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Abstract. This paper formulates and solves a new variant of the stereo correspondence problem: simultaneously
recovering the disparities, true colors, and opacities of visible surface elements. This problem arises in newer
applications of stereo reconstruction, such as view interpolation and the layering of real imagery with synthetic
graphics for special effects and virtual studio applications. While this problem is intrinsically more difficult than
traditional stereo correspondence, where only the disparities are being recovered, it provides a principled way of
dealing with commonly occurring problems such as occlusions and the handling of mixed (foreground/background)
pixels near depth discontinuities. It also provides a novel means for separating foreground and background objects
(matting), without the use of a special blue screen. We formulate the problem as the recovery of colors and opacities
in a generalized 3-D (x, y, d) disparity space, and solve the problem using a combination of initial evidence
aggregation followed by iterative energy minimization.

Keywords: Stereo correspondence, 3D reconstruction, 3D representations, matting problem, occlusions, trans-
parency.

1. Introduction

Stereo matching has long been one of the central re-
search problems in computer vision. Early work was
motivated by the desire to recover depth maps and
shape models for robotics and object recognition ap-
plications. More recently, depth maps obtained from
stereo have been painted with texture maps extracted
from input images in order to create realistic 3-D scenes
and environments for virtual reality and virtual studio
applications (McMillan and Bishop, 1995; Szeliski and
Kang, 1995; Kanade et al., 1996; Blonde et al., 1996).

Unfortunately, the quality and resolution of most stereo
algorithms falls quite short of that demanded by these
new applications, where even isolated errors in the
depth map become readily visible when composited
with synthetic graphical elements.

One of the most common errors made by most stereo
algorithms is a systematic “fattening” of depth layers
near occlusion boundaries. Algorithms based on vari-
able window sizes (Kanade and Okutomi, 1994) or it-
erative evidence aggregation (Scharstein and Szeliski,
1996) can sometimes mitigate such errors. Another
common problem is that disparities are only estimated
to the nearest pixel, which is typically not sufficiently
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accurate for tasks such as view interpolation. Different
techniques have been developed for computing sub-
pixel estimates, such as using a finer set of disparity
hypotheses or finding the the analytic minimum of the
local error surface (Tian and Huhns, 1986; Matthies et
al., 1989).

Unfortunately, for challenging applications such as
z-keying (the insertion of graphics between different
depth layers in video) (Paker and Wilbur, 1994; Kanade
et al., 1996; Blonde et al., 1996), even this is not good
enough. Pixels lying near or on occlusion boundaries
will typically be mixed, i.e., they will contain blends of
both foreground and background colors. When such
pixels are composited with other images or graphi-
cal elements, objectionable “halos” or “color bleeding”
may be visible.

The computer graphics and special effects industries
faced a similar problem when extracting foreground
objects using blue screen techniques (Smith and Blinn,
1996). A variety of techniques were developed for
this matting problem, all of which model mixed pixels
as combinations of foreground and background colors
(the latter of which is usually assumed to be known).
Practitioners in these fields quickly discovered that it
is insufficient to merely label pixels as foreground and
background: it is necessary to simultaneously recover
both the true color of each pixel and its transparency
or opacity (Porter and Duff, 1984; Blinn, 1994a). In
the usual case of opaque objects, pixels are only par-
tially opaque at the boundaries of objects—this is the
case we focus on in this paper. True transparency (ac-
tually, translucency) has also been studied (Adelson
and Anandan, 1990; Adelson and Anandan, 1993), but
usually only for very simple stimuli.

In this paper, we develop a new, multiframe stereo
algorithm which simultaneously recovers depth, color,
and transparency estimates at each pixel. Unlike tra-
ditional blue-screen matting, we cannot use a known
background color to perform the color and matte recov-
ery. Instead, we explicitly model a 3-D (x, y, d) dis-
parity space, where each cell has an associated color
and opacity value. Our task is to estimate the color
and opacity values which best predict the appearance
of each input image, using prior assumptions about the
(piecewise-) continuity of depths, colors, and opacities
to make the problem well posed. To our knowledge,
this is the first time that the simultaneous recovery of

depth, color, and opacity from stereo images has been
attempted.

We begin this paper with a review of previous work
in stereo matching. In Section 3, we discuss our novel
representation for accumulating color samples in a gen-
eralized disparity space. We then describe how to
compute an initial estimate of the disparities (Section
4), and how to refine this estimate by taking into ac-
count occlusions (Section 5). In Section 6, we develop
a novel energy minimization algorithm for estimating
disparities, colors and opacities. We present some ex-
periments on both synthetic and real images in Section
7. We conclude the paper with a discussion of our
results, and a list of topics for future research.

