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Abstract. Spatial priors, such as probabilistic atlases, play an impor-
tant role in MRI segmentation. However, the availability of comprehen-
sive, reliable and suitable manual segmentations for atlas construction
is limited. We therefore propose a joint segmentation of corresponding,
aligned structures in the entire population that does not require a proba-
bility atlas. Instead, a latent atlas, initialized by a single manual segmen-
tation, is inferred from the evolving segmentations of the ensemble. The
proposed method is based on probabilistic principles but is solved using
partial differential equations (PDEs) and energy minimization criteria.
We evaluate the method by segmenting 50 brain MR volumes. Segmen-
tation accuracy for cortical and subcortical structures approaches the
quality of state-of-the-art atlas-based segmentation results, suggesting
that the latent atlas method is a reasonable alternative when existing
atlases are not compatible with the data to be processed.

1 Introduction

Probabilistic atlases are crucial for most MR segmentation methods due to the
absence of well defined boundaries. Derived from comprehensive sets of manually
labeled examples, atlases provide statistical priors for tissue classification and
structure segmentation [1,9,13,14,18]. Although atlas-based segmentation meth-
ods often achieve accurate results, the need for spatial priors can be problematic.
First, the availability of suitable atlases is limited since manual segmentation of a
significant number of volumes requires expensive effort of an experienced physi-
cian. Second, the suitability of existing atlases for images from different popula-
tions is questionable. Examples include using normal adult brain atlas for brain
parcellation of young children or patients with severe brain pathologies.

Recently, a few methods have been proposed to reduce or avoid the dependency
on possibly incompatible atlases. In the atlas-based segmentation method in [3],
topological constraints are used to avoid possible bias introduced by the atlas.
In [19], manually labeled structures are used to support the automatic segmen-
tation of neighboring structures within the same image. Tu et al. [17] propose a
discriminative approach for the segmentation of adjacent brain structures using
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a set of discriminative features learned from training examples. Lord et al. [11]
suggest a group-wise smoothing, segmentation and registration method for cross
sectional MR scans. Bhatia et al. [5] update an initial atlas constructed from a
different population using the evolving segmentations of multiple images.

Here we propose and demonstrate a method that does not use a set of training
images or probabilistic atlases as priors. Instead we extract an ensemble of cor-
responding structures simultaneously. The evolving segmentation of the entire
image set supports each of the individual segmentations. In practice, a subset
of the model parameters, called the spatial parameters, is inferred as part of
the joint segmentation processes. These latent spatial parameters, which can
be viewed as a ‘dynamic atlas’, are estimated exclusively from the data at hand
and a single manual segmentation. The latent atlas is used as a Markov Random
Field (MRF) prior on the tissue labels. The main novelty of the method with
respect to other group-wise segmentation methods such as [11,5] is the consistent
statistically-driven variational framework for MR ensemble segmentation.

Our contribution is two-fold. We introduce a level set framework, that is
based on probabilistic principles, in which segmentation uncertainty is expressed
by the logistic function of the associated level set values, similar to [15]. We
then use it for group-wise segmentation. We evaluate our method by segmenting
the amygdala, temporal gyrus and hippocampus in each hemisphere in 50 MR
brain scans. The dice scores achieved by our method approach the atlas-based
segmentation results of [14].

2 Problem Definition and Probabilistic Model

Our objective is to segment a particular structure or region of interest in N
aligned MR images. Specifically, we consider the 2-partition problem where each
voxel in image In (n = 1 . . .N) is assigned to either the foreground (structure of
interest) or the background.

Let each image In: Ω → R
+, be a gray level image with V voxels, defined on

Ω ⊂ R
3 and Γn: Ω → {0, 1} be the unknown segmentation of the image In. We

assume that each Γn is generated iid from a probability distribution p(Γ | θΓ )
where θΓ is a set of unknown parameters. We also assume that Γn generates
the observed image In, independently of all other image-segmentation pairs,
with probability p(In|Γn, θI,n) where θI,n are the parameters corresponding to
image In. We assign a specific set of intensity parameters to each image since
the acquisition conditions might vary across subjects.

