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Spatial priors, such as probabilistic atlases, play an important role in MRI segmentation. However, the
availability of comprehensive, reliable and suitable manual segmentations for atlas construction is lim-
ited. We therefore propose a method for joint segmentation of corresponding regions of interest in a col-
lection of aligned images that does not require labeled training data. Instead, a latent atlas, initialized by
at most a single manual segmentation, is inferred from the evolving segmentations of the ensemble. The
algorithm is based on probabilistic principles but is solved using partial differential equations (PDEs) and
energy minimization criteria. We evaluate the method on two datasets, segmenting subcortical and cor-
tical structures in a multi-subject study and extracting brain tumors in a single-subject multi-modal lon-
gitudinal experiment. We compare the segmentation results to manual segmentations, when those exist,
and to the results of a state-of-the-art atlas-based segmentation method. The quality of the results sup-
ports the latent atlas as a promising alternative when existing atlases are not compatible with the images
to be segmented.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Volumes acquired via medical imaging modalities, such as MRI,
are frequently subject to low signal-to-noise ratio, bias field and
partial volume effects. These artifacts, together with the naturally
low contrast between image intensities of some neighboring struc-
tures, make the automatic analysis of clinical images a challenging
problem. Probabilistic atlases, typically generated from compre-
hensive sets of manually labeled examples, facilitate the analysis
by providing statistical priors for tissue classification and structure
segmentation (Ashburner and Friston, 2005; Fischl et al., 2002;
Pohl et al., 2006; Pohl et al., 2007a; Van Leemput et al., 1999).
Yet, the limited availability of training examples that are compat-
ible with the images to be segmented renders the atlas-based ap-
proaches impractical in many cases. While brain atlases of
healthy human adult anatomy are widespread, reliable manual
segmentations of newborn brains or of different body regions are
not as common. Moreover, in the presence of pathologies where
the diversity in structure and appearance is unpredictable, incor-
porating priors obtained from different subjects is error prone.
ll rights reserved.
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Recently, a few methods have been proposed to reduce or avoid
the dependency on possibly incompatible atlases. Bazin and Pham
(2007) proposed an atlas-based segmentation method that uses
topological constraints to avoid possible bias introduced by the at-
las. Yang and Duncan (2004) employed manually labeled struc-
tures to support automatic segmentation of neighboring
structures within the same image. Tu et al. (2008) proposed a dis-
criminative approach for segmentation of adjacent brain structures
using a set of features learned from training examples. Lord et al.
(2007) demonstrated a groupwise smoothing, segmentation and
registration method for cross-sectional MR scans. They developed
a level-set framework in which the evolving contours are spatially
constrained by an image defined on a common domain, obtained
from the ensemble via diffeomorphisms. Thus, the variability of
the shapes in different images is captured by the deformation of
the template. In contrast, our latent atlas explicitly models the var-
iability of the shapes via a spatial distribution in the atlas space.
Bhatia et al. (2007) adapted an initial atlas constructed from adult
brain to newborns using combined groupwise segmentation and
registration. In this framework, non-rigid groupwise registration
is optimized by minimizing the Kullback–Leibler divergence be-
tween the average probability map of the group and the labeling
probabilities of each image. Segmentation is improved iteratively
based on the image intensity distributions. All of these methods
with the exception of Bhatia et al. (2007) were demonstrated for
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Fig. 1. Graphical representation of the proposed generative segmentation model.
The model parameters (hI, n,hC) are represented with squares, the random variables
(Cn, In) are represented with circles. The shaded circle indicates the observed
variable In. A subset of the variables (Cn, In and hI,n) is replicated N times, as
indicated by the bounding box.

T. Riklin-Raviv et al. / Medical Image Analysis 14 (2010) 654–665 655
healthy human brains of adults such that mild variations within
the populations could be accommodated.

Segmentation becomes more challenging in the presence of
pathologies where the appearance of the unhealthy tissues differs
significantly from the norm and is patient-specific. Most of the
existing methods for the detection of pathologies, rely heavily on
priors such as shape, intensities, growth and expected evolution
(Cuadra et al., 2004; Kaus et al., 2001; Jaume et al., 2001; Mohamed
et al., 2006; Moon et al., 2002; Prastawa et al., 2003; Rey et al.,
2002; Thirion and Calmon, 1999; Zacharaki et al., 2008). This prior
information allows, for example, the generation of patient-specific
atlases by iteratively refining the normal template model (Kaus
et al., 2001; Moon et al., 2002; Prastawa et al., 2003). Alternatively,
tumors and lesions were detected from differences between
images acquired at different time points (Rey et al., 2002; Thirion
and Calmon, 1999). A different approach uses a normal control
training set or an atlas as a reference that allows detection of out-
liers suspected as pathological regions (Cobzas et al., 2007; Gering
et al., 2002; Görlitz et al., 2007; Ho et al., 2002; Prastawa et al.,
2004; Van Leemput et al., 2001; Wels et al., 2008). However, the
variability of normal brain scans and the effects some tumors or le-
sions have on their surrounding healthy tissues lead to a high false
positive detection rate. Moreover, mild anomalies can be wrongly
classified as normal.

We propose and demonstrate a generative model for groupwise
segmentation in which the evolving segmentation of the entire im-
age set supports each of the individual segmentations. In contrast
to the atlas-based approach that requires a set of training images
or a probabilistic atlas for segmentation of a single image, we use
at most a single manual segmentation to initialize segmentation
of the entire image ensemble. This is made possible by iteratively
inferring a subset of the model parameters, called the spatial
parameters, as part of the joint segmentation processes. These spa-
tial parameters are defined in the image domain and can be viewed
as a latent atlas that is used as a spatial prior on the tissue labels.

