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Abstract. We present iCluster, a fast and efficient algorithm that clus-
ters a set of images while co-registering them using a parameterized,
nonlinear transformation model. The output is a small number of tem-
plate images that represent different modes in a population. This is in
contrast with traditional approaches that assume a single template to
construct atlases. We validate and explore the algorithm in two exper-
iments. First, we employ iCluster to partition a data set of 416 whole
brain MR volumes of subjects aged 18-96 years into three sub-groups,
which mainly correspond to age groups. The templates reveal significant
structural differences across these age groups that confirm previous find-
ings in aging research. In the second experiment, we run iCluster on a
group of 30 patients with dementia and 30 age-matched healthy con-
trols. The algorithm produced three modes that mainly corresponded to
a sub-population of healthy controls, a sub-population of patients with
dementia and a mixture group that contained both types. These results
suggest that the algorithm can be used to discover sub-populations that
correspond to interesting structural or functional “modes.”

1 Introduction

Historically, computational anatomy studies have mainly been hypothesis-driven,
aiming to identify and characterize structural or functional differences between,
for instance a group of patients with a disease of interest and control subjects.
With the increasing availability of medical images, unsupervised algorithms offer
the ability to probe the population and potentially discover sub-groups that may
differ in unexpected ways. This paper proposes an efficient probabilistic clustering
algorithm, called iCluster, for computing one or more templates that summarize
a given population of images. The algorithm simultaneously co-registers all images
using a nonlinear transformation model parameterized via B-splines [16]. Addi-
tionally, it computes a small number of template images that represent the modes
of the population and assigns each image to a template. The templates are guar-
anteed to live in an affine-normalized space, i.e., they are spatially aligned with
respect to an affine transformation model.

Using two experiments, we demonstrate that the modes of the population
discovered by iCluster capture known structural differences and similarities. On
a population of 416 brain MRI of subjects aged 18-96 years, the algorithm com-
puted 3 unique templates that mainly comprised of young brains (mean age 31),
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older middle aged brains (mean age 69) and elderly brains (mean age 79). In an-
other setting, we demonstrate that the modes discovered by the algorithm reflect
the two groups of subjects (with mild dementia and healthy) in the population.
These results suggest that iCluster can be used to probe a population of images
to discover important structural or functional “modes.”

2 Background and Prior Work

In medical imaging, the term atlas usually refers to a (probabilistic) model of a
population of images, with the parameters learned from a training data set [5,20].
In its simplest form, an atlas is a mean intensity image, which we call a template
[2,4,15,21]. Yet, richer statistics, such as intensity variance or segmentation label
counts, can also be included in the atlas model [8]. Atlases are used for various
purposes including normalization of new subjects for structure and function
localization, segmentation or parcellation of certain structures of interest and
group analysis to identify pathology related changes or developmental trends.

Atlas construction requires a dense correspondence across subjects. Earlier
techniques used a single image – either a standard template [4], or an arbitrary
subject from the training data set [9] – to initially align the training subjects
using a pairwise registration algorithm. Other techniques focused on determin-
ing the least biased template from the training set [12,14]. A single template
approach faces substantial methodological challenges when presented with a het-
erogeneous population, such as patients and matched normal control subjects in
clinical studies. To circumvent this, more recent approaches aim to co-register
the group of images simultaneously without computing a group template [18,22].
These algorithms, however, do not compute the multiple modes of the popula-
tion. A recent work [3] presented a method that automatically identified the
modes of a population using the mean-shift algorithm. This approach solved
pairwise registrations to compute each inter-image distance, which slowed down
the algorithm substantially. Moreover, the multi-modality of the population was
not modeled explicitly, making it difficult to extract a representation of the het-
erogeneous population. An alternative strategy is to use all training images as
the atlas [10]. A new subject is registered with each training image and seg-
mentation is based on a fusion of the manual labels in the training data. This
approach is not suitable for anatomical variability studies, where a universal
coordinate frame is necessary to identify and characterize group differences.

