Settings

To encourage the activation patterns to be smooth within a region, we impose
a prior on the modulating variables. Specifically, we define zk = {zn}n∈Pk

and
assume zk ∼ N (0, γ2

kΦk), where the variance γ2
k indicates the activation strength

in region k, and Φk is a fixed matrix that acts as a regularizer by penalizing the
sum of squared differences between neighboring locations. This spatial prior is
particularly important for the brain regions where vascular activity is too weak
to measure, but the neural activity can be detected by E/MEG.
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Our Φk is similar to the regularizer used in the Low Resolution Brain Electro-
magnetic Tomography (LORETA) [14], except that we apply Φk to individual
brain regions while LORETA’s spatial regularizer is applied to the whole brain.
We assume separate variance γ2

k for different brain regions since the strength of
current is expected to vary significantly between regions with and without active
sources. This choice is similar to the recent work in the application of ARD to
E/MEG reconstruction [15,17], except that their work assumes independent γ2

for each location in the brain.
Since the forward model A is underdetermined, the current distribution J,

produced by our neurovascular coupling model, can fully explain the E/MEG
data. In other words, without the noise term η2

k (i.e., jn = znuk), the fMRI data
can exert too much influence on the reconstruction results. Although we can
estimate the noise variance of the current source timecourses η2

k by extending
the inference procedure, we find the corresponding estimate unstable without
a prior. Based on preliminary empirical testing, we fix η2

k = 1. With proper
temporal whitening of the fMRI data, we can also assume that ξ2

k = η2
k. Fixing

η2
k = ξ2

k helps to significantly reduce the computational burden of the estimation.
To summarize, our model can be mathematically expressed as

p(Y,J,F, z;Θ) = p(Y|J)p(J,F|z;Θ)p(z;Θ), (3)

where Θ=[θ1, θ2, · · · , θK ] is the combined set of parameters, and θk ={uk,vk,γ2
k}.

p(Y|J) is the E/MEG data model in Eq. (2). p(J,F|z;Θ) is our neurovascular
coupling model in Eq. (1), and p(z;Θ) is the prior on z. Therefore,

log p(Y,J,F, z;Θ) =
∑TJ

t=1 logN (y(t);Aj(t), I)+∑K

k=1

∑Nk

n=1 log
[
N

(
jn; znuk, η2

kI
)
N

(
fn; znvk, ξ2

kI
)]

+
∑K

k=1 logN
(
zk;0, γ2

kΦk

)
.

2.3 Inference

Our goal is to estimate the current source J and the timecourses u and v. We
treat the activation strength z as an auxiliary variable, and marginalize it out
in the analysis. We formulate the inference as

{J∗, Θ∗} = arg max
J, Θ

log p(Y,J,F;Θ)

= arg max
J, Θ

log
∫
z

p(Y,J,F, z;Θ)dz = argmax
J, Θ

log
(
p(Y|J)p(J,F;Θ)

)
.

(4)
With marginalization of z, p(J,F;Θ) acts as the prior for J. Since both J and
F are linear functions of z, p(J,F;Θ) is a continuous Gaussian mixture model.

The difficulty in inference with the proposed model is caused by the intertwin-
ing between space and time, reflected by the intersection of the temporal plates
and the spatial plates in Fig. 1. That is because the output of a given E/MEG
sensor is a mixture of signals from the entire source space. Hence, the inference
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must be performed for all time points and all locations simultaneously. FIRE
is thus substantially more computationally demanding compared to standard
temporally independent E/MEG estimation and voxel-wise fMRI analysis.

Due to the special structure in our model when one set of variables is fixed,
we can derive an efficient gradient descent method with two alternating steps.
In the first step, we fix Θ and derive a closed-form solution for J. In the second
step, we fix J and show that Θ can be efficiently estimated through the EM
algorithm. Section 5 discusses an alternative approach to this inference problem.