Our latent atlas formulation is based on probabilistic principles,
but we solve it using partial differential equations (PDEs) and en-
ergy minimization criteria. We describe a statistically driven le-
vel-set algorithm that expresses segmentation uncertainty via
the logistic function of the associated level-set values, similar to
Pohl et al. (2007b). We relate the image likelihood term to the re-
gion based constraint that relaxes the piecewise smoothness
assumption of Mumford and Shah (1989), in the spirit of Chan
and Vese (2001), Paragios and Deriche (2002), Zhu and Yuille
(1996). We also draw a connection between a Markov Random
Field (MRF) prior on the individual segmentations and two contin-
uous-form energy terms: the commonly used smoothness con-
straint, originally proposed in Kass et al. (1988) and the spatial
constraint, associated with the latent anatomy parameters.

We evaluate the latent atlas approach in two sets of experi-
ments. In the first experiment we use a dataset of 39 MR brain vol-
umes and their corresponding manual delineations. We segment
six cortical and subcortical structures in the two hemispheres.
We compare the segmentation results to the manual segmenta-
tions using the Dice measure of the volume overlap (Dice, 1945).
We also evaluate these Dice scores by comparing them to the Dice
scores obtained by the state-of-the-art atlas-based segmentation
method in the FreeSurfer software package (FreeSurfer, 2009).
The segmentation experiments on healthy brain images validate
the algorithm, demonstrating segmentation accuracy that ap-
proaches the accuracy obtained with probabilistic atlases. In the
second experiment we applied the algorithm to a longitudinal mul-
ti-modal patient-specific tumor dataset. The dataset consists of
brain volumes acquired via six different modalities over several
years. A sphere located around the tumor area in one of the vol-
umes was used to initialize the segmentations of the images ac-
quired at the first time point. Tumor segmentations at a given
time point were then used to initialize the segmentations at the
next time point for scans of corresponding modalities. In the ab-
sence of ground truth 3D segmentations we evaluate the segmen-
tation results both visually and against the manual segmentation
in a few tumor cross-sections. The accuracy of the results obtained
for the tumor datasets further supports the latent atlas concept as a
good alternative to atlas-based approaches when manual training
labels or a probabilistic atlas are not available.

This paper extends the work previously presented in (Riklin
Raviv et al., 2009a; Riklin Raviv et al., 2009b) by providing detailed
derivations of the underlying mathematical model and thorough
experimental validation and implementation details.

The remainder of the paper is organized as follows. Section 2
defines the problem of groupwise segmentation. In Section 3 we
derive our level-set framework for fitting probabilistic model to
image data. The alternating minimization algorithm is presented
in Section 4. Section 5 provides implementation details and Sec-
tion 6 reports the experimental results, followed by a discussion
in Section 7.
2. Problem definition and probabilistic model

Our objective is to segment a particular structure or region of
interest in N aligned MR images. Specifically, we consider the 2-
partition problem where each voxel in image In (n = 1, . . . ,N) is as-
signed to either the foreground (structure of interest) or the
background.

Let {I1, . . ., IN} be the given set of aligned images that form the
observed variable in our problem and let C = {C1, . . ., CN} be the
corresponding segmentations. In : X! Rþ is a gray level image
with V voxels, defined on X � R3, and Cn: X ? {0,1} is the un-
known segmentation of the image In. We assume that each Cn is
generated I.I.D. from a probability distribution p(C;hC) where
hC:X ? [0,1] denotes the latent spatial model parameters. We also
assume that Cn generates the observed image In, independently of
all other image–segmentation pairs, with probability p(In|Cn; hI,n)
where hI,n are the intensity parameters corresponding to image
In. We assign an exclusive set of intensity parameters to each image
since the acquisition conditions might vary across scans. Specifi-
cally, in the proposed framework hI are the parameters of the
Gaussian Mixture Model (GMM) of the intensity distributions.
The graphical model for our formulation is presented in Fig. 1.

We start by presenting a probabilistic formulation of the prob-
lem. A comparison of the resulting expressions to the commonly
used Expectation Maximization (EM) (Dempster et al., 1977) is
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unavoidable and is discussed in this section. However, here we re-
place the expectation step by a gradient descent process using a
probabilistic level-set formulation. Our approach can be consid-
ered as an alternative way to model ‘soft’ assignments of the voxels
in the segmentations.

The joint distribution p(I1, . . ., IN,C1, . . ., CN; H) is governed by
the composite set of parameters H = {hC,hI,1, . . ., hI,N}. Our goal is
to estimate the segmentations C. This, however, cannot be accom-
plished in a straightforward manner since the model parameters
are also unknown. A traditional way to approach this problem is
to first construct a maximum likelihood (ML) estimate of the mod-
el parameters

bH ¼ arg max
H

pðI1; . . . ; IN; HÞ; ð1Þ

and then compute the maximum a posteriori (MAP) estimates of
the segmentations C:

bC ¼ arg max
C

pðCjI; bHÞ: ð2Þ

The ML estimation of the model parameters requires marginalizing
the joint probability distribution with respect to segmentations
C1, . . ., Cn:

bH ¼ arg max
H

X
C1 ;���;CN

pðI1; � � � ; IN;C1; � � � ;CN ; HÞ: ð3Þ

One way to tackle the problem above is to use the EM algorithm
which averages the log-likelihood over all possible segmentations.
In this work, we propose to alternate between estimating the
MAP segmentations and refining the model parameters. This could
be viewed as replacing the sum in Eq. (3) with the maximal contri-
bution to the sum.