Let {I1 . . . IN} be the given set of aligned images that form the observed vari-
able in our problem and let Γ = {Γ1 . . . ΓN} be the corresponding segmentations.
The joint distribution p(I1 . . . IN , Γ1 . . . ΓN |Θ) is governed by the composite set of
parameters Θ = {θΓ , θI,1 . . . θI,N}. Our goal is to estimate the segmentations Γ .

We jointly optimize for the segmentations Γ and the parameters Θ, assuming
that I1 . . . IN are independent:

{Θ̂, Γ̂} = arg max
{Θ,Γ}

log p(I1 . . . IN , Γ1 . . . ΓN ; Θ) (1)
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= arg max
{Θ,Γ}

N∑

n=1

log p(In, Γn; Θ) (2)

= arg max
{Θ,Γ}

N∑

n=1

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (3)

We propose to alternate between estimating the maximum a posteriori (MAP)
segmentations and updating the model parameters. For a given value of the
model parameters Θ̂, Equation (3) implies that the segmentations can be esti-
mated by solving N separate MAP problems:

Γ̂n = argmax
Γn

[log p(In| Γn; θI,n) + log p(Γn; θΓ )] . (4)

We then fix Γ̂ and estimate the model parameters Θ = {θΓ , θI,1, . . . θI,N} by
solving two ML problems:

θ̂I,n = arg max
θI,n

log p(In| Γn, θI,n) (5)

θ̂Γ = argmax
θΓ

N∑

n=1

log p(Γn| θΓ ). (6)

In the following sections we present a level-set framework that is motivated by
this probabilistic model. We reformulate the estimation problem stated in Eq. (4)
such that the soft segmentations p(Γn) rather then the Γn are estimated.

3 Probabilistic View of the Level Set Framework

Now we draw the connection between the probabilistic model presented above
and the level set framework for segmentation. Let φn: Ω → R denote a level set
function associated with image In. The zero level Cn = {x ∈ Ω| φn(x) = 0}
defines the interface between the partitions of In. Vese and Chan [6] represent
the image partitions by a regularized variant of the Heaviside function of φn,
e.g., H̃ε(φn) = 1

2 (1 + 2
π arctan(φn

ε )). Alternatively, we can use the hyperbolic
tangent to achieve the same goal:

H̃ε(φn) =
1
2

(
1 + tanh

(
φn

2ε

))
=

1
1 + e−φn/ε

. (7)

For ε = 1, the function H̃ε(·) is the logistic function. Similar to [15], we define the
level set function φn using the log-odds formulation instead of the conventional
signed distance function:

φn(x) � ε logit(p) = ε log
p(x ∈ w)

1 − p(x ∈ ω)
= ε log

p(x ∈ ω)
p(x ∈ Ω \ ω)

. (8)
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The scalar ε determines the scaling of the level set function φn with respect to
the ratio of the probabilities. Substituting this definition into Eq. (7) we obtain

H̃ε(φn(x)) =
1

1 + p(x ∈ Ω \ ω)/p(x ∈ ω)
= p(x ∈ ω), (9)

which implies that the function H̃ε(φn(x)) can be viewed as the probability that
the voxel in location x belongs to the foreground region. The functions H̃ε(φn(x))
and H(φn(x)) therefore represent soft and hard segmentations, respectively. To
simplify the notation we omit the subscript ε in the rest of the paper.

In the following subsections we relate the terms in Eq. (3) to the energy terms
in the classical level set functional.

3.1 Image Likelihood Term

Let us first consider the image likelihood term in Eq. (3):

log p(In| Γn, θ̂I,n) =
∑

{v|Γ v
n=1}

log pin(Iv
n; θI,n) +

∑

{v|Γ v
n=0}

log pout(Iv
n; θI,n), (10)

where pin and pout are the probability distributions of the foreground and back-
ground image intensities, respectively.

