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Abstract. We propose a novel !1!2-norm inverse solver for estimating
the sources of EEG/MEG signals. Based on the standard !1-norm in-
verse solver, the proposed sparse distributed inverse solver integrates
the !1-norm spatial model with a temporal model of the source signals
in order to avoid unstable activation patterns and “spiky” reconstructed
signals often produced by the original solvers. The joint spatio-temporal
model leads to a cost function with an !1!2-norm regularizer whose min-
imization can be reduced to a convex second-order cone programming
problem and efficiently solved using the interior-point method. Valida-
tion with simulated and real MEG data shows that the proposed solver
yields source time course estimates qualitatively similar to those obtained
through dipole fitting, but without the need to specify the number of
dipole sources in advance. Furthermore, the !1!2-norm solver achieves
fewer false positives and a better representation of the source locations
than the conventional !2 minimum-norm estimates.

1 Introduction

Localizing activated regions from Electroencephalography (EEG) or Magnetoen-
cephalography (MEG) data involves solving an ill-posed inverse problem. This
paper introduces an integrated spatio-temporal regularizer to overcome the in-
stabilities in the standard sparse solutions.

There are two main types of inverse solvers in EEG/MEG applications: dis-
crete parametric solvers, also known as dipole fitting [13], and distributed inverse
solvers [7,17]. The standard dipole fitting algorithms estimate the location, orien-
tation, and amplitudes of a fixed number of current dipoles. While dipole fitting
often provides robust estimates for activation signals, localization is challenging
when several sources are active. The quality of the results degrades substantially
when the assumed number of dipoles differs from the true number [9].

In contrast, distributed solvers discretize the source space into locations on
the cortical surface or in the brain volume without fixing the number of current
dipoles. The solution is computed by minimizing a cost function that depends
on all sources in the source space. The widely used minimum norm estimate
(MNE) [7] recovers a source distribution with minimum overall energy (!2-norm)
that produces data consistent with the measurements. Although MNE leads to
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a linear inverse operator, its solutions are often too diffuse to be biologically
plausible, especially in early sensory activations. Other regularizers based on
a norm penalty were proposed to model sparsity in such applications. Among
them, the minimum current estimate (MCE) (!1-norm) is the most popular [17].

One of the drawbacks of the conventional MCE is its sensitivity to noise.
Similar to other distributed solvers, the conventional MCE is computed at each
time point separately. The solver’s sensitivity to noise causes the estimated
activations to “jump” among neighboring spatial locations from one time in-
stant to another. Equivalently, the time course at a particular location can show
substantially “spiky” discontinuities. To address this problem, the vector-based
spatio-temporal minimum !1-norm solver (VESTAL) [10] projects the point-wise
!1-norm estimates onto a set of temporal basis functions estimated from the data.
Some other wavelet-based methods perform reconstruction of the coefficients of
each basis function separately [6,16].

Similar to MCE, we employ the !1-norm regularizer to encourage spatial spar-
sity. Furthermore, we incorporate a temporal model of the source signals into
the regularizer. Specifically, we assume that the source signals are linear combi-
nations of multiple temporal basis functions, and apply the distributed inverse
solver to the coefficients of all basis functions simultaneously, in contrast to the
two-step approach proposed in [10]. This combined spatio-temporal regularizer
is at the core of our !1!2-norm inverse solver, and it is motivated by a previ-
ously demonstrated method in farfield narrowband sensor array applications [12].
We construct the temporal basis functions through singular-value decomposition
(SVD) of the measurements, since it compactly represents the signal subspace.
Although we focus on the EEG/MEG application, the proposed framework is
applicable to computed tomography reconstruction, with modifications on the
spatial model so as to encourage piece-wise constant solutions (i.e., !1-norm on
spatial derivatives of the source).

To summarize, the proposed solver imposes !1-norm regularization in the spa-
tial domain and !2-norm regularization in the temporal domain. The resulting
inverse problem can be formulated as a second-order cone programming (SOCP)
problem and solved efficiently using the interior-point method [1]. Thanks to
the integrated spatio-temporal model, our method achieves accurate reconstruc-
tion results and outperforms other solvers including MNE [7], MCE [17], and
VESTAL [10].