2. Previous Work

Stereo matching and stereo-based 3-D reconstruction
are fields with very rich histories (Barnard and Fischler,
1982; Dhond and Aggarwal, 1989). In this section, we
focus only on previous work related to our central top-
ics of interest: pixel-accurate matching with sub-pixel
precision, the handling of occlusion boundaries, and
the use of more than two images. We also mention tech-
niques used in computer graphics to composite images
with transparencies and to recover matte (transparency)
values using traditional blue-screen techniques.

We find it useful to subdivide the stereo matching
process into three tasks: the initial computation of
matching costs, the aggregation of local evidence, and
the selection or computation of a disparity value for
each pixel (Scharstein and Szeliski, 1996).

The most fundamental element of any correspon-
dence algorithm is a matching cost that measures the
similarity of two or more corresponding pixels in differ-
ent images. Matching costs can be defined locally (at
the pixel level), e.g., as absolute (Kanade et al., 1996)
or squared intensity differences (Matthies et al., 1989),
using edges (Baker, 1980) or filtered images (Jenkin
et al., 1991; Jones and Malik, 1992). Alternatively,
matching costs may be defined over an area, e.g., using
correlation (Ryan et al., 1980; Wood, 1983) (this can
be viewed as a combination of the matching and aggre-
gation stages). In this paper, we use squared intensity
differences.

Support aggregation is necessary to disambiguate
potential matches. A support region can either be
two-dimensional at a fixed disparity (favoring fronto-
parallel surfaces), or three-dimensional in (x, y, d)
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space (allowing slanted surfaces). Two-dimensional
evidence aggregation has been done using both fixed
square windows (traditional) and windows with adap-
tive sizes (Arnold, 1983; Kanade and Okutomi, 1994).
Three-dimensional support functions include limited
disparity gradient (Pollard et al., 1985), Prazdny’s
coherence principle (Prazdny, 1985) (which can be
implemented using two diffusion processes (Szeliski
and Hinton, 1985)), local winner-take-all (Yang et al.,
1993), and iterative (non-linear) evidence aggregation
(Scharstein and Szeliski, 1996). In this paper, our ini-
tial evidence aggregation uses an iterative technique,
with estimates being refined later through a predic-
tion/adjustment mechanism which explicitly models
occlusions.

The easiest way of choosing the best disparity is to
select at each pixel the minimum aggregated cost across
all disparities under consideration (“winner-take-all”).
A problem with this is that uniqueness of matches is
only enforced for one image (the reference image),
while points in the other image might get matched
to multiple points. Cooperative algorithms employ-
ing symmetric uniqueness constraints are one attempt
to solve this problem (Marr and Poggio, 1976). In this
paper, we introduce the concept of a virtual camera
which is used for the initial winner-take-all stage.

Occlusion is another very important issue in gen-
erating high-quality stereo maps. Many approaches
ignore the effects of occlusion. Others try to mini-
mize them by using a cyclopean disparity representa-
tion (Barnard, 1989), or try to recover occluded regions
after the matching by cross-checking (Fua, 1993). Sev-
eral authors have addressed occlusions explicitly, using
Bayesian models and dynamic programming (Arnold,
1983; Ohta and Kanade, 1985; Belhumeur and Mum-
ford, 1992; Cox, 1994; Geiger et al., 1992; Intille and
Bobick, 1994). However, such techniques require the
strict enforcement of ordering constraints (Yuille and
Poggio, 1984). In this paper, we handle occlusion by
re-projecting the disparity space into each input image
using traditional back-to-front compositing operations
(Porter and Duff, 1984), and eliminating from consid-
eration pixels which are known to be occluded. (A
related technique, developed concurrently with ours,
traverses the disparity space from front to back (Seitz
and Dyer, 1997).)

Sub-pixel (fractional) disparity estimates, which are
essential for applications such as view interpolation,
can be computed by fitting a curve to the matching

costs at the discrete disparity levels (Lucas and Kanade,
1981; Tian and Huhns, 1986; Matthies et al., 1989;
Kanade and Okutomi, 1994). This provides an easy
way to increase the resolution of a stereo algorithm
with little additional computation. However, to work
well, the intensities being matched must vary smoothly.

Multiframe stereo algorithms use more than two im-
ages to increase the stability of the algorithm (Bolles
et al., 1987; Matthies et al., 1989; Kang et al., 1995;
Collins, 1996). In this paper, we present a new frame-
work for formulating the multiframe stereo problem
based on the concept of a virtual camera and a projec-
tive generalized disparity space, which includes as spe-
cial cases the multiple baseline stereo models of (Oku-
tomi and Kanade, 1993; Kang et al., 1995; Collins,
1996).