Formally, we jointly optimize for the segmentations C and the
parameters H:

f bH; bCg ¼ arg max
fH;Cg

log pðI1; . . . ; IN ;C1; . . . ;CN; HÞ ð4Þ

¼ arg max
fH;Cg

XN

n¼1

log pðIn;Cn; HÞ ð5Þ

¼ arg max
fH;Cg

XN

n¼1

log pðInjCn; hI;nÞ þ log pðCn; hCÞ½ �: ð6Þ

Eq. (5) follows from the conditional independence of different
images in the set. For a given value of the model parameters bH,
Eq. (6) implies that the segmentations can be estimated by solving
N separate MAP problems:

bCn ¼ arg max
Cn

log pðInjCn; hI;nÞ þ log pðCn; hCÞ½ �: ð7Þ

We then fix bC and estimate the model parameters
H = {hC,hI,1, . . . ,hI,N} by solving the following ML problems:

ĥI;n ¼ arg max
hI;n

log pðInjCn; hI;nÞ; ð8Þ

ĥC ¼ arg max
hC

XN

n¼1

log pðCn; hCÞ: ð9Þ

Note that Eqs. (7) and (8) can be solved for each image separately
while Eq. (9) uses all the segmentations to infer the atlas parame-
ters. In the following sections we present a level-set framework that
is motivated by this probabilistic model. We reformulate the esti-
mation problem stated in Eq. (7) such that the soft segmentations
p(Cn), rather than the Cn, are estimated.
3. Probabilistic view of the level-set framework

Now we draw the connection between the probabilistic model
presented above and the level-set framework for segmentation
(Osher and Sethian, 1988). Let /n : X! R denote a level-set func-
tion associated with image In. The zero level Cn = {x 2X|/n(x) = 0}
defines the interface between the partitions of In. We choose to
represent the binary segmentation Cn by the Heaviside function
of /n:

Hð/nðxÞÞ ¼
1 /nðxÞP 0
0 otherwise

�
: ð10Þ

The Heaviside function H(/n) partitions the image space X 2 R3 into
two disjoint regions x and Xnx by assigning positive levels of /n to
the structure of interest and negative levels of /n to the background.

Since the Heaviside function as defined above is not differentia-
ble, a regularized variant eH is used in practice. Chan and Vese
(2001) propose to approximate the Heaviside function of /n by
the sigmoid eH�ð/nÞ ¼ 1

2 ð1þ 2
p arctanð/n

� ÞÞ. Alternatively, we can
use the hyperbolic tangent to achieve the same goal:

eH�ð/nÞ ¼
1
2

1þ tanh
/n

2�

� �� �
¼ 1

1þ e�/n=�
: ð11Þ

For � = 1, the function eH�ð�Þ becomes the logistic function. Similar to
Pohl et al. (2007b), we define the level-set function /n using the log-
odds formulation instead of the conventional signed distance
function:

/nðxÞ , �logitðpÞ ¼ � log
pðx 2 wÞ

1� pðx 2 xÞ ¼ � log
pðx 2 xÞ

pðx 2 X nxÞ : ð12Þ

The scalar � determines the scaling of the level-set function /n with
respect to the ratio of the probabilities of the foreground and the
background respectively. Substituting this definition into Eq. (11)
we obtain

eH�ð/nðxÞÞ ¼
1

1þ pðx 2 X nxÞ=pðx 2 xÞ ¼ pðx 2 xÞ; ð13Þ

which implies that the function eH�ð/nðxÞÞ can be viewed as the
probability that a voxel at location x belongs to the foreground re-
gion. Specifically, the uncertainty in the labeling of the boundary
voxels {x|/(x) = 0} naturally stems from the equalityeH�ð/nðxÞÞ ¼ 1� eH�ð/nðxÞÞ ¼ 0:5. The functions eH�ð/nðxÞÞ and
H(/n(x)) therefore represent soft and hard segmentations,
respectively.

Fig. 2 illustrates eH� and its derivative

~d�ð/Þ ¼
deH�ð/Þ

d/
¼ 1

4�
sech2 /

2�

� �
; ð14Þ

for several values of �. To simplify the notation we omit the sub-
script � in the rest of the paper.
3.1. Cost functional for segmentation

Joint estimation of the hidden variables Cn, or /n (using the le-
vel-set notation) and the unknown model parameters H (Eq. (6))
can be solved as an energy minimization problem:

EðC; HÞ ¼
XN

n¼1

ðCn; HÞ /
XN

n¼1

½� log pðInjCn; hI;nÞ � log pðCn; hCÞ�;

We now establish the correspondence between the log probability
and the level-set energy terms.



Fig. 2. (a) Smooth approximation of the Heaviside function eH� (Eq. (11)) and (b) its derivative ~d� (Eq. (14)) for different values of �.
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3.2. Image likelihood term

Let us first consider the image likelihood term:

log pðInjCn; ĥI;nÞ
¼

X
fvjCv

n¼1g
log pinðIvn ; ĥI;nÞ þ

X
fv jCv

n¼0g
log poutðIvn ; ĥI;nÞ; ð15Þ

where pin and pout are the probability distributions of the fore-
ground and background image intensities, respectively.

Let EIn , � b log pðInjCn; ĥI;nÞ define the energy term associated
with the image likelihood term. Using the continuous level-set for-
mulation, Eq. (10) and the following approximations:

Cn , Hð/nÞ � eHð/nÞ and 1� Cn , 1� Hð/nÞ ¼ Hð�/nÞ � eHð�/nÞ;

we obtain

EIn ¼ EIð/n;HÞ

¼ �b
Z

X

eHð/nðxÞÞ log pinðIn; hI;nÞ þ eHð�/nðxÞÞ log poutðIn; hI;nÞ
h i

dx:

ð16Þ

By replacing the binary labels H(/n) with soft assignments eHð/nÞ,
Eq. (16) becomes a continuous approximation of the expectation
of the image likelihood term in Eq. (15).

When pin and pout represent normal density distributions, we
get the familiar minimal variance term (Chan and Vese, 2001;
Paragios and Deriche, 2002; Cremers et al., 2007). Here, we use a
Gaussian mixture to model the background, as described later in
the paper.

