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Abstract. Segmentation of medical images is commonly formulated as
a supervised learning problem, where manually labeled training data are
summarized using a parametric atlas. Summarizing the data alleviates
the computational burden at the expense of possibly losing valuable in-
formation on inter-subject variability. This paper presents a novel frame-
work for Supervised Nonparametric Image Parcellation (SNIP). SNIP
models the intensity and label images as samples of a joint distribution
estimated from the training data in a non-parametric fashion. By capi-
talizing on recently developed fast and robust pairwise image alignment
tools, SNIP employs the entire training data to segment a new image via
Expectation Maximization. The use of multiple registrations increases
robustness to occasional registration failures. We report experiments on
39 volumetric brain MRI scans with manual labels for the white matter,
cortex and subcortical structures. SNIP yields better segmentation than
state-of-the-art algorithms in multiple regions of interest.

1 Introduction

Image segmentation in medical imaging aims to partition images into various re-
gions of interest (ROIs), such as anatomical structures. Except in cases where the
ROIs are distinguishable based on intensity information alone, prior information
is typically needed in the form of manually labeled data. A common approach is
to summarize the training data with a parametric model, usually referred to as
an atlas [1,2,3,4,5]. Atlases aid segmentation by introducing a global coordinate
system that restricts the number of possible structures occurring at a particular
position and may encode the appearance of anatomical structures.

Atlas-based segmentation relies on the alignment of a new image to the atlas
coordinate frame. Conventional methods utilize off-the-shelf inter-subject regis-
tration tools as pre-processing before segmentation [6,7,3]. Because the quality
of registration can be improved with better segmentation and vice versa, several
approaches have been proposed to unify the two problems [8,4,5].

An alternative strategy is to employ the entire training data set. Such an ap-
proach can exploit recently-developed fast and accurate, pairwise nonlinear reg-
istration algorithms, e.g. [9,10]. The label fusion (propagation) method [11,12]
transfers the labels of training images to a test image after pairwise registration.
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The segmentation labels of the test image are then estimated via majority vot-
ing. This method yields improved segmentation, since errors in the registration
procedures are averaged out. A recent extension of label fusion [11] uses a subset
of the training data, consisting of the subjects most similar to the test subject.
Yet, segmentation is still performed via majority voting, where each relevant
training subject has the same weight. Isgum et al. propose an ad-hoc method
that uses local and soft weighting within the label-fusion framework [13].

In this paper, we develop a supervised nonparametric image parcellation
(SNIP) framework conceptually similar to label fusion [12] and its extensions
[11,13]. In contrast to these methods, we adopt a Bayesian approach, where seg-
mentation is inferred via the Maximum A Posteriori (MAP) principle and the joint
label and intensity image distribution is estimated in a nonparametric fashion.
The transformations between the test image and each training image are modeled
as nuisance random variables and marginalized using standard Bayesian approxi-
mations. Marginalization accounts for the uncertainty in registration, commonly
ignored in the literature (see [14,15] for notable exceptions). The resulting op-
timization is efficiently solved using Expectation Maximization. Unlike [12], the
similarity between a warped training image and test image plays an important
role: more similar training images are weighted more in segmentation.

The soft weighting of training subjects was recently used for shape regres-
sion [16], where the weights were a function of age difference between the sub-
jects. The proposed SNIP framework is also related to STAPLE [17], which fuses
multiple segmentations of a single subject. In contrast, SNIP handles multiple
subjects and accounts for inter-subject registration.

We report experiments on 39 brain MRI scans that have corresponding man-
ual labels, including the cortex, white matter, and sub-cortical structures. We
demonstrate that SNIP compares favorably to state-of-the-art segmentation al-
gorithms in multiple regions of interest.

2 Theory

Let {Ii} be N training images with corresponding label maps {Li}, i = 1, . . . , N .
We assume the label maps take discrete values that indicate the label identity
at each spatial location. Let I : Ω �→ R denote a new, previously unseen test
image defined on a discrete grid Ω ⊂ R

3. One common approach to estimate its
label map L̂ is via MAP estimation:

L̂ = argmax
L

p(L|I, {Li, Ii}) = argmax
L

p(L, I |{Li, Ii}), (1)

where p(L, I|{Li, Ii}) denotes the joint probability of the label map L and
image I given the training data. Rather than using a parametric model for
p(L, I|{Li, Ii}), we employ a non-parametric estimate:

p(L, I|{Li, Ii}) =
1
N

N∑

i=1

p(L, I|Li, Ii). (2)
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Fig. 1. Generative model for (L, I) given the template (Li, Ii). Φi is the mapping
from the image coordinates to the template coordinates. Squares indicate non-random
parameters, while circles indicate random variables. Shaded variables are observed.