Finally, the topic of transparent surfaces has not
received much study in the context of computational
stereo (Prazdny, 1985; Szeliski and Hinton, 1985;
Weinshall, 1989). Relatively more work has been
done in the context of transparent motion estimation
(Shizawa and Mase, 1991b; Shizawa and Mase, 1991a;
Darrell and Pentland, 1991; Bergen et al., 1992; Ju et
al., 1996). However, these techniques are limited to ex-
tracting a small number of dominant motions or planar
surfaces. None of these techniques explicitly recover
a per-pixel transparency value along with a corrected
color value, as we do in this paper.

Our stereo algorithm has also been inspired by work
in computer graphics, especially in image compositing
(Porter and Duff, 1984; Blinn, 1994a) and blue screen
techniques (Vlahos and Taylor, 1993; Smith and Blinn,
1996). While traditional blue-screen techniques as-
sume that the background is of a known color, we solve
for the more difficult case of each partially transparent
surface pixel being the combination of two (or more)
unknown colors.

3. Disparity space representation

To formulate our (potentially multiframe) stereo
problem, we use a generalized disparity space which
can be any projective sampling of 3-D space (Fig. 1).
More concretely, we first choose a virtual camera po-
sition and orientation. This virtual camera may be co-
incident with one of the input images, or it can be cho-
sen based on the application demands and the desired
accuracy of the results. For instance, if we wish to reg-
ularly sample a volume of 3-D space, we can make the
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Fig. 1. The virtual camera defines the (x, y, d) generalized dispar-
ity space.

camera orthographic, with the camera’s (x, y, d) axes
being orthogonal and evenly sampled (as in (Seitz and
Dyer, 1997)). As another example, we may wish to use
a skewed camera model for constructing a Lumigraph
(Gortler et al., 1996).

Having chosen a virtual camera position, we can
also choose the orientation and spacing of the dispar-
ity planes, i.e., the constant d planes. The relationship
between d and 3-D space can be projective. For ex-
ample, we can choose d to be inversely proportional to
depth, which is the usual meaning of disparity (Oku-
tomi and Kanade, 1993). The information about the
virtual camera’s position and disparity plane orienta-
tion and spacing can be captured in a single 4×4 matrix
M̂0, which represents a collineation of 3-D space. The
matrix M̂0 can also capture the sampling information
inherent in our disparity space, e.g, if we define dis-
parity space (x, y, d) to be an integer valued sampling
of the mapping M̂0x, where x represents point in 3-D
(Euclidean) space.

An example of a possible disparity space representa-
tion is the standard epipolar geometry for two or more
cameras placed in a plane perpendicular to their op-
tical axes, in which case a natural choice for dispar-
ity is inverse depth (since this corresponds to uniform
steps in inter-camera displacements, i.e., the quan-
tity which can be measured accurately) (Okutomi and
Kanade, 1993). Other choices include the traditional
cyclopean camera placed symmetrically between two
verged cameras, or a uniform sampling of 3-D which
is useful in a true verged multi-camera environment
(Seitz and Dyer, 1997) or for motion stereo. Note that
in all of these situations, integral steps in disparity may

x

y

k

d

k ~ (µ,σ)

Fig. 2. Resampled images can be stacked into a 4-D (x, y, d, k)
space, with mean values and variances being computed across k.

correspond to fractional shifts in displacement, which
may be desirable for optimal accuracy.

Regardless of the disparity space selected, it is al-
ways possible to project each of the input images onto
the d = 0 plane through a simple homography (2-
D perspective transform), and to work with such re-
projected (rectified) images as the inputs to the stereo
algorithm. What are the possible advantages of such a
rectification step? For two or more cameras whose op-
tical centers are collinear, it is always possible to find a
rectification in which corresponding epipolar lines are
horizontal, greatly simplifying the stereo algorithm’s
implementation. For three or more cameras which are
coplanar, after rectification, displacements away from
the d = 0 plane (i.e., changes in disparity) will corre-
spond to uniform steps along fixed directions for each
camera (e.g., horizontal and vertical under a suitable
camera geometry). Finally, for cameras in general
position, steps in disparity will correspond to zooms
(scalings) and sub-pixel shifts of the rectified images,
which is quicker (and potentially more accurate) than
general perspective resampling (Collins, 1996). A po-
tential disadvantage of pre-rectification is a slight loss
in input image quality due to multiple re-samplings, but
this can be mitigated using higher-order (e.g., bicubic)
sampling filters, and potentially re-sampling the recti-
fied images at higher resolution. The Appendix derives
the equations for mapping between input image (both
rectified and not) and disparity space.

