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Abstract. The standard general linear model (GLM) for rapid
event-related fMRI design protocols typically ignores reduction in hemo-
dynamic responses in successive stimuli in a train due to incomplete
recovery from the preceding stimuli. To capture this adaptation effect,
we incorporate a region-specific adaptation model into GLM. The model
quantifies the rate of adaptation across brain regions, which is of
interest in neuroscience. Empirical evaluation of the proposed model
demonstrates its potential to improve detection sensitivity. In the fMRI
experiments using visual and auditory stimuli, we observed that the
adaptation effect is significantly stronger in the visual area than in the
auditory area, suggesting that we must account for this effect to avoid
bias in fMRI detection.

1 Introduction

Rapid event-related (ER) functional magnetic resonance imaging (fMRI) is one
of the most popular imaging methods in cognitive neuroscience. In the rapid
ER fMRI studies, individual stimuli are presented every few seconds or faster.
Although less efficient for localizing activation, rapid ER fMRI has several ad-
vantages over the traditional block design, including the ability to randomize
trial types and to sort data based on behavioral responses.

The standard analysis for rapid ER fMRI models activation as a linear sys-
tem [2I59]; the hemodynamic response to multiple input stimuli is assumed to
be a superposition of the responses to individual stimuli. This approach es-
timates the impulse response function, also known as the hemodynamic re-
sponse function (HRF), of this linear system via de-convolution, and compares
the estimates to the null hypothesis or to estimates from other experimental
conditions.

fMRI signals commonly do not comply with the linear assumption. Indepen-
dent studies have demonstrated a substantial adaptation effect in the hemo-
dynamic response [IITTI2T6/I7], i.e., if two stimuli are presented within the
adaptation period, the amplitude of the response to the second stimulus is re-
duced. Furthermore, the adaptation effect strengthens as the inter-stimulus in-
terval (ISI) decreases. Several studies demonstrated that when a pair of visual
stimuli is presented less than 1sec apart, the response amplitude to the second
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stimulus is approximately 55% of that to the first stimulus, with recovery to 90%
at a 6sec ISI [I2UT6JI7]. This evidence suggests that the adaptation effect must
be modeled in the analysis, especially when stimuli are presented frequently.

The adaptation effect is expected to vary spatially due to differences in neural
and hemodynamic properties of functional areas in the brain [TIJI3/16]. While
physiological mechanisms for adaptation are not clearly understood, it is still
useful to model it for the purposes of improving detection.

Previous studies of the adaptation effect separated detection and adaptation
modeling [T2JT3ITHITEITT], fitting the adaptation model to the estimated HRF ob-
tained using the standard general linear model (GLM) [9]. This approach ignores
the trial-to-trial variation. Work by Buxton et al. [4] introduced the biophysical
balloon model for fMRI signals where the adaptation effect is captured through
interactions among blood flow, blood volumes, and de-oxyhemoglobin content,
instead of an explicit interaction between stimuli. Friston et al. [I0] proposed a
statistical model using the Volterra kernels to capture interaction between stim-
uli. The interaction can be efficiently estimated and statistically examined via
the F-test. However, the physiological interpretation of the model parameters is
challenging, since the model treats the stimuli symmetrically, effectively ignoring
the causal nature of the adaptation effect.

In this work, we extend the basic GLM by incorporating a region-specific
model of adaptation. In addition to the stimulus onset, our design matrix also
depends on the ISIs between stimuli via a single-parameter exponential function.
Specifically, this model captures the decrease in the magnitude of the hemody-
namic response if the time interval to the preceding stimuli is short. In other
words, we only model causal interactions among stimuli, in contrast to the bi-
directional interaction model in [I0]. By combining detection and adaptation
modeling, the proposed method takes into account trial-to-trial variation. It is
expected that the adaptation effect strengthens when more stimuli are presented
prior to the current stimulus. We summarize this effect from multiple stimuli
through a multiplicative model. This extension allows for a more flexible choice
of an experimental paradigm in contrast to previous fMRI adaptation studies
which were restricted to presentations of stimulus pairs [T2IT3IT6/T7].

We jointly estimate the decay parameter of the exponential function for each
region and the HRF for each location in the brain. The estimated parameter
of the exponential function reflects the length of the adaptation period for the
corresponding region, and the estimated HRF indicates the activation status of
the corresponding location. Our experimental results demonstrate a significant
improvement in detection sensitivity and confirm previously known adaptation
phenomena in the sensory systems.