Eq. (2) can be viewed as a kernel density (Parzen window) estimate of the un-
derlying distribution, or equivalently, a mixture distribution. p(L, I|Li, Ii) is the
probability of (L, I), given that the new subject was generated from training
subject i. Let Φi : Ω �→ R

3 denote the unknown transformation that maps a
test image grid point to a location in the training image i. Fig. 1 illustrates the
generative model for p(L, I|Li, Ii), which assumes that the image I and label L
are conditionally independent if the transformation Φi is observed. This yields:

p(L, I|Li, Ii) = p(I|Li, Ii)p(L|I, Li, Ii)

= p(I|Ii)
∫

Φi

p(L|Φi, Li, Ii)p(Φi|I, Li, Ii)dΦi

≈ p(I|Ii)
∫

Φi

p(L|Φi, Li, Ii)δ(Φi − Φ∗
i )dΦi

= p(I|Ii)p(L|Φ∗
i , Li), (3)

where we used the standard mode approximation for the integral and

Φ∗
i � argmax

Φ
p(Φi|I, Li, Ii) = argmax

Φ
p(I|Φ, Ii)p(Φ), (4)

is the most likely transformation between test image I and training image Ii.
Substituting Eqs. (2) and (3) into Eq. (1) yields

L̂ = argmax
L

N∑

i=1

p(I |Ii)p(L|Φ∗
i , Li). (5)

The objective function in Eq. (5) can be viewed as a mixture distribution,
where the label likelihood terms p(L|Φ∗

i , Li) are the mixture components and
the image likelihood terms p(I|Ii) – which encode the similarity between the
test image I and training image Ii – are the mixing coefficients. This optimiza-
tion problem can be solved efficiently using Expectation Maximization (EM). In
the next section, we instantiate the model and present the corresponding EM
algorithm.
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3 Model Instantiation

In our current implementation, we assume the image likelihood is a spatially
independent Gaussian with a stationary variance σ2:

p(I |Ii, Φi) =
∏

x∈Ω

1√
2πσ2

exp

[
− 1

2σ2
(I (x) − Ii (Φi (x)))2

]
. (6)

We model the label likelihoods as a product of independent multinomials:

p(L|Li, Φi) =
∏

x∈Ω

πLi(L(x);Φi(x)), (7)

where πLi(l; Φi(x)) encodes the probability of observing label l at grid location
x ∈ Ω of the test image, given that the test image is generated by training
image i and Φi is the mapping from the coordinates of the image to those of the
training image i. We compute πLi(·; Φi(x)) by applying the transformation Φi

to the vector image πLi(·; x) where each voxel is assigned a length-L probability
vector, with one indicating the manual label, and zero elsewhere. Non-grid values
are obtained via trilinear interpolation.

Using the one-parameter subgroup of diffeomorphism, we parameterize a warp
Φ with a smooth, stationary velocity field v : R

3 �→ R
3 via an ODE [9]: ∂Φ(x,t)

∂t =
v(Φ(x, t)) and initial condition Φ(x, 0) = x. The deformation Φ(x) = exp(v)(x)
can be computed efficiently using scaling and squaring and inverted by using the
negative of the velocity field: Φ−1 = exp(−v) [18].

We impose an elastic-like regularization on the stationary velocity field:

p(Φ = exp(v)) =
1

Zλ
exp

⎡

⎣−λ
∑

y∈Ω

∑

j,k=1,2,3

(
∂2

∂x2
j

vk(x)

∣∣∣∣
x=y

)2

⎤

⎦ , (8)

where λ > 0 is the warp stiffness parameter, Zλ is a partition function that
depends only on λ, and sub-scripts denote coordinates (dimensions). A higher
warp stiffness parameter yields more rigid warps.