3.3. Spatial prior and length terms

In the atlas-based segmentation framework the spatial prior
parameters hC are known and given in the form of a probabilistic
anatomical atlas. In the problem at hand, such atlas does not exist.
Instead, we estimate the spatial parameters by constructing a
dynamically evolving probabilistic atlas. We define the prior prob-
ability p(Cn;hC) to be a MRF (Geman and Geman, 1984)

pðCn;hCÞ

¼ 1
ZðhCÞ

YV

v¼1

hv
C

� �Cv
n 1�hv

C

� � 1�Cv
nð Þ Y

v 02NðvÞ
exp �f Cv

n ;C
v 0
n

� �� �
; ð17Þ

where Z(hC) is the partition function and NðvÞ are the closest
neighbors of a voxel v.
The corresponding energy functional EðCn; hCÞ , � a log p
ðCnjhCÞ takes the form:

EðCnjhCÞ ¼ �a
XV

v¼1

Cv
n logðhv

CÞ þ 1� Cv
n

� �
log 1� hv

C

� �	 

þ log ZðhCÞ

"

þ
XV

v¼1

X
v 02NðvÞ

f ðCv
n ;C

v 0
n Þ
#
: ð18Þ

We first consider the pairwise interaction term in Eq. (18). The func-
tion f ðCv

n ;C
v 0
n Þ ¼ wv;v 0 ðCv

n � Cv 0
n Þ

2
; is the penalty term for different

assignments of neighboring voxels. The sum
P

v 02NðvÞf ðC
v
n ;C

v 0
n Þ can

be configured to act as a finite difference operator approximating
the square of the gradient of Cn, i.e., jrCnj2 ¼
ð@Cn
@x Þ

2 þ ð@Cn
@y Þ

2 þ ð@Cn
@z Þ

2. Specifically, if we let h be the grid resolution,
then wv,v0 are set to either j/h2 or zero, where j is the relative
weight of the pairwise term. Based on this connection, we approx-
imate the pairwise clique potential term in Eq. (18) with a continu-
ous term

Eð/nÞ ¼ c
Z

X
jreHð/nðxÞÞj

2dx; ð19Þ

where c = aj. This smoothness term is related to the commonly
used length regularizer in the level-set literature (Chan and Vese,
2001):

ELENð/nÞ ¼ c
Z

X
jreHð/nðxÞÞjdx: ð20Þ

In practice, we used both terms, interchangeably, to constrain
boundary smoothness, without any significant change in the overall
quality of the results.

The mechanism of length-driven PDE evolutions on log-odds
representations of label probabilities was used in an atlas-based
segmentation context by Pohl et al. (2007c). In that work, the der-
ivation used a different strategy: a likelihood model was combined
with a prior on segmentations that was in turn based on curve
lengths; the resulting estimation problem was solved via the vari-
ational mean field method.

If we omit the pairwise term in Eq. (18), the prior on segmen-
tations p(Cn;hC) reduces to a Bernoulli distribution, where the
parameters hC represent the probability map for the structure
of interest. The introduction of the pairwise clique potentials
complicates the model but encourages homogeneous labeling
configurations.

We define the spatial energy term ES based on the singleton
term in Eq. (17). Using the continuous level-set formulation with
soft segmentation, we obtain:
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ESð/n;HÞ¼�a
Z

X

eHð/nðxÞÞ loghCðxÞþ eHð�/nðxÞÞ logð1�hCðxÞÞ
h i

dx:

ð21Þ

The spatial term in Eq. (21) and the image likelihood term in Eq.
(16) have similar structures. The image likelihood term, the length
term and the spatial prior term are derived directly from the gener-
ative probabilistic model. However, while the level-set formulations
of the length and the likelihood terms are commonly used, the for-
mulation of the spatial prior term, as defined in Eq. (21) is novel.

Ignoring the partition function in the equations that follow Eq.
(18) has no effect on the estimation of Eq. (7), but it changes Eq.
(9) to be maximum pseudo likelihood as in Besag (1975), rather
than maximum likelihood.

3.4. Unified cost functional

We construct the cost functional for /1, . . ., /N and the parame-
ters H by combing Eqs. (16), (20) and (21):

Eð/1; . . . ;/N;HÞ ¼ cELEN þ bEI þ aES: ð22Þ

The weights are adaptively tuned such that the contributions of the
energy terms ELEN, EI and ES to the overall cost are balanced. Sec-
tion 5.3 describes the weight tuning heuristic we used in the
experiments.

4. Gradient descent and parameter estimation

We optimize Eq. (22) by a set of alternating steps. For fixed
model parameters H, the evolution of each level-set function /n

is determined by the following gradient descent equation:

/nðx; t þ DtÞ ¼ /nðx; tÞ þ
@/n

@t
Dt; ð23Þ

where @/n
@t is obtained from the first variation of Eð/n;HÞ. Using the

Euler–Lagrange equations we get:

@/n

@t
¼ dð/nÞ cdivð r/n

jr/nj
Þ þ b log pinðInðxÞ; hI;nÞ � log poutðInðxÞ; hI;nÞ½ �

�
þ a log hC � logð1� hCÞ½ �

�
; ð24Þ

where d(/n) is the derivative of H(/n) with respect to /n as defined
in Eq. (14). For fixed segmentations /n, the model parameters are
recovered by differentiating the cost functional in Eq. (22) with re-
spect to each parameter.

4.1. Intensity parameters

We assume that the intensities of the structure of interest are
drawn from a normal distribution, i.e., pinðIn; hI;nÞ ¼NðIn;ln;r2

nÞ.
Optimizing Eq. (22) with respect to the distribution mean and var-
iance of the foreground region of In, we obtain the following update
rules:

ln ¼
R

X InðxÞeHð/nÞdxR
X
eHð/Þdx

;r2
n ¼

R
XðInðxÞ � lnÞ

2 eHð/nÞdxR
X
eHð/nÞdx

: ð25Þ

The intensities of the background tissues are modeled as a K-Gauss-
ian mixture:

poutðIn; hI;nÞ ¼ GMMðl1
n; � � � ;lK

n ;r
1
n; � � � ;rK

n ;w
1
n; � � � ;wK

n Þ;

where wk
n is the mixing proportion of the kth component in the mix-

ture. When the images are brain scans and the ROIs are brain struc-
tures, K = 3 Gaussians are used to model the intensity distributions
of the white and gray matters and the CSF. The Gaussian mixture
model parameters are estimated using the EM method. In different
applications, when there is less prior knowledge on the expected
distribution, kernel density estimators over mixtures of Gaussians
might be preferable (Cremers and Rousson, 2007).