2 Method

Under the quasi-static approximation of Maxwell’s equations, the observed
EEG/MEG signal y(t) at time t is a linear function of the current sources s(t):

y(t) = As(t) + e(t), (1)

where A is the N × M lead-field matrix. e(t) ∼ N (0, Σ) is the measurement
noise, where the noise covariance Σ can be estimated from the pre-stimulus data.
s(t), N ×1, and y(t), M ×1, are vectors in the source space and the signal space,
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respectively. The number of sources N (∼ 103 − 104) is much larger than the
number of measurements M (∼ 102), leading to an infinite number of solutions
satisfying Eq. (1) even for e(t) = 0. Without loss of generality, we can apply
spatial whitening based on the estimated noise covariance Σ to both the data
and the lead-field matrix, leading to e(t) ∼ N (0, I) in the derivations.

Spatio-Temporal Model. The quasi-static assumption allows inverse estima-
tion for each time instant independently. However, this often results in highly
variable source time courses. To mitigate this problem, we utilize the knowledge
of the temporal properties of the source signals to further constrain the solution.
To this end, we express the data model in Eq. (1) for all time instants:

Y = AS + E, (2)

where Y = [y(1),y(2), · · · ,y(T )] is an M × T matrix that contains EEG/MEG
measurements for all T temporal samples, and S is an N × T matrix that rep-
resents the source signals. Noise E is assumed to be independent in time.

The underlying source signals vary smoothly but with sharp changes at cer-
tain deflections [9]. To model the time-varying frequency content of the signals,
we assume that the source signals are linear combinations of multiple orthonor-
mal temporal basis functions V = [v1, v2, · · · , vK ] that collectively capture
the temporal properties of the source signals. vk, T × 1, denotes the kth basis
function. We can therefore transform the problem into a much lower dimensional
space of projection coefficients Ỹ = AS̃ + Ẽ, where Ỹ = YV, S̃ = SV, and
Ẽ = EV. The (n, k) element of S̃, s̃nk, indicates the kth coefficient for the source
signal at location n. Denoting the kth column of Ẽ by ẽk, the temporal indepen-
dence assumption of E and orthonormality of V imply that ẽk ∼ N (0; I), and
that ẽk and ẽk′ are independent for k $= k′.

To compute the inverse solutions for all K basis functions simultaneously,
we use the signal magnitude in the subspace spanned by V,

√∑K
k=1 s̃2

nk, as an
indicator of the activation status at location n. In other words, we apply !2-norm
regularization to the K coefficients for each source location. Because we choose to
work with orthonormal basis functions, the !2-norm of the reconstructed source
signal in the temporal domain is equal to the !2-norm in the transformed domain.
However, we find it more intuitive to present the model in the transformed
domain. Furthermore, if two bases span the same subspace, the reconstruction
results using these bases are guaranteed to be identical.

With the !1-norm regularization in the spatial domain and the !2-norm regu-
larization in the temporal domain, we incorporate the integrated spatio-temporal
!1!2-norm regularizer

|S̃|!2!1
=

∑N
n=1

√∑K
k=1 s̃2

nk (3)

into the estimation problem:

S̃∗ = arg minS̃

∑K
k=1‖ỹk − As̃k‖2

!2
+ λ|S̃|!2!1

, (4)

where s̃k and ỹk are the kth column vectors in S̃ and Ỹ. λ controls the regular-
ization strength; ‖x‖!2 =

√
xTx. Since the !2-norm does not encourage sparsity,
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many coefficients for an active location are usually non-zero in the estimates.
The reconstructed source signals are then obtained as linear combinations of the
basis functions: S∗ = S̃∗VT. Here we focus on fixed-orientation source models,
but the model can also be easily extended to the free-orientation formulation as
proposed in [4,11].

The above derivations are independent of the selected basis V, but a compact
representation of the signals can substantially reduce computation. We choose
to use the K largest SVD components of the measurements, which can often
compactly capture the time-varying frequency content and differences in source
signals from different regions.

From !1!2-Norm Regularizer to SOCP. We cannot directly apply gradient
based methods to the optimization problem specified by Eq. (4) since the !1!2-
norm penalty term is not differentiable at zero. However, Eq. (4) can be reduced
to the second-order cone programming (SOCP) problem [1]:

< S̃∗,q∗, z∗,w∗, r∗ >= arg min<S̃,q,z,w,r> (q + λz) (5)

s.t. ‖ỹk − As̃k‖2
!2 ≤ wk ∀ k = 1, · · · , K (6)

∑K
k=1 wk ≤ q;

√∑K
k=1 s̃2

nk ≤ rn ∀ n = 1, · · · , N ;
∑N

n=1 rn ≤ z (7)

The conversion introduces new variables, q, z, {wk}K
k=1, and {rn}N

n=1. wk is
an upper bound on the discrepancy between the measurements and the signals
induced by the estimated sources along vk. q is an upper bound on all wk’s. rn

is an upper bound on the activation strength for location n. z is an upper bound
on the !1-norm of the activation strength of all N locations. At the minimum,
the inequality constraints in Eq. (6-7) are satisfied with equality; otherwise, the
objective function can be further reduced.