3.1 Efficient Pairwise Registration

To evaluate the joint probability in Eq. (3), we need to compute Φ∗
i defined in

Eq. (4). Using Eqs. (6) and (8), we can rewrite Eq. (4) as

v̂i = argmin
v

∑

y∈Ω

⎡

⎣(I(y) − Ii(exp(v)(y)))2 + 2λσ2
∑

j,k=1,2,3

(
∂2

∂x2
j

vk(x)

∣∣∣∣
x=y

)2

⎤

⎦ , (9)

where Φ∗
i = exp(v̂i). To solve Eq. (9), we use the bidirectional log-domain

Demons framework [10], which decouples the optimization of the first and sec-
ond terms by introducing an auxiliary transformation. The update warp is first
computed using the Gauss-Newton method. The regularization is achieved by
smoothing the updated warp parameters. The smoothing kernel corresponding
to Eq. (8) can be approximated with a Gaussian: K(x) ∝ exp(−α

∑
i=1,2,3 x2

i ),
where α = γ

8λσ2 and γ > 0 controls the step size of the Gauss-Newton step.
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3.2 The Image Likelihood

The image likelihood p(I|Ii) is needed to evaluate the joint probability in Eq. (3).
We expand p(I|Ii) using the generative model in Fig. 1 and approximate the
resulting integral using Laplace’s method [19]:

p(I |Ii) =

∫

Φ

p(I |Φ, Ii)p(Φ)dΦ ≈ p(I |Φ∗
i , Ii)p(Φ∗

i )
√

(2π)3|Ω|/ detH, (10)

where Φ∗
i is defined in Eq. (4) and computed in the previous section. det denotes

matrixdeterminant,H is theHessianmatrixwith entries−∂2 log[p(I|Φ,Ii)p(Φ)]
∂vj(x)∂vk(y) |Φ=Φ∗

i
,

for all x, y ∈ Ω ⊂ R
3 and j, k = {1, 2, 3}, and |Ω| is the number of voxels.

We approximate the determinant of the Hessian by ignoring the second deriva-
tive terms and interactions between neighboring voxels, cf.[15]:

detH ∝
∏

x∈Ω

det

(
∇Ii(exp(v)(x))(∇Ii(exp(v)(x)))T +

9

2
λσ2Id3×3

)
, (11)

where ∇Ii(exp(v)(x)) is the 3 × 1 gradient of the warped training image Ii and
Id3×3 is the 3 × 3 identity matrix.

3.3 Segmentation via EM

With our model instantiation, the solution of Eq. (5) cannot be found in closed
form, since a mixture of factorized distributions is not factorized. Yet, an efficient
solution to this MAP formulation can be obtained via Expectation Maximization
(EM). The derivation of the EM algorithm is straightforward. Here, we present a
summary. The E-step updates the weights associated with each training image:

m
(n)
i ∝ p(I |Ii)

∏

x∈Ω

πLi(L̂
(n−1)(x); Φ∗

i (x)), (12)

where L̂(n−1)(x) is the segmentation estimate of the test image from the previous
iteration and the weights sum to 1,

∑
i m

(n)
i = 1. The M-step updates the

segmentation estimate through the following maximization:

L̂(n)(x) = argmax
L(x)

N∑

i=1

m
(n)
i log (πLi(L(x);Φ∗

i (x))) . (13)

The M-step in Eq. (13) performs an independent optimization at each voxel x ∈
Ω. Each of these optimizations simply entails determining the mode of a length L
vector, where L is the number of labels. The EM algorithm is initialized with
m

(1)
i ∝ p(I|Ii) and iterates between Equations (13) and (12), until convergence.

4 Experiments

We validate SNIP with 39 T1-weighted brain MRI scans of dimensions 256×256×
256, 1mm isotropic. Each MRI was manually delineated by an expert anatomist
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into left and right White Matter (WM), Cerebral Cortex (CT), Lateral Ventri-
cle (LV), Hippocampus (HP), Thalamus (TH), Caudate (CA), Putamen (PU),
Pallidum (PA) and Amygdala (AM). We use volume overlap with manual labels,
as measured by the Dice score [20], to quantify segmentation quality. The Dice
score ranges from 0 to 1, with higher values indicating improved segmentation.

4.1 Setting Parameters through Training

SNIP has three independent parameters: (a) the image intensity variance σ2 in
Eq. (6), (b) the warp stiffness parameter λ in Eq. (8), and (c) the step size γ in the
registration algorithm in Section 3.1. In particular, the registration component
of SNIP is completely determined by γ and α = γ

8λσ2 , while the segmentation
component is determined by σ2 and λ.

Nine subjects were used to determine the optimal values of these parameters.
First, 20 random pairs of these nine subjects were registered for a range of values
of γ and α. Registration quality was assessed by the amount of pairwise label
overlap and used to select the optimal (γ∗, α∗) pair.