4.2. Spatial parameters

We estimate the spatial function hC(x), constructing a dynami-
cally evolving latent atlas, by optimizing the sum of the energy
terms that depend on hC:

ĥC � arg max
hC

XN

n¼1

Z
X
½eHð/nðxÞÞ logðhCðxÞÞ

þ ð1� eHð/nðxÞÞÞ logð1� hCðxÞÞ�dx;

yielding,

ĥCðxÞ �
1
N

XN

n¼1

eHð/nðxÞÞ: ð26Þ
5. Implementation details

5.1. Prior registration of the image ensemble

Accurate alignment of the image ensemble is crucial to the suc-
cess of the latent atlas method since the spatial constraint relies on
voxel correspondences. In our experience, affine registration may
not be sufficient to obtain the required correspondences. Instead
we applied a non-rigid registration (Sabuncu et al., 2009b;
Toussaint et al., 2007; Postelnicu et al., 2009). However, since the
non-rigid registration procedure is applied to the entire images,
sometimes small ROIs in some of the images are misaligned. To
avoid those cases, we further aligned the ROIs using translation
by integer pixel units. Since the images are cropped to accelerate
the segmentation process, in practice, we used an exhaustive
search to maximize the pairwise image intensity correlation be-
tween the cropped template image that includes the ROI (based
on the known segmentation) and each of the other images in the
ensemble.

5.2. Initialization and the stopping criterion

In the presence of at least a single manual segmentation of an
image from the ensemble I1, . . ., IN, we initialize the unknown seg-
mentations /1, . . ., /N and the latent atlas as follows. We set
/n,t=0 = /0 (n = 1, . . ., N), where /0 is the signed distance function
of the known segmentation. We also set hC;t¼0 ¼ hC0 where
hC0 ¼ eHð/0IGrÞ is the Heaviside function of /0 smoothed with a
Gaussian kernel of width r (r = .35 in our experiments). In cases
where a manual segmentation is not available, the user provides
an input that allows to initialize the level-set functions and the la-
tent atlas. The user selects one of the volumes and identifies a sin-
gle sagittal, axial or coronal slice where the region of interest is
clearly seen. The user then marks (with a few mouse clicks) the
approximate location of the ROI center and one of its boundary
points. This input defines a sphere that is used to initialize the seg-
mentations of all the volumes. In a longitudinal study, only the seg-
mentations of the data acquired at the first time point are
manually initialized. The segmentations of volumes acquired in
consecutive time points are initialized from the final segmenta-
tions of the corresponding volumes acquired at the previous time
points.

We run the segmentation algorithm for each image In until the
changes in the segmentations are below a user-specified threshold:X
x2X
jHð/nt þ DtðxÞÞ � H /t

nðxÞ
� �

j < threshold:
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Once this convergence criterion is met for a segmentation of an im-
age In, the corresponding level-set function /n(t) is fixed, however
/n(t) is used for the re-estimation of hC until the segmentations of
the entire ensemble converges.

5.3. Parameter tuning

The optimal weights obtained in a leave-one-out analysis for a
particular dataset may not be suitable for another dataset. We
therefore do not optimize the weights prior to segmentation. In-
stead, in each iteration, we tune the weights such that the
weighted magnitude of the contribution of each term in Eq. (24)
is normalized to one (Riklin-Raviv et al., 2008).

We set � = 0.3 and Dt = 1. Both parameters should depend on
the image size and resolution as well as the magnitude and shape
of / (we follow the classical definition of Osher and Sethian (1988)
and represent / by a signed distance function, such that |r/| = 1).
The parameter � determines the width of d�(/) (Eq. (14)). It con-
trols the width of the band around the zero level of / that is up-
dated in every iteration (Eq. (24)). The parameter Dt, (Eq. (23))
scales the contribution @/

@t to the narrow band of /. The product
of d� and Dt, obtained by substituting Eq. (24) into Eq. (23) controls
the evolution of the segmentation process. Therefore, tuning �
should be done with respect to Dt (or vice versa). Automatic esti-
mation of these parameters and their influence on the convergence
properties of the suggested algorithm are subject of future work.

5.4. Topological changes of the boundaries

The current framework does not control topological changes
although it can be extended to include topology preservation
(Han et al., 2003). In practice, the spatial constraint encourages
preservation of the topology if the region of interest (ROI) is homo-
geneous and contiguous. In the brain tumor case, when the initial
spatial constrain is weaker (sphere) one may expect topological
changes to allow the segmentation of adjacent, yet not connected,
regions with similar intensities.

5.5. Algorithm outline

Here we summarize the proposed latent atlas segmentation
algorithm. The input consist of N aligned volumes {In}.

(1) Initialize {/n} and hC (Section 5.2).
(2) Repeat until convergence:
(a) Calculate the background and foreground intensity
parameters hI,n based on the current estimates of their
corresponding level-set functions /n (Section 4.1).

(b) Calculate the latent atlas parameters hC based on the
current estimates of the level-set functions /n (Eq. (17)).

(c) Use Eq. (24) (gradient descent) to evolve the level-set
functions /n based on the current estimates of the
respective intensity parameters hI,n and the spatial
parameters hC.
5.6. Quantitative evaluation

We use the Dice measure (Dice, 1945) to quantify the overlap
between the manual segmentations and the automatic segmenta-
tions. Let bL : X! f0;1g be a given manual labeling function (seg-
mentation) and let L:X ? {0,1} be the corresponding automatic
label map. The Dice score measures the volume overlap between
the two segmentations:

DðL; bLÞ ¼ 2jbL \ Lj
jbLj þ jLj ;
where |�| is the size (cardinality) of the set, and \ denotes intersec-
tion of two sets.