Let EI
∼= − log p(In| Γn, θ̂I,n) define the energy term associated with the

image likelihood term. Using the level-set formulation and replacing the binary
labels Γn in Eq. (10) with a soft segmentation represented by H̃(φn), we get:

EI(φn, Θ) =−
∫

Ω

[
log pin(In; θI,n)H̃(φn(x))+log pout(In; θI,n)H̃ (−φn(x))

]
dx.

(11)
If we use, for example, Gaussian densities for pin and pout we get the familiar
minimal variance term [6,12]. Here, we use a Gaussian mixture to model the
background, as described later in the paper.

3.2 Spatial Prior Term

We define the prior probability p(Γn| θΓ ) to be a Markov Random Field (MRF):

p(Γn|θΓ ) =
1

Z(θΓ )

V∏

v=1

(θv
Γ )Γ v

n (1 − θv
Γ )(1−Γ v

n )e−f(Γ v
n ,ΓN(v)

n ), (12)

where Z(θΓ ) is the partition function and N (v) are the closest neighbors of
voxel v. The function f(·) accounts for the interactions between neighboring
voxels. If we omit the pairwise term in Eq. (12), the prior on segmentations
p(Γn|θΓ ) reduces to a Bernoulli distribution, where the parameters θΓ represent
the probability map for the structure of interest. The introduction of the pair-
wise clique potentials complicates the model but encourages smoother labeling
configurations.
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Using the continuous level set formulation with soft segmentation, we define
the spatial energy term. as follows:

ES(φn, Θ) = −
∫

Ω

[
log θΓ (x)H̃(φn(x)) + log(1 − θΓ (x))H̃(−φn(x))

]
dx (13)

As in [4] we ignore the partition function, approximating the MRF model above.
The logarithm of the pairwise clique potential term f(·) can be configured
to act as a finite difference operator approximating the gradient of Γn at the
voxel v [10]. It can be therefore viewed as an approximation of the continuous
term

ELEN(φn) =
∫

Ω

|∇H̃(φn(x))|dx, (14)

which is the commonly used smoothness constraint as reformulated in [6].

3.3 The Unified Energy Functional

We now construct the cost functional for φ1 . . . φN and the parameters Θ by
combing Eqs. (11),(13) and (14):

E(φ1 . . . φN , Θ) = γELEN + βEI + αES , (15)

where α = 1−β− γ. As in [16] we tune the weights such that the contributions
of the energy terms ELEN, EI and ES to the overall cost are balanced.

4 Alternating Minimization Algorithm

We optimize the unified functional (15) in a set of alternating steps. For fixed
model parameters Θ, the evolution of each of the level set functions φn follows
the gradient descent equation:

∂φn

∂t
= δ̃(φn)

{
γ div (

∇φn

|∇φn| ) + β
[
log pin(In(x); θ̂I,n) − log pout(In(x); θ̂I,n)

]

+ α
[
log θ̂Γ − log(1 − θ̂Γ )

]}
, (16)

where δ̃(φn) � δ̃ε(φn) = dH̃ε(φn)
dφn

is the derivative of the Heaviside function, i.e.,

δ̃ε(φn) =
1
2ε

sech(
φn

2ε
) =

1
ε cosh(φn

ε )
.

For fixed segmentations φn the model parameters are recovered by differentiating
the cost functional (15) with respect to each parameter.
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4.1 Intensity Parameters

We assume that the intensities of the structure of interest are drawn from a
normal distribution, i.e., pin(In; θI,n) = N (In; μn, σ2

n). The distribution mean
and variance of the foreground region of In are updated at every iteration. The
intensities of the background tissues are modeled as a K-Gaussian mixture:

pout(In; θI,n) = GMM(μ1
n · · ·μK

n , σ1
n · · ·σK

n , w1
n · · ·wK

n ),

where wk
n is the mixing proportion component k in the mixture. The Gaus-

sian mixture model parameters are estimated using expectation maximization
(EM) [7].