We used the optimal (γ∗, α∗) pair to register all 72 ordered pairs of the 9
training subjects. We performed nine leave-one-out segmentations using these
alignments with different pairs of σ2 and λ that satisfy the relationship λσ2 =
γ∗
8λ∗ . The pair that yielded the best segmentation results was deemed optimal
and used in validation on the remaining 30 subjects.

4.2 Benchmarks

First, we consider our implementation of the Label Fusion algorithm [12]. We
use the pairwise registrations obtained with (γ∗, α∗) to transfer the labels to the
training subject via nearest-neighbor interpolation. Segmentation is then com-
puted through majority voting at each voxel. In the second benchmark, we use
the label probability maps, where each training image voxel has a length-L vec-
tor, with one for the entry corresponding to the manual label, and zero otherwise.
Segmentation for each voxel is determined to be the label corresponding to the
mode of the label probability obtained by averaging the warped label probability
maps, computed using the pairwise registrations and trilinear interpolation. We
call this method Probabilistic Label Fusion.

4.3 Results

We report results for the 30 subjects not included in the group used for setting
the algorithm parameters γ, σ, α. For each test subject, we treat the remaining
subjects as training data. We note that the results from the two hemispheres are
very similar and report results averaged across two hemispheres.

Fig. 2 shows box-plots of Dice scores for the two benchmarks and SNIP. These
results indicate that SNIP outperforms the two benchmarks in all structures,
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Fig. 2. Boxplots of Dice scores for Label Fusion (red), Probabilistic Label Fusion
(green) and SNIP (blue). Medians are indicated by horizontal bars. Boxes indicate
the lower and upper quartiles and vertical lines extend to 1.5 inter-quartile spacing.

Table 1. Comparison with FreeSurfer [1] and FreeSurfer Atlas Renormalization [2]

HP TH CA PU PA AM

SNIP 0.81 ± 0.07 0.84 ± 0.03 0.84 ± 0.04 0.89 ± 0.03 0.83 ± 0.04 0.80 ± 0.05
FS [1] 0.79 ± 0.09 0.88 ± 0.02 0.79 ± 0.10 0.81 ± 0.07 0.71 ± 0.09 0.71 ± 0.12

FSAR [2] 0.82 ± 0.04 0.88 ± 0.02 0.84 ± 0.05 0.85 ± 0.04 0.76 ± 0.06 0.75 ± 0.07

except the thalamus. The improvement is particularly significant in the White
Matter, Cortex, Lateral Ventricle and Hippocampus. Between the two bench-
marks, the performance of Probabilistic Label Fusion is consistently higher than
that of Label Fusion. We note, however, that the results we report for SNIP are
in the same ball-park as the ones reported for Label Fusion [12], and thus higher
than what we achieve with our Label Fusion implementation. This might be due
to differences in the data and/or registration algorithm. Specifically, normalized
mutual information (NMI) was used as the registration cost function in [12].
Entropy-based measures such as NMI are known to yield more robust alignment
results. We leave a careful analysis of this issue and an extension of SNIP that
utilizes entropy-based similarity measures to future work.

Segmentation results for six subcortical structures were reported by two other
state-of-the art atlas-based segmentation methods: FreeSurfer (FS) [1] and the
FreeSurfer Atlas Renormalization (FSAR) technique [2]. Table 1 lists the average
and s.t.d. of the dice scores reported in [1,2]. These results suggest that SNIP’s
performance is better for 3 ROIs (PU, PA, AM), equivalent for two ROIs (CA,
HP) and worse for one ROI (TH).

The computational complexity of SNIP grows linearly with the number of
training subjects. With the 39 training images we tested on, the segmentation
procedure of each test subject took about 30 hours of CPU time on a modern
computer. This run-time can be significantly reduced by solving the registrations
in parallel. In comparison, Freesurfer took 10 hours and our Label Fusion im-
plementation took 24 hours. Managing large training datasets within the SNIP
framework is an important open question that we leave to future research.
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5 Conclusion

This paper presents SNIP, a novel segmentation framework that adopts a non-
parametric Bayesian approach to segmentation. By leveraging fast and robust
nonrigid registration algorithms, SNIP exploits the entire training set, rather
than a summary of it. In contrast to Label Fusion [12], similarities between
the test image and training images play a central role in the segmentation.
Our experiments indicate that SNIP promises to improve the performance of
Label Fusion and compares favorably against other state-of-the-art atlas based
segmentation methods in several regions of interest. One particularly promising
future direction is to incorporate an entropy-based similarity measure into the
computation of the image likelihood and pairwise registrations.
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