2 Method

The univariate GLM [9] assumes that the fMRI signal y,, at location n is the
superposition of the hemodynamic responses to the stimuli in the paradigm, of
physiological signal, and of noise:
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Yn = XBn + Pay, + €5, (1)

where X is the design matrix, constructed based on the experimental protocol.
Columns of matrix ® = [¢1,- - - , dg], often in the form of low-order polynomials,
model the protocol-independent factors such as cardiac activity and breathing.
The measurement noise €,, can be modeled as white Gaussian noise or as colored
noise with an auto-regressive (AR) structure [3]. Vectors 3,, and o, are the cor-
responding coefficients of the protocol-dependent and the protocol-independent
signals, respectively. To determine the activation status at location n, one com-
pares the estimated protocol-dependent coefficient 3,, to the null hypothesis or
to the corresponding estimates for other experimental conditions.

Without loss of generality, we assume a single type of stimulus. The matrix
form of GLM represents the convolution of experimental protocol and HRF:

Yn(t) = Yopmy At = 51) % Ba(t) + 072 @rndr (1) + €n(t), 2)

where 8 = [s1, 82, -+, Sk is the vector of onset times of the K stimuli in the
experiment. When modeling the HRF using a finite impulse response (FIR)
model, h is the impulse train, and (3, contains the values of the FIR model.
When modeling HRF with a fixed kernel, h is the convolution of the stimulus
train and the kernel, and 3, is a scalar that modulates the HRF magnitude.

The above model fails to capture the fact that previous stimuli can decrease
the hemodynamic response to subsequent stimuli if the recovery period is longer
than the ISI presented. Therefore, we incorporate an adaptation model into the
standard GLM by introducing a damping weight wy for each stimulus. Due
to the regionally varying neuronal and vascular architecture of the brain, we
parameterize the weight wy(s; 6,,) with a region-specific parameter, i.e., 6, for
region m. wg(s;0,,) accumulates the adaptation effect from stimuli prior to
stimulus k, presented at time si. Therefore, in the new model, the fMRI signal
at location n of region m is the superposition of the weighted version of the
response to each stimulus:

Yn(t) = Spey [wr (s 0m)R(t = 58)] % Ba(t) + 300y arndr(t) + en(t). (3)
In the matrix notation this equation reads

Yn = X(01)Bn + ®an, + € V1€V, (4)

where V,,, is the set of locations in region m. The new design matrix X depends
not only on the stimulus onset times, but also on the ISIs between stimuli.
Compared to the standard GLM model in Eq. (), the nonlinear effect is captured
in the design matrix X.

Adaptation model. We combine the adaptation effects for stimulus & using
a multiplicative exponential model, ranging between zero and one:

wi(810m) = TTi2) (1 — e Ombes)). (5)

The exponential decay parameter 6,,, models the length of the adaptation period.
A larger value of 0, indicates a weaker adaptation effect, or a shorter period for
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the region to recover. The multiplicative nature of the model reflects the fact
that multiple preceding stimuli can affect the amplitude of the response to a
particular stimulus. In other words, the brain response is modeled as a Markov
process of order K.

Inference. We estimate the unknown parameters {6,,, {Bn, &, }nev,, } in Eq. @)
by minimizing the sum of squares of the residual errors for each region indepen-
dently. For a given 0,,, the optimal linear parameters 3,, and &, can be found
in a closed-form:

B @] = (HT(0,)H0,) " HT (0)y., (6)

where H(0,,) = [X(0,,) ®]. Substituting Eq. @) into the expression for the
residual error, we obtain the optimal 67,:

o = argmin Y, ey, H (I — (HT(0)H()) " HT(9)>yn ’ (7)

With the proposed adaptation model, Eq. (@) is a nonlinear function of a single
scalar parameter 6,,,. We can simply exhaustively search for the parameter value
within a specified range. We then obtain the optimal values ﬁ; and @, by
substituting 67, into Eq. (@).