5.7. Multi-label segmentation

The current framework considers binary segmentation in which
the image is partitioned into a (semantically) single ROI and back-
ground. We ran the latent algorithm separately for each ROI with a
single level-set function corresponding to each image. While parti-
tioning images into multiple ROIs may not increase the computa-
tional efficiency, it allows handling of neighboring structures. The
proposed method can be extended by using a region competition
paradigm in which the contours between adjacent regions evolve
to maximize the posterior probabilities (Zhu and Yuille, 1996; Tu
and Zhu, 2002). A straightforward extension to multi-structure
segmentation could be obtained by replacing the logit function
for the binary case (Eq. (12)) by the multi-label log-odds formula-
tion as in Pohl et al. (2007b). In this implementation, multiple le-
vel-set functions compete for the ‘ownership’ of boundary voxels.
The final partition is determined by the highest voxel assignment
probabilities.
6. Experimental results

In this section, we present two sets of experiments. In the first
experiment, we apply the proposed segmentation method to seg-
ment brain structures across a population. Our goal is to validate
the method by comparing the automatic segmentations to expert
delineations in a well studied problem. We also compared the
resulting Dice scores to the Dice scores obtained by the state-of-
the-art FreeSurfer segmentation package (FreeSurfer, 2009). In
the second experiment, we demonstrate the algorithm by seg-
menting a brain tumor in application to a single-subject multi-
modal longitudinal study. This application illustrates the benefits
of our method in the case where no atlas is available to provide
spatial priors for segmentation.

6.1. Brain structures segmentation

We test the proposed approach on 39 MR brain scans. Some of
the subjects in this set were diagnosed with mild Alzheimer’s dis-
ease. The MR images (T1, 256 � 256 � 256 volume, 1mm3 isotropic
voxel size) were acquired on a 1.5-T General Electric Scanner. All
the pre-processing steps (gain-field correction and skull-stripping)
were performed using the FreeSurfer tools (FreeSurfer, 2009). In
addition to the MR volumes, manual segmentations of hippocam-
pus (HPC), thalamus (THL), caudate (CAD), putamen (PUT), palli-
dum (PAD), and amygdala (AMY) were available for these
subjects. The images and the labels were aligned to a common
template by applying the asymmetric image-template registration
method (Sabuncu et al., 2009b). Based on the given manual seg-
mentation of one of the images, the images were cropped such that
for each image the entire region of interest resides within the
cropped image. Due to significant misalignments of some of the
small ROIs in some of the registered images, the initial registra-
tions were adjusted by pixel-wise translation through the cropping
procedure as described in Section 5.1.

We excluded the image associated with the given manual seg-
mentation from the ensemble. In practice, we ran the latent atlas
algorithm several times with five different randomly chosen man-
ual initializations. The algorithm was implemented in Matlab. Exe-
cution time, and in particular the initial estimate of the background
intensity distributions, depends on the size of the cropped images.
Average CPU time for the segmentation of 38 corresponding struc-
tures ranged from approximately 10 minutes (Amygdala, cropped
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image size: 38 � 40 � 38) to approximately 80 minutes (Caudate,
cropped image size: 42 � 36 � 100). Processing time includes the
initial estimate of the GMM parameters and their update in consec-
utive iterations. Segmentation process converged in fewer than 10
iterations.

Fig. 3 shows sagittal, axial and coronal cross-sections of the 3D
segmentations of six structures in the right hemisphere in repre-
sentative individual brains. We observe that the manual segmenta-
tions in Fig. 3, and in particular the sagittal and axial slices, exhibit
obvious jaggedness of the boundaries. This is due to the fact that
the rater manually segments the structures slice-by-slice. Manual
segmentation in one plane typically results in jagging boundaries
in other planes (Yushkevich et al., 2006). In contrast, the automatic
segmentation, estimated from the entire 3D structure is much
smoother. Fig. 4 presents 3D views of the automatic and the man-
ual segmentations of the brain structures in one subject from the
study. The structures are shown together for display purpose, yet
each structure has been segmented independently. Cross-sections
of the resulting 3D latent atlases and of the probabilistic atlases
generated by averaging the manual expert segmentations are
shown in Fig. 5.

We used the Dice measure to quantitatively evaluate the seg-
mentations as described in Section 5.6. We compared the Dice
Fig. 3. Three cross-sections of 3D segmentations of six brain structures in the right hemi
blue.

Fig. 4. 3D views of the manual and the automatic
scores obtained by our Latent Atlas method (first row in Table 1)
to the Dice scores obtained by the following baseline procedures:

(1) Initial (last row in Table 1): The Dice scores calculated prior
to segmentation. These initial Dice scores quantify the over-
lap between the initial segmentation (the known single seg-
mentation of one of the subjects) and the true segmentation
of the corresponding subject. These scores practically mea-
sure the quality of the alignments across scans. As expected,
all of the noted segmentation methods obtain consistently
better Dice scores than the initial Dice scores.

(2) FreeSurfer (second row in Table 1): The Dice scores
obtained by the FreeSurfer tool for the same dataset
(Sabuncu et al., 2009a). The FreeSurfer is a widely used
atlas-based segmentation approach and is considered
state-of-the-art.

(3) Prob. (third row in Table 1): The Dice scores obtained using
an atlas-based approach implemented by using the
described level-set framework where the dynamically esti-
mated latent atlas is replaced by a fixed probabilistic atlas,
in a leave-one-out manner.

(4) Single (fourth row in Table 1): The Dice scores obtained by a
level-set atlas-based approach similar to the one mentioned
sphere. Automatic segmentation is shown in red. Manual segmentation is shown in

brain structure segmentation in one subject.



Fig. 5. Cross-sections of 3D atlases of six brain structures in the right hemispheres. Top row: latent atlases generated as part of the proposed segmentation algorithm. Bottom
row: probabilistic atlases. Each atlas is generated by averaging 39 corresponding manual labels of the input images.