In this paper, we develop a probabilistic framework for joint registration of
a set of images into a common coordinate frame, while clustering them into a
small number of groups, each represented by a template image. Similar to [1], we
employ a simple mixture of Gaussians model and a maximum likelihood frame-
work which we solve using Generalized Expectation Maximization (GEM). Our
algorithm can also be viewed as an extension of the approach of [19], which
solves the registration problem as an initial, separate step. We implement iClus-
ter using a 3D nonlinear transformation model parameterized via B-splines [16].
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Our framework yields an efficient, fast, scalable and flexible algorithm that of-
fers at least two advantages over traditional population analysis methods which
are typically hypothesis driven and work with single templates. First, it removes
the sensitivity of the co-registration and atlas coordinate frame to the selected
target. Second, it provides a novel, unsupervised way to probe the population for
different modes. Analyzing the discovered sub-populations and their representa-
tive templates promises to advance our understanding of dominant structural or
functional changes due to pathology or development.

3 The Model and Algorithm

We assume that the input images {In}N
n=1 are generated from a small number of

templates {Tk}K
k=1. Thus, for each n ∈ {1, . . . , N}, there exists k ∈ {1, . . . , K}

such that:
In(Φn(x)) = Tk(x) + εn(x), ∀x ∈ Ω ⊂ R3, (1)

where Φn : Ω $→ R3 is an admissible spatial warp, such as a parameterized non-
linear transformation, εn(x) is spatially independent, non-stationary Gaussian
noise with zero mean and standard deviation σ(x). The unknown assignment
between individual images and templates is of interest and defines a clustering
of the images. To model the possibly unbalanced nature of cluster sizes, we define
an unknown prior on the template frequencies, and denote this by {πk}.

We use θ = {{Tk}, {πk}, σ, {Φn}} to denote the pooled set of model parame-
ters. Marginalizing over all possible template indices, we obtain the probability
of observing a particular image:

p(In; θ) =
k

πkpk(In; Tk, σ, Φn) =
k

πk

x∈Ω

N (In(Φn(x)); Tk(x), σ(x)), (2)

where N (·; µ, σ(x)) is the Gaussian density with mean µ and standard deviation
σ(x). We formulate the problem of atlas construction as a maximum likelihood
estimation:

θ∗ = arg max
θ

L(θ) = arg max
θ

n

log p(In; θ), (3)

where L(θ) denotes the log-likelihood. We use a Generalized Expectation Maxi-
mization (GEM) algorithm to solve Eq. (3). For a fixed θ0 value, using Jensen’s
inequality we form a lower bound for L(θ):

L(θ) ≥ Q(θ; θ0) =
n k

qk(In; θ0) log pk(In; θ) + c, (4)

where qk(In; θ0) = πkpk(In; θ0)/(
∑

k′ πk′pk′(In; θ0)) is the posterior probability
that In was generated from Tk and c is a constant that does not depend on θ.
Note that L(θ0) = Q(θ0; θ0). The GEM algorithm iteratively improves this lower
bound. Let θ(i) be the guess of θ at the (i)’th iteration. Computing Q(θ; θ(i)) –
or, equivalently q(i)

n (k) ! qk(In; θ(i)) – is the E-step. The M-step updates θ to
increase Q(θ; θ(i)). In our formulation, we use a coordinate ascent strategy in
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the M-step and divide it into two sub-steps: (1) the T-step (“T” stands for tem-
plate) where we compute the closed form expressions for the template parameters
{{Tk}, {πk}, σ} that maximize Q; and (2) the R-step (“R” stands for registra-
tion) where we numerically solve for the transformation parameters {Φn}. The
algorithm can be summarized as follows:

– E-step: Given the model parameters from the i’th iteration, the algorithm
updates the posterior cluster probabilities as:

q(i)
n (k) ∝ π(i)

k
x∈Ω

N (In(Φ(i)
n (x));T (i)

k (x), σ(i)(x)) (5)

and
∑

k q(i)
n (k) = 1. These probabilities can be seen as “soft memberships,”

where q(i)
n (k) = 1 would indicate a “hard membership” in cluster k.