For a fixed Θ = Θ̂, p(Y,J,F; Θ̂) is a jointly-Gaussian distribution. Thus, the
estimate of J is the conditional mean:

Ĵ = arg max
J

log p(Y,J,F; Θ̂) = E
[
J|Y,F; Θ̂

]
= ΓT

w,JΓ
−1
w w,

(5)

where wT =
[
(vec(Y))T (vec(F))T

]
includes both E/MEG and fMRI measure-

ments. Operator vec(·) concatenates adjacent columns of a matrix. Γw is the
covariance matrix of w, and Γw,J is the cross-covariance matrix between w and
vec(J). Thus, E/MEG and fMRI measurements jointly determine the estimate
of the neural activity. Eq. (5) is similar to the standard MNE solution [10], but
it also includes the correlation between Y and F and the correlation among
different time points of J.

For a fixed J = Ĵ, we optimize the parameters Θ:

Θ̂ = arg max
Θ

log p(Ĵ,F;Θ).
(6)

As shown in Fig. 1, when the current distribution J is fixed, the E/MEG measure-
ment Y does not provide additional information for the parameter estimation.
Since the parameters for different regions are independent for a fixed Ĵ, the esti-
mates for different regions can be obtained independently. Furthermore, param-
eter Θ can be efficiently estimated using the EM algorithm by re-introducing the
latent variable z, which is the auxiliary variable describing activation strength.
This method can be thought of as an extension of the EM algorithm for prob-
abilistic PCA [16] to two sets of data [2]. For region k, the parameter estimates
θ̂k can be obtained by optimizing the lower bound of the log-probability:

log p
(
{̂jn, fn}n∈Pk

; θk

)
≥

∫
zk

q(zk) log p
(
{̂jn, fn}n∈Pk

, zk; θk

)
dzk,

(7)

where q(zk) = p
(
zk|{ĵn, fn}n∈Pk

; θ̂k

)
is the posterior probability computed in

the E-step. Since {ĵn, fn}n∈Pk
and zk are jointly-Gaussian distributed for a fixed

θ̂k, q(zk) is also a Gaussian distribution. We use 〈·〉q to denote the expectation

with respect to the posterior distribution q(zk), i.e., 〈·〉q�

[
·|{ĵn, fn}n∈Pk

; θ̂k

]
.

Since the M-step depends only on quantities related to the first- and the second-
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order statistics of zk, we only need to update those quantities in the E-step:

〈zkzT
k 〉q ←

[
1
γ2

k

Φ−1
k +

(
uT

k uk + vT
k vk

η2
k

)
I
]−1

〈zk〉q ←
〈zkzT

k 〉q
η2

k

[(
uT

k ĵ1 + vT
k f1

)
, · · · ,

(
uT

k ĵNk
+ vT

k fNk

)]T

〈zT
k Φ−1

k zk〉q ← 〈zk〉
T
q Φ−1

k 〈zk〉q + tr
(
Φ−1

k 〈zkzT
k 〉q

)
.

In the M-step, we fix q(zk) and optimize Eq. (7). With some algebra, we arrive
at the update equations for the model parameters:

ûk ←

∑
n∈Pk

〈zn〉q ĵn
tr(〈zkzT

k 〉q)
, v̂k ←

∑
n∈Pk

〈zn〉qfn
tr(〈zkzT

k 〉q)
, and γ̂2

k ←
〈zT

k Φ−1
k zk〉q

Nk

.
(8)

We iterate the EM algorithm until convergence which usually takes less than ten
iterations. We then re-estimate J according to Eq. (5).

To summarize, the algorithm proceeds as follows:

(i) Initialize Ĵ as the MNE estimate.
(ii) Until convergence:

1. Compute Θ̂ using the EM algorithm: E-step for the hidden variable z
followed by M-step for the model parameters Θ.

2. Update Ĵ according to Eq. (5) for Θ = Θ̂.

3 Implementation

For the computation of the forward matrix A, we need to specify the E/MEG for-
ward model and the source space. We employ the single-compartment boundary-
element model for the MEG forward computations [9]. The source space is
confined to a mesh on the cortical surface with approximately 5-mm resolution,
corresponding to about 5000 vertices per hemisphere.