Due to the nonlinearity of the model, the true value of 6 is needed to compute
the covariance of the estimate, Cov(3],). Since 6 is not known in real experiments, we
approximate Cov(3;,) with Cov(87;;,). Hence, the statistic 8T cov="(8;8:,)8./Na,, »
where Ng is the number of regression coefficients in 3,,, does not follow a known
probability distribution under the null hypothesis, in contrast to the F-distribution
in the standard GLM analysis. This represents a challenge in testing significance
similar to GLM with AR noise modeling [3]. The exact statistical test can be
achieved with Markov Chain Monte Carlo simulation, but it is too computation-
ally intensive for a standard analysis procedure. We will see in the next section
that comparing the values of the statistic across locations provides insight into
the adaptation effect. Developing efficient methods for assessing statistical signif-
icance of the statistic is clearly a direction for future research.

To summarize, by accounting for the adaptation effects, we obtain a more
accurate estimate of the HRF which leads to more accurate detection results. The
estimates of the adaptation parameter § promise to provide an insight into the
neuronal and vascular architecture across different brain regions. In the following,
we refer to our approach as GLMA (GLM with adaptation).

*

3 Results

Due to the lack of ground truth in real experiments, we first study GLMA’s sen-
sitivity to noise and parameter settings using simulated data. We then compare
GLMA to GLM using human fMRI data from a visual-auditory study.

In both simulations and analysis of human fMRI data, we constrain the detec-
tion to the cortex and define different brain regions based on the cortical folding
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(a) False Positive=5 x 10™* (b) False Positive=5 x 1072 (c) Estimated 6
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Fig. 1. The two panels on the left compare the true positive rates for GLM (solid)
and GLMA (dashed) as a function of 6, for two false positive rates and four SNR
values. The rightmost panel shows the estimates 0" of the adaptation parameter 0.
The standard error bars of the true positive rates and estimates 6* are presented in
the corresponding panels.

patterns, obtained with the FreeSurfer software [68], 35 regions per hemisphere.
Moreover, since the adaptation weight wy recovers exponentially with respect to
ISI, we only consider the stimulus interactions within a 16 sec window.

Simulation studies. Since our model is estimated for each region separately,
it is sufficient to study the performance of the model for a range of values of 6
using data in a single region. For each value of 6, we generated 100 activation
time courses by convolving a two-gamma function [I4] with a train of stimuli
whose onset times were generated randomly (mean ISI=4.0 sec, std=3 sec). The
adaptation effect was modeled according to Eq. ([@l). We also generated 100 time
courses without activation. We then added i.i.d. Gaussian noise to these 200
time courses, and repeated the simulation procedure 50 times for each value
of 8. We chose noise levels to be within the typical SNR range of real fMRI
data.

We separately processed the data set using GLM and GLMA. In both cases,
HRF was modeled with the two-gamma function used in the simulation. Thus,
[ is a scalar in this case. Based on the activation statistic (3*)%/Var (E*), we
evaluated the detection accuracy of both methods at two false positive rates,
5x 10~* and 5 x 1072, as shown in Fig.[M(a,b). As expected, a better SNR in
the data allows for a higher detection rate over the range of § we examined.
When 6 is larger than 0.5, there is essentially no adaptation effect present in
the data. Hence, the performance of the two methods is almost identical. The
adaptation effect strengthens as 6 decreases. We can clearly see an up-to 80%
higher detection rate achieved by modeling the effect.

We also investigated the robustness of the estimation of the adaptation param-
eter 6. As illustrated in Fig.[Il(c), the estimates 68* closely match the simulation.
As 0 decreases, the response to the subsequent stimuli is very small for the cho-
sen mean ISI, and 6* starts to deviate from the true value 6 for noisy data, i.e.,
SNR= —10 dB.
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GLM (full)  GLMA (full) GLM (1/4) GLMA (1/4)

Fig. 2. The thresholded statistical parametric maps for three subjects using GLM with
full length data (first row) and with 1/4 of the data (third row), as well as using GLMA
with full-length data (second row) and with 1/4 of the data (fourth row)

Human experiments. We illustrate the application of the proposed method
in a visual-auditory fMRI study. In this experiment, three healthy right-handed
subjects were presented with visual-auditory stimuli in a random rapid ER
fMRI paradigm in three runs, with mean ISI of 1.5 sec (std=0.7 sec), 3.0 sec
(std=1.3 sec), and 6.0 sec (std=2.1 sec), respectively. To keep subjects engaged
throughout the experiment, they were asked to respond to a rare target stimu-
lus by pressing a button. The fMRI data were acquired using a 3T Siemens Trio
scanner (TR 1.15 sec, TE=30 msec, flip angle 90 degree, 3.1x3.1x4 mm?). Struc-
tural T1-weighted MRI scans of the subjects were acquired with a 1.5T Siemens
Avanto scanner. The anatomical images were processed with the FreeSurfer soft-
ware [6l8]. Individual subject functional scans were morphed through a spherical
mapping into an atlas constructed with 40 subjects [7].