– T-step: Given the posterior probability estimates {q(i)
n (k)} and transforma-

tion parameters {Φ(i)
n }, the algorithm updates its estimates of the templates

{Tk}, template priors {πk} and variance image σ2 for which we derive closed-
form expressions:

T (i+1)
k (x) = n q(i)

n (k)In(Φ(i)
n (x))

n q(i)
n (k)

, π(i+1)
k = n q(i)

n (k)

n,k q(i)
n (k)

(6)

σ(i+1)(x)2 =
1
N

n,k

q(i)
n (k) In(Φ(i)

n (x)) − T (i+1)
k (x)

2
(7)

– R-step: Given the new template parameters and memberships the spatial
transformations are updated as:

Φ(i+1)
n = arg min

Φ
x∈Ω

(In(Φ(x)) − T̄ (i+1)
n (x))2

σ(i+1)(x)2
, (8)

where T̄ (i+1)
n =

∑
k q(i)

n (k)T (i+1)
k is the “effective template” (i.e., target im-

age in registration) for image In at iteration (i + 1). This is a weighted
average of the current templates and the weights are membership proba-
bilities. A single transformation Φn is estimated for each image, since the
model assumes that an image is generated from a single template Tk. Cur-
rent membership probabilities determine which template the image should
be aligning with. We solve the non-convex optimization problem (8) using a
gradient-descent optimizer, a B-spline transformation model on an 8× 8× 8
control point grid and a multi-resolution strategy. The registration of each
image is done in parallel, since the optimization does not depend on the
other images. The local convergence nature of gradient-descent guarantees
that the lower bound on the log-likelihood is improved, not maximized, at
each step; hence the name Generalized EM.

The above algorithm does not guarantee that the computed template images
are in alignment. To introduce a notion of common coordinate frame, we use an
initial affine normalization step that co-registers all the images using a single
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dynamic mean image and an affine transformation model. This step is one of the
popular co-registration algorithms used in practice [12].

In group-wise registration, one needs to anchor the registration parameters
to avoid global transformation drifts across subjects [18,22]. We extend this
strategy to the multi-template setting by constraining each point to lie at the
average location of corresponding points across the images in each cluster. To
impose this constraint, we use the soft memberships q(i)

n (·):

1
N

n

q(i)
n (k)Φ(i+1)

n (x) = x, ∀x ∈ Ω, and ∀k. (9)

Marginalizing Eq. (9) over k yields 1
N

∑
n Φ(i+1)

n (x) = x, ∀x ∈ Ω, which is the
anchoring constraint used by group-wise registration methods [18,22]. We apply
the constraint of Eq. (9) at each iteration by projecting all the subjects’ gradients
of the registration objective function onto an appropriate space determined by
the memberships of all subjects. This is an extension of subtracting the average
gradient from the individual gradients, as proposed by [18].

Each iteration of the algorithm has a computational complexity and memory
requirement of O(NKM), where N is the number of input images, K is the
number of templates and M is the number of voxels. We use multi-threading
in ITK [11] to implement a parallelized version of iCluster. Similar to [22], we
employ a stochastic sub-sampling strategy to speed up the algorithm. At each
iteration, a random sample of less than 1% of the voxels is used to compute the
soft memberships, templates, template priors, standard deviation image and to
update transformation parameters.

4 Experiments

We used the OASIS data set [13] which consists of 416 pre-processed (skull
stripped and gain-field corrected) brain MR images of subjects aged 18-96 years
including individuals with early-stage Alzheimer’s disease (AD).

In the first experiment, we ran iCluster on the whole data set while varying
the number of templates: K = 2-6. Each run took approximately 4-8 hours on a
16 processor PC with 128GB RAM. For K = 2, 3 the algorithm computed 2 and
3 unique, structurally different templates, respectively. These templates were ro-
bust: they were the same for random subsets of the data set of as little as 60
subjects. For larger values of K, however, the computed templates were not all
unique, or corresponded to single outlier subjects, or were not robust to random
sub-sampling of the data set. Fig. 1 shows the two and three robust templates
computed with K = 2 and K = 3. The figure includes the age distributions esti-
mated using Parzen windowing with a Gaussian kernel and a standard deviation
of 4 years for each cluster identified by the algorithm (Fig. 1-c and 1-h).