In this paper, we introduce a generalization of the
(x, y, d) space. If we consider each of the k = 1 . . .K
images as being samples along a fictitious “camera” di-
mension, we end up with a 4-D (x, y, d, k) space (Fig.
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Fig. 3. Sample slices through a 4-D disparity space: (a–b) sample input images (arranged for free fusion)—darker red object at d = 5 in front
of lighter blue background at d = 1, (c) (x, d, k) slice for scanline 17 (k = 5), (d) means and (e) variances as a function of (x, d) (smaller
variances are darker), (f) variances after evidence accumulation, (g) results of winner-takes-all for whole image (undecided columns in white),
(h–i) colors and opacities at disparities 1 and 5. For easier interpretation, all images have been composited over an opaque white background.

2). In this space, the values in a given (x, y, d) cell as
k varies can be thought of as the color distributions at
a given location in space, assuming that this location
is actually on the surface of the object and is visible
in all cameras. We will use these distributions as the
inputs to our first stage of processing, i.e., by com-
puting mean and variance statistics. A different slice
through (x, y, d, k) space, this time by fixing k, gives
the series of shifted images seen by one camera. In
particular, compositing these images in a back-to-front

order, taking into account each voxel’s opacity, should
reconstruct what is seen by a given (rectified) input
image (see Section 5).1

Figure 3 shows a set of sample images from a
k = 5 image random-dot stereogram, together with
an (x, d, k) slice through the 4-D space (y is fixed at a
given scanline), where color samples varying in k are
grouped together.
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4. Estimating an initial disparity surface

The first step in stereo matching is to compute some ini-
tial evidence for a surface existing at (or near) a location
(x, y, d) in disparity space. We do this by conceptually
populating the entire 4-D (x, y, d, k) space with colors
obtained by resampling the K input images,

c(x, y, d, k) =Wf (ck(u, v);Hk + tk[0 0 d]), (1)

where ck(u, v) is the kth input image,2 Hk + tk[0 0 d]
is the homography mapping this image to disparity
plane d (see the Appendix),Wf is the forward warping
operator,3 and c(x, y, d, k) is the pixel mapped into the
4-D generalized disparity space.

Algorithmically, this can be achieved either by first
rectifying each image onto the d = 0 plane, or by
directly using a homography (planar perspective trans-
form) to compute each (d, k) slice.4 Note that at this
stage, not all (x, y, d, k) cells will be populated, as
some of these may map to pixels which are outside
some of the input images.

Once we have a collection of color (or luminance)
values at a given (x, y, d) cell, we can compute some
initial statistics over the K (or fewer) colors, e.g., the
sample mean µ and variance σ2.5 Robust estimates
of sample mean and variance are also possible (e.g.,
(Scharstein and Szeliski, 1996)). Examples of the
mean and variance values for our sample image are
shown in Figures 3(d) and 3(e), where darker values
indicate smaller variances.

After accumulating the local evidence, we usually
do not have enough information to determine the cor-
rect disparities in the scene (unless each pixel has a
unique color). While pixels at the correct disparity
should in theory have zero variance, this is not true in
the presence of image noise, fractional disparity shifts,
and photometric variations (e.g., specularities). The
variance may also be arbitrarily high in occluded re-
gions, where pixels which actually belong to a differ-
ent disparity level will nevertheless vote, often leading
to gross errors. For example, in Figure 3(c), the mid-
dle (red) group of pixels at d = 5 should all have the
same color in any given column, but they do not be-
cause of resampling errors. This effect is especially
pronounced near the edge of the red square, where the
red color has been severely contaminated by the back-
ground blue. This contamination is one of the reasons

why most stereo algorithm make systematic errors in
the vicinity of depth discontinuities.

To help disambiguate matches, we can use local ev-
idence aggregation. The most common form is aver-
aging using square windows, which results in the tra-
ditional sum of squared difference (SSD and SSSD)
algorithms (Okutomi and Kanade, 1993). To obtain re-
sults with better quality near discontinuities, it is prefer-
able to use adaptive windows (Kanade and Okutomi,
1994) or iterative evidence accumulation (Scharstein
and Szeliski, 1996). In the latter case, we may wish to
accumulate an evidence measure which is not simply
summed error (e.g., the probability of a correct match
(Scharstein and Szeliski, 1996)). Continuing our sim-
ple example, Figure 3(f) shows the results of an evi-
dence accumulation stage, where more certain depths
are darker. To generate these results, we aggregate ev-
idence using a variant of the algorithm described in
(Scharstein and Szeliski, 1996),

σt+1
i ← a σ̂t

i + b
∑

j∈N4(i)

σ̂t
j + c σ0

i . (2)

Here, σ0
i is the original variance at pixel i computed

by comparing all sampled colors from the k images,
σt

i is the variance at iteration t, σ̂t
i = min(σt

i , σmax)
is a robustified (limited) version of the variance, and
N4 are the usual four nearest neighbors. The effect of
this updating rule is to diffuse variance values to their
neighbors, while preventing the diffusion from totally
averaging out the variances. For the results in Figure
3, we use (a, b, c) = (0.1, 0.15, 0.3) and σmax = 16.