The functional regions are defined by parceling the cortical folding pattern
using the FreeSurfer software, resulting in 35 parcels per hemisphere [7]. The
boundaries of adjacent parcels are defined along sulci. We merge adjacent parcels
that contain fewer than 30 vertices. Our neurovascular coupling model requires
an orientation reference for each brain region. Here, we set the orientation refer-
ence to be the largest left singular vector of the matrix formed by the outward
cortical normals within a region.

We apply the standard preprocessing to fMRI data, then estimate the hemo-
dynamic response function (HRF) at each voxel with a 15-bin finite impulse
response regressor covering a 20-s time window using the FS-FAST software
(MGH, Boston, MA). The estimated HRF is used as fn in our model. For a
source space of N ∼ 104 vertices and timecourses of TJ ∼ 102 and TF ∼ 101

samples, FIRE takes less than 20 iterations until the energy function reduces
less than 0.1% from the energy of the previous iteration. In each iteration of
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the coordinate descent algorithm, the estimate of Θ takes 30 seconds, while the
estimate of J takes 4 minutes on a standard PC (2.8 GHz CPU and 8 GB RAM),
leading to the total run time of approximately 1.5 hours. Estimating J involves
an inversion of an (MTJ + NTF) × (MTJ + NTF) dense symmetric matrix Γw,
which is too large to store in memory. Instead, we employ the conjugate gradient
descent method to solve the corresponding system of linear equations. It usually
takes 100 iterations until convergence.

4 Results

We first compare FIRE to MNE, fMNE, and fARD using simulated data. We then
extend the comparison to human MEG and fMRI data from a somatosensory
study.

4.1 Simulation Studies

To simulate MEG measurements, we created two patches on the cortical sheet,
with current source orientation along the outward normal to the cortical surface.
Shown in the lateral-occipital view of the right hemisphere (Fig. 2), Patch A
contains 20 vertices and is located in the inferior parietal region. Patch B contains
32 vertices and is located in the superior parietal region. We simulated neural and
vascular timecourses in these two patches for three different scenarios: no silent
activity, silent vascular activity, and silent neural activity. In the two cases with
silent activities, we kept the activity of patch B unchanged while silencing neural
or vascular activity in patch A. The simulated neural signals are shown as solid
black lines in the rightmost column of Fig. 2. The activation maps corresponding
to the peaks of the two simulated neural signals are shown in the first column.

For the forward calculations, we employed the sensor configuration of the
306-channel Neuromag VectorView MEG system used in our human studies and
added Gaussian noise to the signals. The resulting signals have a SNR of 3 dB,
within the typical SNR range of real MEG data. Since the two patches are close in
the highly folded cortex and they exhibit neural activity during overlapping time
intervals, it is particularly difficult to obtain accurate current source estimates.

Columns two to five in Fig. 2 depict the current estimates using different
methods. Following [12], the fMNE weighting parameters are set to 1 and 0.1
for active and inactive fMRI locations, respectively. Since the estimates from
different methods are not directly comparable in amplitude, the threshold for
each method is chosen to be 1/6 of the maximum absolute value of the cor-
responding current estimates J∗. The rightmost column in Fig. 2 presents the
estimated timecourses (dashed) of the most active vertex, in terms of energy, in
both patches.