Table 1
A comparison of the Dice coefficients for 12 brain structures in the left and the right hemispheres averaged over the 39 volumes in the study. See text for detail.

AMY CAD HPC PAL PUT THL

L R L R L R L R L R L R

Latent .779 .809 .821 .825 .757 .765 .765 .789 .853 .837 .855 .848
FreeSurfer .748 .751 .847 .852 .840 .839 .804 .793 .851 .852 .877 .885
Prob. .818 .828 .837 .833 .801 .801 .806 .803 .864 .852 .875 .872
Single .731 .760 .757 .754 .736 .720 .753 .750 .841 .821 .840 .834
Initial .716 .741 .741 .745 .723 .708 .739 .742 .830 .819 .832 .828
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above, replacing the probabilistic atlas by a single known
segmentation blurred by a Gaussian kernel. This single-label
atlas remains fixed throughout the segmentation.

The Dice scores comparisons are summarized in Table 1 and in
Fig. 6. The Dice scores obtained by our method approach the atlas-
based segmentation results. Note also that the Dice scores obtained
by our atlas-based implementation approach the Dice scores ob-
tained by the FreeSurfer package. To exemplify the effectiveness
of the latent atlas generated concurrently with the segmentation,
we also show a comparison to the segmentation results obtained
by using an atlas constructed from a single manual segmentation
smoothed by a Gaussian kernel, without the update procedure.
This method simulates the approach commonly used when only
a single manual segmentation is available. The comparison sup-
ports the latent atlas approach as a preferred alternative when only
a single segmentation is available.
Fig. 6. The mean and standard deviation of the Dice scores calculated for all images in th
atlas segmentation (red) is compared to the atlas-based segmentation (blue). (For interpr
web version of this article.)
We conducted two additional experiments to test how the seg-
mentation accuracy depends on the size of the image ensemble
and on the number of manual segmentations used to initialize
the latent atlas. We ran the latent atlas algorithm for 8–12 ran-
domly chosen image subsets of 5, 10, 15, 20, 25 and 30 images
for the six structures in both hemispheres. The results of both
experiments are shown in Fig. 7. While there is no clear depen-
dency of the mean Dice scores on the ensemble size, the latent at-
las scores approach the atlas-based results for a relatively small
number of manual segmentations (five or ten) that are used for
initialization.

6.2. Tumor segmentation

We also illustrate the proposed method on a set of 44 image
volumes of a patient with histologically confirmed low-grade gli-
oma. The volumes were acquired at 10 different time points at
e ensemble for six brain structures in the left and the right hemisphere. The latent
etation of the references to colour in this figure legend, the reader is referred to the



5 10 15 20 25 30 35
0.74

0.76

0.78

0.8

0.82

0.84

0.86
AMY
CAD
THL
PUT
HPC
PAL

0 5 10 15 20 25 30 35
0.76

0.78

0.8

0.82

0.84

0.86

0.88
AMY
CAD
THL
PUT
HPC
PAL

a b

Fig. 7. (a) The mean Dice scores calculated for six brain structures in both hemispheres as a function of the number of images in the ensemble. (b) The mean Dice scores for
six brain structures in both hemispheres as a function of the number of manual segmentations that initialize the latent atlas.

Fig. 8. Axial slice of the tumor volumes and the automatic 3D segmentations (red outlines) across 6 modalities and 10 time points. Not all the modalities were acquired at
each time point.
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the German Cancer Research Center (Heidelberg, Germany) using
1.5T Siemens Magnetom and 3T Siemens TRIO MR scanners. Up
to six imaging protocols: T1, T2, FLAIR, DTI, and contrast-enhanced
T1 sequences (T1gd) were used, as shown in Fig. 8. We aligned the



Fig. 9. Manual segmentations (red, green, blue) and automatic segmentation (black) for lateral T1, T2 and DTI-FA images acquired at the same time point. The fourth image
shows the corresponding section of the average of the associated 3D level-set functions. The zero level of the level-set functions average is shown in magenta. Tumor
boundaries of all the modalities available for that time point are shown in black. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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images using the MedINRIA registration software (Toussaint et al.,
2007). We calculated fractional anisotropy (FA) and apparent diffu-
Table 2
Dice coefficients for 44 volumes in the study. The first and the second scores in each entry
automatic and the manual segmentations, respectively. See text for details.

Acquisition date T1 T1gd T2

November 2005 .71 ± .11 .49 ± .14 .87
.80 ± .07 .52 ± .15 .95

March 2006 .78 ± .04 .77 ± .09 .93
.92 ± .02 .85 ± .06 .95

September 2006 .87 ± .03 .85 ± .08 .84
.90 ± .04 .82 ± .12 .95

December 2006 .87 ± .02 .89 ± .03 .93
.91 ± .03 .90 ± .04 .95

March 2007 .84 ± .02 .82 ± .11 .93
.91 ± .04 .87 ± .11 .94

June 2007 .81 ± .09 .85 ± .09 .93
.86 ± .11 .81 ± .11 .93

September 2007 .87 ± .04 .84 ± .08 .87
.92 ± .03 .86 ± .07 .94

January 2008 .88 ± .02 .89 ± .02 .91
.90 ± .01 .90 ± .02 .91

July 2008 .87 ± .03 .85 ± .02 .91
.93 ± .02 .93 ± .02 .94

October 2008 .88 ± .03 .85 ± .03 .91
.93 ± .03 .93 ± .01 .94

Time points
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Fig. 10. Left: comparison of the overlap in the manual segmentations for each individual
together (green). Overlap is defined as the mean Dice score between the three manual se
the proposed latent anatomy method (red) and the Dice scores of the multivariate EM for
obtained by the proposed latent anatomy method are consistently better. (For interpretat
version of this article.)
sion coefficient (ADC) maps from the diffusion tensor images (DTI)
using the same software. In this experiment we applied the latent
of the table are the mean and the standard deviation of the Dice scores between the