At this stage, most stereo matching algorithms pick
a winning disparity in each (x, y) column, and call this
the final correspondence map. Optionally, they may
also compute a fractional disparity value by fitting an
analytic curve to the error surface around the winning
disparity and then finding its minimum (Matthies et
al., 1989; Okutomi and Kanade, 1993). Unfortunately,
this does nothing to resolve several problems: occluded
pixels may not be handled correctly (since they have
“inconsistent” color values at the correct disparity), and
it is difficult to recover the true (unmixed) color values
of surface elements (or their opacities, in the case of
pixels near discontinuities).

Our solution to this problem is to use the initial dis-
parity map as the input to a refinement stage which
simultaneously estimates the disparities, colors, and
opacities which best match the input images while con-
forming to some prior expectations on smoothness. To
start this procedure, we initially pick only winners in
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each column where the answer is fairly certain, i.e.,
where the variance (“scatter” in color values) is below
a threshold and is a clear winner with respect to the
other candidate disparities.6 A new (x, y, d) volume is
created, where each cell now contains a color value, ini-
tially set to the mean color computed in the first stage,
and the opacity is set to 1 for cells which are winners,
and 0 otherwise.7

5. Computing visibilities through re-projection

Once we have an initial (x, y, d) volume containing
estimated RGBA (color and 0/1 opacity) values, we can
re-project this volume into each of the input cameras
using the known transformation

xk = MkM̂−1
0 x̂0 (3)

(see (A1) in the Appendix), where x̂0 is a (homoge-
neous) coordinate in (x, y, d) space, M̂0 is the com-
plete camera matrix corresponding to the virtual cam-
era, Mk is the kth camera matrix, and xk are the im-
age coordinates in the kth image. There are several
techniques possible for performing this projection, in-
cluding classical volume rendering techniques (Levoy,
1990; Lacroute and Levoy, 1994). In our approach, we
interpret the (x, y, d) volume as a set of (potentially)
transparent acetates stacked at different d levels (Fig.
4). Each acetate is first warped into a given input cam-
era’s frame using the known homography

xk = Hkx0 + tkd = (Hk + tk[0 0 d])x0 (4)

where x0 = (x, y, 1), and the layers are then compos-
ited back-to-front (this is called a shear-warp algorithm
(Lacroute and Levoy, 1994)).8

The resampling procedure for a given layer d into
the coordinate system of camera k can be written as

c̃k(u, v, d) =Wb(ĉ(x, y, d);Hk + tk[0 0 d]), (5)

where ĉ = [r g b α]T is the current color and opacity
estimate at a given location (x, y, d), c̃k is the resam-
pled layer d in camera k’s coordinate system, andWb is
the resampling operation induced by the homography
(4).9 The opacity value α is 0 for transparent pixels,
1 for opaque pixels, and in between for border pixels.
Note that the warping function is linear in the colors
and opacities being resampled, i.e., the c̃k(u, v, d) can

Virtual camera

d

x

y

Synthesized  image k

u
v

“stack of
 acetates”

Fig. 4. “Stack of acetates” model for image formation from
(x, y, d) RGBA color/opacity volume.

be expressed as a linear function of the ĉ(x, y, d), e.g.,
through a sparse matrix multiplication.

Once the layers have been resampled, they are then
composited using the standard over operator (Porter
and Duff, 1984),

f � b ≡ f + (1− αf )b,

where f and b are the premultiplied foreground and
background colors, and αf is the opacity of the fore-
ground (Porter and Duff, 1984; Blinn, 1994a). Note
that for αf = 0 (transparent foreground), the back-
ground is selected, whereas for αf = 1 (opaque fore-
ground), the foreground is returned. Using the over
operator, we can form a composite image

c̃k(u, v) =
dmin⊙

d=dmax

c̃k(u, v, d) (6)

= c̃k(u, v, dmax)� · · · � c̃k(u, v, dmin)

(note that the over operator is associative but not com-
mutative, and that dmax is the layer closest to the cam-
era).

After the re-projection step, we refine the disparity
estimates by preventing visible surface pixels from vot-
ing for potential disparities in the regions they occlude.
More precisely, we build an (x, y, d, k) visibility map,
which indicates whether a given camera k can see a
voxel at location (x, y, d). A simple way to construct
such a visibility map is to record the disparity valuedtop
for each (u, v) pixel which corresponds to the topmost
opaque pixel seen during the compositing step.10 The
visibility value can then be defined as
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Vk(u, v, d) = if d ≥ dtop(u, v) then 1 else 0.