Each template corresponds to a unique age group: for K = 2, we have a group
of young subjects (mean age 39) and a group of elderly subjects (mean age 78);
and for K = 3 we have young subjects (mean age 31), an older middle aged
group (mean age 69) and elderly subjects (mean age 79). Fig. 1-d illustrates the
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Fig. 1. Top row: Two templates in the OASIS data set: (a) young subjects, (b) older
subjects; (c) the cluster-specific age distribution for K =2; (d) the age distribution
that reveals the relationship between the ages of subjects in clusters identified for
K=2 and for K=3. Bottom row: Three templates in the OASIS data set: (e) young
subjects, (f) older middle-aged group and (g) elderly subjects; (h) the corresponding
age distribution. See text for details.

intersection between the middle age distribution for K = 3 and the distributions
for K = 2. This plot reveals that the middle aged group for K = 3 consists of
two sub-populations: (1) a younger group of subjects that are in the young group
for K = 2 and (2) an older age group in the elderly for K = 2. These results
suggest that the dominant structural modes in this large population are mainly
due to aging. However, analyzing the decomposition of the whole age distribution
(shown in black in Fig. 1-d) indicates that iCluster does not simply find the three
major age modes. Specifically, the small, middle peak around 50 years is robustly
included with the younger population for both K = 2 and K = 3. Furthermore,
with three modes, the algorithm identifies an older middle aged group that has
a significant overlap with the elderly group. This could suggest that some brains
“age faster than others.” Further analysis of the anatomical structures is needed
to validate this.

In a second experiment, we used a set of 60 subjects from the OASIS data set.
Thirty of these were diagnosed with very mild to mild dementia and probable
AD, while the other thirty individuals were age-matched controls with no sign
of clinical dementia at the time of scanning. iCluster robustly identified three
modes in this population. Template 1 (shown in Fig. 2-a) consists of 17 subjects,
14 of which have dementia. Template 3 (Fig. 2-c) consists of 17 subjects, 16
of which are healthy. Template 2 (Fig. 2-b), on the other hand, is a mixture
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(a) dementia (b) mixed group (c) mainly healthy

Fig. 2. Three templates for the “30 dementia+30 healthy data set.”

group that contains 15 patients and 11 healthy subjects. For K = 2 (templates
not shown), there was a significant overlap between the two groups: in the first
group 21 out of 31 subjects had dementia, while in the second group 20 out
of 29 subjects were healthy controls. The fact that most of the healthy subjects
from the first, patient-dominant group and most of the patients from the second,
healthy-dominant group were pooled to generate a third, mixed group in K = 3
may be indicative that dementia is not a simple, binary state. Rather, the mix-
ture group may represent a population of individuals with borderline dementia
or a type of pathology other than dementia that seems to be dominant in the
first template population for K = 3.

In both experiments, enlarged ventricles are obvious in the older and dementia
templates when compared to the younger and healthy populations, respectively.
This structural change due to aging and dementia has been reported in the liter-
ature [7,17]. Further analysis is required to understand the structural differences
between the discovered modes. The intermediate groups (the older middle aged
in the first experiment and the mixture group in the dementia experiment) can
provide interesting insights into structural changes due to aging and dementia.

5 Discussion

We presented a fast and efficient image clustering algorithm for co-registering a
group of images, computing multiple templates that represent different modes
of the population and determining template assignments. We demonstrated our
algorithm in two experiments, which revealed age and disease-related modes of
the population. Our results confirm previous findings and lead to interesting
insights that suggest future research directions in computational anatomy.

The proposed framework can be further explored in various ways. One can
employ a richer transformation model, with a prior on the transformations. This
will incorporate deformation costs into the membership computations, similar
to deformation-based population analysis approaches [6]. Also, general image-to-
image distances, such as Mutual Information, can be derived using more flexible
models than an additive Gaussian. This promises better results in cases where
inter-image intensity variations are significant. Furthermore, one can use a model
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selection strategy to automatically determine the optimal number of modes. The
proposed algorithm can be straightforwardly used with other types of datasets,
such as fMRI or DTI, to identify functional or connectivity based modes of a
population.
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