No Silent Activity. As shown in Fig. 2(a), the MNEs extend across adjacent
gyri. fMNE, fARD, and FIRE correctly localize the two patches at the peak
activation, but FIRE provides a better estimate of the spatial extent of the
activations. The fARD estimate is unstable, as reflected by the large fluctuations
in the estimated timecourses in patch B (green).
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Silent Vascular Activity. When the vascular activity in patch A is silent,
fMNE shows excessive bias towards patch B. Without a large weight, the ampli-
tude of the estimated timecourses (blue) in patch A is significantly lower than
the corresponding estimates in patch B. It would be therefore easy to miss neural
activation in patch A when interpreting the results (column three in Fig. 2(b)).
In contrast, by combining neural and vascular information in the re-weighted
scheme, FIRE avoids such a bias. Its estimate in patch A (column five) is similar
to that obtained from MNE (column one). As the weights for patch B increase
and the weights for patch A decrease in the fARD update, the estimate in patch
B explains the activation in patch A. As shown in the timecourse panel, the
estimated timecourse in patch B (green) is similar in shape to the simulated
timecourse in patch A (black solid). The change of sign is due to the fact that
the outward normals for patch A and patch B are in approximately opposite
directions.

Silent Neural Activity. As shown in Fig. 2(c), all methods can correctly
localize the neural activity in patch B, except for the small false positive in
patch A for fARD. By assigning identical weights to patches A and B, fMNE
estimates a timecourse for patch A (blue) that is noisier than the corresponding
one produced by FIRE (red). FIRE suppresses the weights for patch A since
the current estimates in that patch are close to zero; its results are closer to the
simulations.

4.2 Median-Nerve Experiments

We also tested the method using human experimental data. The median nerve
at the right wrist was stimulated according to an event-related protocol, with a
random inter-stimulus-interval ranging from 3 to 14 s. This stimulus activates a
complex cortical network [11], including the contralateral primary somatosensory
cortex (cSI) and bilateral secondary somatosensory cortices (cSII and iSII).

MEG and fMRI data were acquired in separate sessions. The MEG measure-
ments were acquired using a 306-channel Neuromag VectorView MEG system.
A 200-ms baseline before the stimulus was used to estimate the noise covariance
matrix of the MEG sensors. An average signal, computed from approximately
100 trials, was used as the input to each method. The fMRI images were acquired
using a Siemens 3T machine (TR=1.5 s, 64×64×24, 3×3×6mm3, single channel
head coil). Anatomical images, from a 3T scanner, were used to construct the
source space and the forward model.

In the leftmost column in Fig. 3, approximate locations for cSI (solid), cSII
(dashed), and iSII (dashed) are highlighted on the fMRI activation maps (p ≤
0.005). Given the expected activations, we partitioned the post-central region
into two regions, separately covering cSI and cSII. Note that in the noisy SPM,
the sites of fMRI activations do not exactly agree with the locations of the
expected current sources.

Columns two to five in Fig. 3 present the estimates at 75 ms after stimulus
onset, during which cSI, cSII, and iSII should be activated. The threshold was
set separately for each hemisphere since the activation in iSII is much weaker
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(b) Silent vascular activity in patch A
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(c) Silent neural activity in patch A

Fig. 2. Current source estimates in three scenarios. Lateral-occipital view of the right
hemisphere is shown. Patch A and patch B are highlighted in the top left panel; the
rest of the figures follow the same convention. (a) Neither neural nor vascular activity
is silent. (b) Vascular activity in patch A is silent. (c) Neural activity in patch A is
silent. The first column illustrates the simulated current distributions with a selected
threshold at the peak activations. The next four columns show the estimates from MNE,
fMNE, fARD, and FIRE. Hot/cold colors correspond to outward/inward current flow.
The rightmost column shows the simulated (black solid) and the estimated (dashed)
timecourses from the most active vertices in patch A (top) and B (bottom) for the
corresponding methods.
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fMRI MNE fMNE fARD FIRE

Fig. 3. Human median-nerve experiments. In the first column, approximate locations
for cSI (solid), cSII (dashed), and iSII (dashed) are highlighted on the fMRI activation
maps. Columns two to five show the current estimates obtained via MNE, fMNE, fARD,
and FIRE at 75 ms after stimulus onset. Hot/cold colors indicate outward/inward
current flow.