SOCP is a convex optimization problem. Linear programs and quadratically
constrained quadratic programs are subsets of the SOCP problems. Furthermore,
the SOCP problem is a special case of a semi-definite program, and therefore
SOCP can be solved efficiently using the interior-point method [1].

3 Results

Due to the lack of ground truth in real experiments, we first study the behavior
of the method and its sensitivity to noise and parameter settings using simulated
data. We then compare the method to standard inverse solvers using real MEG
data from a somatosensory study.

3.1 Simulation Studies

To simulate MEG measurements, we created active vertices A, B, and C (Fig. 1
top) on the cortical sheet at source spacing of 20 mm, with current source orien-
tation along the normal to the cortex. The simulated time courses (black, Fig. 1
bottom) exhibit temporal characteristics similar to those of the auditory evoked
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Fig. 1. Simulated study. Top: ground truth activation maps at peak response time for
three sources. Middle: spatial maps estimated using !1!2-norm inverse solver for the
same time points. Bottom: time courses from the three active vertices: ground truth
(black), MNE (blue), MCE (green), VESTAL (yellow), and !1!2-norm (red).

responses, but with additional temporal translation and scaling. The source sig-
nals at vertices A and B show activation during overlapping time intervals, which
makes the inverse problem difficult. For the forward calculations, we employed
the sensor configuration of the 306-channel MEG system used in our real studies
and added Gaussian noise to the signals. The resulting signals have an SNR of
3 dB, within the typically SNR range of real MEG data.

Fig. 1 shows the inverse solutions at three time frames obtained by the pro-
posed method using three basis functions and λ = 109. These parameters were
selected based on validation experiments presented later in this section. The
red curves in Fig. 1 correspond to source signals estimated by the method. The
resulting spatial maps and source time courses match well with the ground truth.

Comparison with MNE, MCE, and VESTAL. We compared the proposed
method with the standard MNE, MCE, and VESTAL (Fig. 1 bottom). The esti-
mates from the standard MNE are smaller and more diffuse when compared with
the simulated signals. The estimated time courses from MCE exhibit “spiky” dis-
continuities due to the solver’s sensitivity to noise. ProjectingMCE results into the
signal subspace spanned by V (VESTAL) removes the discontinuities, but the es-
timation accuracy is significantly worse than that of !1!2-norm since the two-step
procedure cannot fully compensate for the errors in the original MCE solutions.

Sensitivity to Noise, Basis Selection, and Regularization. To examine
the sensitivity of the method to noise and basis selection, we computed inverse
solutions for 100 independently generated data sets for each noise setting (SNR
1-8 dB) and basis selection cutoff (K=1-6). Fig. 2a shows the relative mean
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Fig. 2. Relative mean squares error for different values of basis size K and regular-
ization parameter λ under three different SNR settings. The error bars close to the
bottom of the figures appear large due to the logarithmic scale.

squares error1 of the !1!2-norm inverse solutions. The method achieves the best
performance for K=3 basis functions. If the chosen number of basis functions
is too high, some basis functions represent noise, resulting in slight degradation
of the result quality as reflected by the gentle slope on the logarithmic scale.
Including too few basis functions leads to significant signal loss: the solver fails
to recover the missing signals.

We also investigated the method’s sensitivity to the value of the regularization
parameter λ. Large λ corresponds to a high penalty on the strength of the current
sources; small λ emphasizes the data fidelity term. Due to whitening, the first
term in Eq. (4) is on the order of MK (M ∼ 102). For an activated vertex in our
experiment, s̃nk is on the order of 10−8. Hence, |S̃|!2!1

is approximately 10−7K.
Therefore, λ = 109 balances between the data fidelity and the regularization
terms in Eq. (4). Fig. 2b confirms that λ around 109 provides the most accurate
reconstruction results. The regularization shows no effect for λ < 103; when
λ > 1010, the data fidelity term is effectively ignored in the optimization process.
For λ = 109, the standard deviation of the 100 simulated data sets is less than
1%. In the experiments using real MEG data, we set λ = 109.

