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Abstract. We present an interactive tool for visualization of medical
imaging pipelines that are built with Nipype, a freely available tool
for building pipelines programatically. Our tool enables researchers to
interact with their pipelines, visualize the pipeline structure, and view
their intermediate and final results. We also provide a video and live
demonstration of our tool for a simple brain image registration pipeline.

1 Introduction

Medical image computing research frequently requires the development of elabo-
rate analysis algorithms that are built as pipelines. Such pipelines are increasingly
necessary as imaging datasets from population studies are growing larger, neces-
sitating structured and consistent analysis across large patient cohorts. Building
pipelines is an iterative process that involves substantial iterative refinement
in order to attain meaningful results. Visualization of both the structure of a
pipeline and of its intermediate results helps researchers and developers under-
stand, debug, and improve the algorithm being developed. In this paper, we
present an interactive tool for visualization of complex pipelines as well as their
results. To facilitate use by computational researchers, we provide an extension
to Nipype, a popularly used free and openly available tool for medical image
computing workflows. We illustrate the proposed tool on a common medical
image analysis task and provide a live demonstration and video detailing the
features of our tool1.

Nipype [4] provides a convenient way to build medical image computing
pipelines. A pipeline in Nipype is specified programatically as a script; users can
define arbitrary pipelines according to the needs of any particular task. Pipelines
are represented internally as graphs whose nodes provide interfaces to various
commonly used medical image analysis packages such as ANTS [1], FreeSurfer [3],
and FSL [6]. A directed edge between two nodes indicates that an output of the
parent is used as an input to the child. The result of each step is cached for ease
of debugging and iteration. Additionally, Nipype tracks provenance information
such as algorithm parameters and properties of data. In contrast to similar
workflow tools that present a graphical interface, such as LONI Pipeline [10]

1 The video and demonstration, along with code, are available at the following
URL: http://groups.csail.mit.edu/vision/medical-vision/pipelines.html.

http://groups.csail.mit.edu/vision/medical-vision/pipelines.html
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Fig. 1. A visualization of a simple registration pipeline. Nodes correspond to computa-
tional steps (the color represents the node type, as detailed in the legend) and edges
correspond to data dependencies between processing steps. The smaller visual nodes
beside the orange node correspond to iterations of the corresponding computational
step across multiple subjects.

and SCIRun [9], Nipype pipelines are built exclusively through scripting. While
this allows greater expressive power, it comes at the cost of limited visualization:
Nipype pipelines can be visualized only statically using the dot library. This
static visualization is not customizable, and more importantly, does not allow
interaction with the results of the pipeline.

Our tool presents a graphical web-based interface to Nipype pipelines that
enables interaction with and visualization of both the structure of a pipeline and
its results. Users can quickly examine and interact with the dependencies of the
pipeline graph. Furthermore, our tool harnesses Nipype’s detailed record keeping
to enable interaction with the results and status of every step. By enabling users
to view a pipeline’s resulting images as they are computed, our system facilitates
examination and a better understanding of the pipeline structure, which can lead
to improvement of the underlying algorithm.

2 Design

Visualization and interaction are crucial components of medical image computing
research. Our lightweight browser-based tool provides the ability to visualize a
graphical representation of a pipeline, which seamlessly integrates with visual-
ization of image-valued results of Nipype nodes. The nodes in our graph-based
pipeline visualization correspond directly to Nipype nodes.



Fig. 2. A visualization of a complex pipeline. The size of a node is related to the number
of replications of the processing step, e.g., for multiple parameter settings or subjects.
In this case, the large red node corresponds to warping various features from an atlas
image to a particular image modality. The legend is hidden to show the full pipeline.

Our tool’s visualization is also compatible with various Nipype features.
Nipype’s iterables allow any Nipype node (and the subgraph of its children) to be
executed multiple times for a range of parameter values. This enables a pipeline
to easily scale to multiple subjects or parameter settings. Using our tool, any
Nipype node that is replicated in this way is annotated with a plus sign, and can
be clicked on to view the replications. When the number of replications is large,
as is typically the case in pipelines that run over large image collections with
many subjects, an abbreviated listing is presented instead.

Fig. 1 illustrates visualizing a registration-segmentation pipeline that, given
a subject brain MRI, performs skull extraction, registers the result to an atlas
image, and warps a label map from the atlas image to the subject image for
use in segmentation. The pipeline is applied to three scans from the images
used to construct the FreeSurfer atlas [2,7,8]. Fig. 2 illustrates a more complex
pipeline that aligns multimodal images of the brain to an atlas, demonstrating
the visualization of system with more replications and interactions.



Fig. 3. Clicking on the orange visual node in Fig. 1 produces this visualization of the
result of the brain extraction step using Slice:Drop. The visualization, which is overlaid
on top of the pipeline visualization, makes it clear that the skull removal has mostly
succeeded with a few remnants.

We also provide visualization of the output, status, and other metadata for
any step within the pipeline. In particular, clicking on any node in the graph
presents an interface that displays the result of the corresponding computational
step, as well as the command used to produce it, any errors that resulted,
and any command-line output from that step. While Nipype stores all this
information by default, we make it easily accessible, enabling rapid debugging and
pipeline iteration. Additionally, visualization of intermediate image-valued results
facilitates understanding of the results of each node and speeds up the search for
points of failure. Clicking on a node opens a menu that reports the exact command
used to compute the corresponding Nipype node, as well as its command-line
output or error status. Additionally, each output of the corresponding Nipype
node can then be viewed interactively in the same window using Slice:Drop [5], a
browser-based visualization tool that supports most common medical imaging
formats. Fig. 3 illustrates such a visualization for a single Nipype node using
Slice:Drop.

Our tool integrates directly with Nipype, requiring no additional input or
annotation from the user. Because a paper is not an ideal medium for presenting
an interactive visualization tool, we invite the readers to explore an interactive
version of the demonstrations from Fig. 1 and Fig. 3, a short video, and the code



for our system at the following site: http://groups.csail.mit.edu/vision/
medical-vision/pipelines.html. In the near future, we plan to integrate our
work into the main Nipype codebase.

2.1 Implementation details

Our tool consists of two components, a lightweight server (implemented in python
using CherryPy2) and client (implemented in Javascript using d3.js3). The server
interacts with the Nipype workflow and the filesystem to construct the underlying
graph representation and data storage. Using the provided representation, the
client renders the visualization. Actions such as clicking on a visual node to
query the status of the corresponding Nipype node will result in the server
retrieving the corresponding information using Nipype’s internal representation
and providing it to the browser. These actions all occur in real time, resulting in
a quick, responsive interface.
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