than that in cSI and cSII. For each method, the threshold is set to be 1/6 of
the maximum absolute value of the corresponding current estimates. MNE pro-
duces a more diffuse estimate, including physiologically unlikely activations at
the gyrus anterior to the cSI area. In contrast, FIRE pinpoints cSI on the post-
central gyrus. With the prior knowledge from fMRI, the detected cSII and iSII
activations using fMNE, fARD, and FIRE are within the expected areas. The
fMNE and fARD show stronger weighting towards the fMRI, reflected by the
activations in the temporal lobes. Due to the highly folded cortex and uncertain-
ties in MRI-fMRI registration, fMRI cannot distinguish between the walls of the
central sulcus and the post-central sulcus, causing both walls to show strong vas-
cular activity after mapping of the fMRI volume onto the cortex. Hence, fMNE,
fARD, and FIRE estimates extend to both sulcal walls mentioned above.

5 Discussion

The coupling of spatial and temporal domains in the joint fMRI-E/MEG analysis
constrained many previous models to operate on a coarse source space. The use
of region-based neurovascular coupling model proposed in this paper reduces the
computational burden, leading to a tractable reconstruction in a densely sampled
source space similar to that typically used in MNE. Since the objective function
is not convex, FIRE depends on the initialization. We believe MNE estimate is
a reasonable choice for initialization since it is unbiased.

As an alternative to the coordinate descent inference procedure proposed in
this work, one could treat both J and z as latent variables in the EM framework.
Since J, z, and the measurements are jointly Gaussian, the posterior distribution
of the latent variables is also Gaussian, leading to a closed-form update. Similar
to the derivations in Eq. (8), the M-step updates depend on the second order
statistics of the latent variables. Since J is not fixed in this EM procedure, the
estimate at each location depends on the estimate at all other locations in the
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source space, as opposed to the region-independent estimation when J is fixed.
Therefore, the computation of the second-order statistics is infeasible except for
an extremely coarse discretization of the source space.

The estimation of uk and vk is closely related to the canonical correlation
analysis (CCA). CCA seeks vectors to project two high dimensional data sets
({ĵn}n∈Pk

and {fn}n∈Pk
in our case) to a low dimensional space so as to maximize

the correlation coefficient. The probabilistic interpretation of CCA has been
established in [2].

Our neurovascular coupling model is designed for fixed-orientation current
estimates, since the latent-variable model assumes that the spatial concordance
of neural and vascular activities is characterized by a scalar. For free-orientation
current estimates, the neurovascular coupling model would have to be adjusted
to handle the correspondence between the current flow in three directions and
a single vascular activation timecourse at a certain location. Moreover, FIRE
assumes a single activation waveform pair, u and v, in a region. The validity
of this assumption depends on the size of the region and the distance between
two activation sources. We cannot directly extend FIRE to multiple activation
waveform pairs per region, since such an extension does not capture the fact
that the shape of the vascular activation timecourses from two distinct sources
is often highly similar but the neural processes are different. In the situation
where there are two distinct current sources in one region, our preliminary results
demonstrate that FIRE can localize the two current sources, but the estimated
timecourses are combinations of the true timecourses. We defer the extension for
free-orientation estimate and the extension for multiple activation sources per
region to future work.

6 Conclusions

In contrast to most joint fMRI-E/MEG models, FIRE explicitly takes into ac-
count the inherent differences in the data measured by E/MEG and fMRI. The
corresponding estimates can be efficiently computed with an iterative procedure
which bears similarity with re-weighted MNE methods, except that the weights
are based on both the current estimates in the last iteration and the fMRI data
via the proposed neurovascular coupling model. This construction of the weights
reduces the excessive sensitivity to fMRI present in many joint fMRI-E/MEG
analysis methods, leading to more accurate current estimates as demonstrated
by analysis of both simulated and human data.
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