3.2 Real MEG Experiments

We compared the performance of the proposed solver to MNE and dipole fitting
using real MEG data from median-nerve stimulation experiments. The measure-
ments were acquired using a 306-channel Neuromag VectorView MEG system.
Anatomical images, collected with a 1.5 T scanner, were used to construct the
source space and the forward model [3,8].

In this study, the median nerve was stimulated at the left wrist according to
an event-related protocol, with a random inter-stimulus-interval ranging from
1.5 to 2 seconds. A 200-msec baseline before the stimulus was used to estimate
the noise covariance matrix. The average signal, computed from approximately
300 trials, was used as the input to the inverse solver.

Themedian-nerve stimulation activates a complex cortical network [9].The first
activation of the contralateral primary somatosensory cortex (cSI) peaks around

1 Defined as
‖reconstructed signals−ground truth signals‖2

!2

‖ground truth signals‖2
!2

.
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Fig. 3. Real MEG study. (a) Significance statistics of the !1!2-norm inverse solver and
MNE for the median-nerve experiment. Hot/cold colors correspond to outward/inward
current flow. The most active areas in the !1!2-norm solutions are highlined. (b) Dipole
fitting with three sources. (c-d) Zoomed-in coronal slices for the detected iSII activa-
tions. (e-f) Reconstructed time courses for the highlined areas in (a-b).

20 msec and continues over 100 msec; then the secondary somatosensory cortex
(SII) activates bilaterally between 70 and 200 msec. The posterior parietal cortex
(PPC), located on the wall of the post-central sulcus, activates at 70-110 msec.

Employing six basis functions, which explain 80% variance of the data, is
sufficient to capture the responses. We adopted a standard multi-resolution
scheme, corresponding to source spacing of 20 and 10mm. The efficient interior-
point optimizer [15] allows us to estimate statistical significance of the result-
ing activations via permutation testing [14]. We controlled the false discovery
rate (FDR) [5] at 0.05, computed from 5000 permutations (run time of 60 sec-
onds per permutation). We also compared our results to MNE and dipole fitting
computed using standard software packages [8,18]. In practice, experts often
interpret MNE through its statistics, the dynamic statistical parameter maps
(dSPM) [2], with thresholds adjusted by an expert. For the purpose of compari-
son, we selected the threshold for dSPM so that all four regions of interest, cSI,
cSII, iSII, and PPC, were included in the dSPM.

Fig. 3a presents the activation maps obtained using !1!2-norm and MNE for
one subject in the study. At 20 msec, the !1!2-norm pinpoints cSI on the postal
wall of the central sulcus. MNE produces a more diffuse solution leading to
false positives in the post-central sulcus. At 75 msec, both MNE and !1!2-norm
capture signals from cSII. !1!2-norm successfully localizes PPC at the post-
central sulcus; the location of PPC is ambiguous in the MNE results. The !1!2-
norm detects iSII, but places it at the superior temporal lobe instead of the
inferior parietal lobe. As shown in the volumetric display (Fig. 3cd), these two
regions are very close, making the inverse problem particularly challenging. MNE
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also detects weak iSII signals; the location is ambiguously spread between the
iSII region and the superior temporal lobe.

Dipole fitting results, shown in Fig. 3b, did not correctly localize PPC in
this experiment because PPC is very close to cSI. The locations for cSI and
cSII estimated by our solver match with the dipole fitting results. The correct
localization of iSII using dipole fitting required manual intervention in selecting
appropriate channels, in contrast to the automatic !1!2-norm solver.

Our method yields stable time courses that capture the main deflections pre-
cisely (Fig. 3e). The reconstructed time courses are similar to those estimated
through dipole fitting (Fig. 3f), except for the cSI activation between 70 and
150 msec. This is due to the PPC activation missed by dipole fitting. This
comparison demonstrates the ability of the !1!2-norm regularization to achieve
high-quality reconstructions of source signals.

4 Conclusions

The proposed model takes advantage of the relatively smooth nature of the un-
derlying EEG/MEG source signals via an !2-norm regularizer on the projection
coefficients of the temporal basis functions. The !1!2-norm inverse solver is for-
mulated as an SOCP problem. Performing reconstruction in the signal subspace
while jointly considering the coefficients for all selected basis functions leads to
stable estimates with a reduced number of false positives as confirmed by our
experiments using simulated and real MEG data.
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