The visibility and opacity (alpha) values taken together
can be interpreted as follows:

Vk = 1, α̃k = 0: free space
Vk = 1, α̃k = 1: surface voxel visible in image k
Vk = 0, α̃k =?: voxel not visible in image k

where α̃k is the opacity of c̃k in (5).
A more principled way of defining visibility, which

takes into account partially opaque voxels, uses a re-
cursive front-to-back algorithm

Vk(u, v, d− 1) = Vk(u, v, d) (1− α̃k(u, v, d))

=
dmax∏

d′=d

(1− α̃k(u, v, d′)), (7)

with the initial visibilities all being set to 1,
Vk(u, v, dmax) = 1. We now have a very simple (lin-
ear) expression for the compositing operation,

c̃k(u, v) =
dmax∑

d=dmin

c̃k(u, v, d)Vk(u, v, d). (8)

Once we have computed the visibility volumes for
each input camera, we can update the list of color sam-
ples we originally used to get our initial disparity esti-
mates. Let

ck(u, v, d) = ck(u, v)Vk(u, v, d)

be the input color image multiplied by its visibility at
disparity d. If we substitute ck(u, v, d) for ck(u, v)
in (1), we obtain a distribution of colors in (x, y, d, k)
where each color has an associated visibility value (Fig.
5(c)). Voxels which are occluded by surfaces lying in
front in a given view k will now have fewer (or poten-
tially no) votes in their local color distributions. We
can therefore recompute the local mean and variance
estimates using weighted statistics, where the visibil-
ities V (x, y, d, k) provide the weights (Figs. 5(d) and
5(e)).

With these new statistics, we are now in position to
refine the disparity map. In particular, voxels in dis-
parity space which previously had an inconsistent set
of color votes (large variance) may now have a consis-
tent set of votes, because voxels in (partially occluded)
regions will now only receive votes from input pix-

els which are not already assigned to nearer surfaces
(Figs. 5(c–f)). Figures 5(g–i) show the results after one
iteration of this algorithm.

6. Refining color and transparency estimates

While the above process of computing visibilities and
refining disparity estimates will in general lead to a
higher quality disparity map (and better quality mean
colors, i.e., texture maps), it will not recover the true
colors and transparencies in mixed pixels, e.g., near
depth discontinuities, which is one of the main goals
of this research.

A simple way to approach this problem is to take the
binary opacity maps produced by our stereo matching
algorithm, and to make them real-valued using a low-
pass filter. Another possibility might be to recover the
transparency information by looking at the magnitude
of the intensity gradient (Mitsunaga et al., 1995), as-
suming that we can isolate regions which belong to
different disparity levels.

In our work, we have chosen instead to adjust the
opacity and color values ĉ(x, y, d) to match the input
images (after re-projection), while favoring continuity
in the color and opacity values. This can be formulated
as a non-linear minimization problem, where the cost
function has three parts:

1. a weighted error norm on the difference between
the re-projected images c̃k(u, v) and the original
(or rectified) input images ck(u, v)

C1 =
∑

(u,v)

wk(u, v)ρ1(c̃k(u, v)− ck(u, v)), (9)

where the weights wk(u, v) may depend on the po-
sition of camera k relative to the virtual camera;11

2. a (weak) smoothness constraint on the colors and
opacities,

C2 =
∑

(x,y,d)

∑

(x′, y′, d′)
∈ N (x, y, d)

ρ2(ĉ(x′, y′, d′)− ĉ(x, y, d));

(10)
3. a prior distribution on the opacities,

C3 =
∑

(x,y,d)

φ(α(x, y, d)). (11)

In the above equations, ρ1 and ρ2 are either quadratic
functions or robust penalty functions (Huber, 1981),
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✻k ✲
x

d = 0

d = 1

d = 5

d = 7

(a) (b) (c)

✻d ✲
x

✻d ✲
x

✻d ✲
x(d) (e) (f)

(g) (h) (i)

Fig. 5. After modifying input images by visibility Vk(u, v, d): (a–b) re-synthesized views of sample images, (c) (x, d, k) slice for scanline
17, (d) means and (e) variances as a function of (x, d), (f) variances after evidence accumulation, (g) results of winner-takes-all for whole image,
and (h–i) colors and opacities at disparities 1 and 5 after one iteration of the reprojection algorithm.

and φ is a function which encourages opacities to be 0
or 1, e.g., φ(x) = x(1− x).12

The smoothness constraint on colors makes more
sense with non-premultiplied colors. For example,
a voxel lying on a depth discontinuity will be par-
tially transparent, and yet should have the same non-
premultiplied color as its neighbors. An alternative,
which allows us to work with premultiplied colors, is
to use a smoothness constraint of the form

C′
2 =

∑

(x,y,d)

∑

(x′, y′, d′)
∈ N (x, y, d)

ρ2(D) (12)

where

D = α(x, y, d)c(x′, y′, d′)− α(x′, y′, d′)c(x, y, d).