4.2 Spatial Parameters

We estimate the spatial function θΓ (x), constructing a dynamically evolving
latent atlas, by optimizing the sum of the energy terms the depend on θΓ :

θ̂Γ =arg max
θΓ

N∑

n=1

∫

Ω

[H̃(φn(x)) log(θΓ (x)) + (1 − H̃(φn(x))) log(1 − θΓ (x))]dx,

yielding θ̂Γ (x) = 1
N

∑N
n=1 H̃(φn(x)).

5 Experimental Results

We test the proposed approach on 50 MR brain scans. Some of the subjects in
this set are diagnosed with the first episode schizophrenia or affective disorder.
The MR images (T1, 256 × 256 × 128 volume, 0.9375 × 0.9375 × 1.5mm3 voxel
size) were acquired by a 1.5-T General Electric Scanner. The data was origi-
nally acquired for brain morphometry study [8]. In addition to the MR volumes,
manual segmentations of three structures (superior temporal gyrus, amygdala,
and hippocampus) in each hemisphere were provided for each of the 50 indi-
viduals and used to evaluate the quality of the automatic segmentation results.
MR images are preprocessed by skull stripping. The volumes were aligned using
B-spline registration according to [2].

Assuming that the manual segmentation of a single instance is given, we ini-
tialize the latent atlas θΓ by the Heaviside function of a single manual segmenta-
tion smoothed with a Gaussian kernel of width σ (σ = .35 in our experiments).
We ran the experiments twice, initializing the level-set functions of the signed
distance function of the given manual segmentation or a sphere, with center and
radius corresponding to the manually segmented structure. The results obtained
using the first mode of initialization were slightly better. We excluded the image
associated with the given manual segmentations from the ensemble. The algo-
rithm was implemented in Matlab and ran on the average 7.5 minutes for 50
cropped volumes, excluding the time of the initial estimate of the background
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Fig. 1. The mean and standard deviation of the Dice scores calculated for six structures
in the ensemble. The latent atlas segmentation (green) is compared to the atlas-based
segmentation (blue) reported in [14] and to the segmentation obtained by using a single
manual segmentation as an atlas (red).
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Fig. 2. Three cross-sections of 3D segmentations of Hippocampus, Amygdala and Su-
perior Temporal Gyrus in the left and right hemispheres. Automatic segmentation is
shown in red. Manual segmentation is shown in blue. Fourth column: Coronal views of
the resulting atlases for each pair of structures.

intensity of the Gaussian mixture. About 7 iterations were needed until conver-
gence which was obtained when the update of the level-set functions did not
induce changes in the corresponding boundaries.



Joint Segmentation of Image Ensembles via Latent Atlases 279

We used the Dice score to evaluate segmentations. The results are shown in
Figure 1. In contrast to [14] we do not use spatial priors, neither do we use hier-
archical multi-stage segmentation model. Nevertheless, the Dice scores obtained
by our method approache the state-of-the-art atlas-based segmentation results
reported there. To exemplify the significance of a latent atlas, generated concur-
rently with the segmentation, we also show a comparison to the segmentation
results obtained by using an atlas constructed from a single manual segmentation
smoothed by a Gaussian kernel, without the update procedure. Figure 2 shows
segmentation examples of the three pairs of structures in representative individ-
ual brains. Coronal views of the resulting 3D atlases for each pair of structures
are shown in the fourth column of Figure 2.

6 Discussion and Conclusions

We presented a level set framework for segmentation of MR image ensembles,
that is motivated by a generative probabilistic model. Unlike most previous
methods, we do not use spatial priors in the form of a probabilistic atlas. Instead,
spatial latent parameters, which form a ‘dynamic atlas’, are inferred from the
data set through an alternating minimization procedure.

The quality of the segmentation results obtained for ensembles of brain struc-
tures shows that the proposed method presents a reasonable alternative to stan-
dard segmentation techniques when a compatible atlas is not available.

An on-going research is now conducted to demonstrate the ability of the
proposed algorithm to handle pathological cases (e.g., in a longitudinal or a
multimodal study) where the atlas-based approach still fails.
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