We applied GLM and GLMA to data combined from all three runs (Fig.2l
left) and data combined from the first quarter of each of the three runs (Fig.2
right). Since the statistics across methods are not directly comparable, and the
ground truth activation is not known, we select top 5% of vertices in a hemi-
sphere with the highest statistics, and visually evaluate the results to assess the
importance of modeling the adaptation effect. We emphasize that in order to
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Subject 3 Subject 2 Subject 1

Fig. 3. Estimated 90% recovery period, tgo, for the three subjects presented in Fig.[2l

develop valid detectors, further work is required in building statistical tests for
assessing significance of the detected activations.

Fig.[2l shows that the two methods provide similar detection results in the
auditory area. However, the visual region detected by GLM has a smaller spa-
tial extent than the corresponding results using GLMA. Without modeling the
adaptation effects, the activation statistics in the visual area are smaller than
those in the auditory area. Therefore, many activations on the visual cortex will
be missed if a single threshold is applied to the whole brain. Furthermore, com-
pared to GLM, our detection results with shorter length data are more similar
to the results using full-length data, indicating improved robustness.

For the selected auditory and visual areas, we present the time required for
the attenuation coefficient wy, to recover to 90%, i.e., togo = —6~1In(1 — 0.9),
assuming a single stimulus presented prior to the current one (Fig.[3). Across all
three subjects, tgg in the auditory areas is shorter than that in the visual areas,
reflecting a stronger adaptation effect in the visual areas than in the auditory
areas. Furthermore, in Subjects 1 and 2, the early visual regions, such as the
lateral-occipital area, exhibit a weaker adaptation effect than high-order visual
regions, such as the lingual and fusiform areas. For these two subjects, tgo is
about 6 sec at the calcarine area which agrees with findings reported in [T2JT6J17].
The adaptation effects in Subject 3 are significantly longer than those in the other
two subjects. Further experiments are needed to better understand and model
the variability of the effect across subjects. To further validate our method, we
also applied GLM, with HRF modeled as a two-gamma function, separately
to each of the three runs. Fig.[] shows the average estimated HRFs for the 50
most active vertices in each of the three selected regions for Subject 2. We can
clearly see that the lingual area exhibits the strongest adaptation effect (tg9 =
5.8 sec in Fig.[]), indicated by substantial differences in response magnitude to
stimuli presented with different mean ISI conditions. The difference in response
magnitudes to the three conditions is smaller in the lateral-occipital area (tgg =
3.8 sec), reflecting a weaker adaptation. On the other hand, the estimated HRF's
across different ISIs are almost identical in the superior-temporal area (tg9 =
2.3 sec). That means the most active locations in the superior-temporal area
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Fig. 4. Estimated HRF's for stimuli presented at three different mean ISI conditions,
1.5, 3.0, and 6.0 sec, obtained with standard GLM analysis in Subject 2. The error
bars indicate standard deviation of the 50 selected vertices.

can almost fully recover in about 1.5 sec. The results of the HRF analysis for
separate conditions agrees with our estimates of the adaptation effects in Fig.[3

4 Conclusions

We proposed and demonstrated a novel method for modeling the adaptation
effects in fMRI. Experimental results indicate a significant improvement in de-
tection sensitivity. The proposed method also quantifies the adaptation effects
across brain regions, providing insight into neuronal and vascular organization
of the brain. The current adaptation model focuses on the ISIs. We plan to ex-
tend it to include information about the amplitude of the response to previous
stimuli, since the adaptation effect is expected to be more pronounced immedi-
ately after a strong response than after a weak response. Our framework can be
readily modified to include different functional forms of the magnitude changes
due to adaptation. We will explore alternative functions, such as the sigmoid
function, in adaptation modeling in future work.
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