To minimize the total cost function

C = λ1C1 + λ2C2 + λ3C3, (13)

we use a preconditioned gradient descent algorithm.
The Appendix contains details on how to compute the
required gradients and Hessians.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Traditional synthetic RDS results: (a) after iterative aggregation but before gradient descent, (b) without smoothness or opacity constraint,
λ1 = 1, λ2 = λ3 = 0, (c) without opacity constraint, λ1 = λ2 = 1, λ3 = 0, (d) with all three constraints, λ1 = 50, λ2 = 1, λ3 = 50,
(e) with all three constraints, λ1 = 50, λ2 = 1, λ3 = 100, (f) simple winner-take-all (shown for comparison). The first eight columns are the
disparity layers, d = 0 . . . 7. The ninth and tenth columns are re-synthesized sample views. The last column is a re-synthesized view with a
synthetic gray square inserted at disparity d = 3.

7. Experiments

To study the properties of our new stereo correspon-
dence algorithm, we ran a small set of experiments on
some synthetic stereo datasets, both to evaluate the ba-
sic behavior of the algorithm (aggregation, visibility-
based refinement, and energy minimization), and to
study its performance on mixed (boundary) pixels. Be-
ing able to visualize opacities/transparencies is very
important for understanding and validating our algo-
rithm. For this reason, we chose color stimuli (the
background is blue-green, and the foreground is red).
Pixels which are partially transparent will show up as
“pale” colors, while fully transparent pixels will be

white. We should emphasize that our algorithm does
not require colored images as inputs (see Figure 8), nor
does it require the use of standard epipolar geometries.

The first stimulus we generated was a traditional
random-dot stereogram with k = 5 images, where the
choice of camera geometry and filled disparity planes
results in integral pixel shifts. This example also con-
tains no partially transparent pixels. Figure 6 shows
the results on this stimulus. The first eight columns are
the eight disparity planes in (x, y, d) space, showing
the estimated colors and opacities (smaller opacities
are shown as lighter colors, since the RGBA colors are
composited over a white background). The ninth and
tenth column are two re-synthesized views (leftmost
and middle). The last column is the re-synthesized
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(a)

(b)

(c)

(d)

(e)

Fig. 7. More challenging synthetic RDS results: (a) after iterative aggregation but before gradient descent, (b) without smoothness or opacity
constraint, λ1 = 1, λ2 = λ3 = 0, (c) without opacity constraint, λ1 = λ2 = 1, λ3 = 0, (d) with all three constraints, λ1 = 50, λ2 =
1, λ3 = 50, (e) simple winner-take-all (shown for comparison). The first eight columns are the disparity layers, d = 0 . . . 7. The ninth and
tenth columns are re-synthesized sample views. The last column is the re-synthesized view with a synthetic gray square inserted at disparity
d = 3.

middle view with a synthetic light-gray square inserted
at disparity d = 3.

As we can see in Figure 6, the basic iterative aggre-
gation algorithm results in a “perfect” reconstruction,
although only one pixel is chosen in each column. For
this reason, the re-synthesized leftmost view (ninth col-
umn) contains a large “gap”.

Figure 6(b) shows the results of using only the
first C1 term in our cost function, i.e., only match-
ing re-synthesized views with input images. The re-
synthesized view in column nine is now much better,
although we see that a bit of the background has bled
into the foreground layers, and that the pixels near the
depth discontinuity are spread over several disparities.

Adding the smoothness constraint C2 (Fig. 6(c))
ameliorates both of these problems. Adding the (weak)
0/1 opacity constraint C3 (Fig. 6(d–e)) further removes
stray pixels at wrong disparity levels. Figure 6(d)
shows a “softer” variant of the opacity constraint (λ3 =

50 = λ1), where more levels end up being filled in, but
the re-synthesized views are very good. Figure 6(e)
shows a “harder” constraint (λ3 = 100 = 2λ1), where
only pixels adjacent to initial estimates are filled in, at
the cost of a gap in some re-synthesized views.

For comparison, Figure 6(f) shows the results of a
traditional winner-take-all algorithm (the same as Fig-
ure 6(a) with a very large θmin and no occluded pixel
removal). We can clearly see the effects of background
colors being pulled into the foreground layer, as well
as increased errors in the occluded regions.