Flair DA ADC

± .01 .91 ± .03 .84 ± .02 .73 ± .08
± .01 .94 ± .02 .94 ± .01 .91 ± .07

± .02 .84 ± .02
± .02 .96 ± .01

± .02 .94 ± .01 .88 ± .03 .81 ± .04
± .02 .94 ± .02 .94 ± .02 .93 ± .03

± .01 .86 ± .02
± .01 .94 ± .01

± .02 .84 ± .02
± .03 .94 ± .01

± .02
± .03

± .02 .86 ± .03 .87 ± .02
± .02 .93 ± .01 .94 ± .02

± .03 .83 ± .04
± .01 .94 ± .02

± .03 .86 ± .03
± .01 .94 ± .02

± .03 .84 ± .04
± .01 .93 ± .02
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modality (red) with the overlap in the manual segmentations for all the modalities
gmentations. See text for details. Right: a comparison of the average Dice scores of
lesion segmentation of Van Leemput et al. (2001) (green). The segmentation results
ion of the references to colour in this figure legend, the reader is referred to the web
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atlas method to every set of images acquired at a particular time
point separately. In contrast to the multivariate approach (Van
Leemput et al., 2001) that produces a single segmentation for a
set of images, we obtained different segmentations corresponding
to the different input images acquired by the different modalities.
This output brings forth specific physical characteristics of the tu-
mor that may be only seen in some (or one) of the modalities.
Examples include differences in tissue water (T2, Flair-MRI),
enhancement of contrast agents (post-Gadolinium T1-MRI), diffu-
sion (DTI, DCE-MRI), or relative concentrations of selected metab-
olites (MRSI). The individual delineation of the tumor areas can
therefore facilitate quantitative analysis of tumor shape and
evolution.

To enable quantitative evaluation, three manual segmentations
of three orthogonal slices that pass through the center of the tumor
were provided for each volume.

Fig. 8 shows axial slices of the available image volumes together
with the boundaries of the automatic 3D segmentation. Fig. 9
shows the manual segmentations for three lateral slices through
the tumor, together with the automatic segmentation. We observe
that the segmentation error in the T2 image, due to the similarity
in the intensities of the scanned tumor and the nearby healthy tis-
sue, does not significantly affect the averaged level-set function
(right panel of Fig. 9), which corresponds to the latent atlas.

Table 2 provides quantitative evaluation of the overlap between
the automatic and the manual segmentations as measured by the
Dice coefficients. We compared the automatic segmentations with
each manual segmentation in the corresponding triplets of manu-
ally segmented slices. The first number in each cell in Table 2 re-
ports the mean and the standard deviation of these nine Dice
scores. The second number in each cell in Table 2 reports the mean
and the standard deviation of the Dice scores obtained by compar-
ing one of the manual segmentations with the other two in the
three slices. The overall average Dice score for the automatic seg-
mentation is above 0.85 while the average Dice scores across the
manual segmentations is 0.91. The top plot in Fig. 10 reports the
average Dice score over all modalities at a given time point ob-
tained by our method and the Dice scores of the multivariate tissue
classification according to Van Leemput et al. (2001). The plot
shows that the Dices scores obtained via the latent anatomy meth-
od are consistently higher. The bottom plot in Fig. 10 compares the
overlap among the manual segmentations for each individual
modality (‘intra-modal’) with the overlap among the manual seg-
mentations for all the modalities together (‘inter-modal’). We de-
fine overlap as the mean Dice score among the three manual
segmentations, as described above. This plot suggests that even
the manual segmentations vary significantly across modalities for
the same time point, justifying our approach of generating separate
tumor segmentation for each volume.
7. Discussion and future directions

We presented a novel level-set framework for the segmentation
of MR image ensembles that is motivated by a generative probabi-
listic model. Unlike most previous methods, spatial priors in the
form of a probabilistic atlas are not employed. Instead, spatial
parameters which form a dynamic atlas are inferred from the data-
set through an alternating minimization procedure. The practical
value of this work, as demonstrated by the experimental results,
is to offer an alternative to standard segmentation methods when
a suitable atlas is not available or when its reliability is question-
able. The foremost advantage of the proposed method is therefore
the potential saving of precious human hours that would be other-
wise used to manually segment a large set of images for the gener-
ation of an atlas that fits a novel data of a non-standard population.
The essence of the theoretical contribution is the link between a
statistical segmentation model and a variational active contour ap-
proach. We interpret the MAP estimation problem in statistical
segmentation in terms of a level-set functional constructed for
groupwise segmentation. The gradient descent procedure used to
update the level-set functions, which can be viewed as soft seg-
mentations of the ensemble, is alternated with the estimation of
the model parameters. For fixed segmentations these unknown
parameters are estimated by optimizing their likelihood, similar
to the maximization step in EM procedure (Dempster et al.,
1977). A comparison of the complete variational process to the
EM approach is therefore interesting. Since not the labels them-
selves, but their probabilities are updated, each gradient descent
iteration can be considered as one step toward the computation
of the expectation step. With the existing variants of the standard
EM approach (Neal and Hinton, 1998), the analogy between the
two methods seems to be nearly complete. Nevertheless, the need
to account for the regularization term derived from the pairwise
interactions between neighboring voxels leads to a non-trivial
problem, left for future work.

The probabilistic approach and the level-set framework are
both commonly used methodologies. The connection between
them adds a novel perspective to problems which could be solved
with either of the two methods. While the gradient descent proce-
dure, commonly used in level-set methods is a convenient way for
optimization, it guarantees globally optimal convergence only for
convex functionals (Cremers et al., 2008). The EM algorithm has
attractive properties; it requires no ‘step size’ parameter, and will
not oscillate around the optimum. However, there is no guarantee
of global solutions. The proposed level-set functional is not neces-
sarily convex, but it has the benefit of incorporating the image like-
lihood, spatial and smoothness constraints in one coherent
framework. In practice, the proposed level-set algorithm converges
to the desired solutions in all the experiments.
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