Our second set of experiments uses the same syn-
thetic stereo dataset as shown in Figures 3 and 5, again
with k = 5 input images. Here, because the back-
ground layer is at an odd disparity, we get significant
re-sampling errors (because we currently use bilinear
interpolation) and mixed pixels. The stimulus also has
partially transparent pixels along the edge of the top
half-circle in the foreground shape. This stereo dataset
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 8. Real image example: (a) cropped subimage from SRI Trees data set, (b) depth map after initial aggregation stage, (c–l) disparity layers
d = 0 . . . 9, (m) re-synthesized input image, (n) with inserted d = 4 blue layer.

is significantly more difficult to match than previous
random-dot stereograms.

Figure 7(a) shows the results of applying only our
iterative aggregation algorithm, without any energy
minimization. The set of estimated disparities are in-
sufficient to completely reconstruct the input images
(this could be changed by adjusting the thresholds θmin
and θs), and several pixels are incorrectly assigned to
the d = 0 layer (due to difficulties in disambiguating
depths in partially occluded regions).

Figure 7(b) shows the results of using only the
first C1 term in our cost function, i.e., only match-
ing re-synthesized views with input images. The re-
synthesized view in column nine is now much better,
although we see that a bit of the background has bled
into the foreground layers, and that the pixels near the
depth discontinuity are spread over several disparities.

Adding the smoothness constraint C2 (Fig. 7(c))
ameliorates both of these problems. Adding the (weak)
0/1 opacity constraint C3 (Fig. 7(d)) further removes
stray pixels at wrong disparity levels, but at the cost of
an incompletely reconstructed image (this is less of a
problem if the foreground is being layered on a syn-
thetic background, as in the last column). As before,
Figure 7(e) shows the results of a traditional winner-
take-all algorithm.

Figure 8 shows the results on a cropped portion of
the SRI Trees multibaseline stereo dataset. A small re-
gion (64 × 64 pixels) was selected in order to better
visualize pixel-level errors. While the overall recon-
struction is somewhat noisy, the final reconstruction
with a synthetic blue layer inserted shows that the al-

gorithm has done a reasonable job of assigning pixel
depths and computing partial transparencies near the
tree boundaries.

From these examples, it is apparent that the algo-
rithm is currently sensitive to the choice of parameters
used to control both the initial aggregation stage and
the energy minimization phase. Setting these parame-
ters automatically will be an important area for further
research.

8. Discussion

While our preliminary experimental results are encour-
aging, the simultaneous recovery of accurate depth,
color, and opacity estimates remains a challenging
problem. Traditional stereo algorithms search for a
unique disparity value at each pixel in a given reference
image. Our approach, on the other hand, is to recover
a sparsely populated volume of colors and opacities.
This has the advantage of correctly modeling mixed
pixels and occlusion effects, and allows us to merge
images from very disparate points of view. Unfortu-
nately, it also makes the estimation problem much more
difficult, since the number of free parameters often ex-
ceeds the number of measurements, hence necessitat-
ing smoothness constraints and other prior models.

Partially occluded areas are problematic because
very few samples may be available to disambiguate
depth. A more careful analysis of the interaction be-
tween the measurement, smoothness, and opacity con-
straints will be required to solve this problem. Other
problems occur near depth discontinuities, and in gen-
eral near rapid intensity (albedo) changes, where the
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scatter in color samples may be large because of re-
sampling errors. Better imaging and sensor models,
or perhaps working on a higher resolution image grid,
might be required to solve these problems.

8.1. Future work

There are many additional topics related to transparent
stereo and matting which we would like to investigate.
For example, we would like to try our algorithm on
data sets with true transparency (not just mixed pixels),
such as traditional transparent random dot stereograms
(Prazdny, 1985; Weinshall, 1989) and reflections in
windows (Bergen et al., 1992).

Estimating disparities to sub-integer precision
should improve the quality of our reconstructions.
Such fractional disparity estimates can be obtained
by interpolating a variance vs. disparity curve σ(d),
e.g., by fitting a parabola to the lowest variance and its
two neighbors (Tian and Huhns, 1986; Matthies et al.,
1989). Alternatively, we can linearly interpolate indi-
vidual color errors c(x, y, d, k) − µ(x, y, d) between
disparity levels, and find the minimum of the summed
squared error (which will be a quadratic function of the
fractional disparity).

Instead of representing our color volume ĉ(x, y, d)
using colors pre-multiplied by their opacities (Blinn,
1994a), we could keep these quantities separate. Thus,
colors could “bleed” into areas which are transparent,
which may be a more natural representation for color
smoothness (e.g., for surfaces with small holes). Dif-
ferent color representations such as hue, saturation, in-
tensity (HSV) may also be more suitable for perform-
ing correspondence (Golland and Bruckstein, 1995),
and they would permit us to reason more directly about
underlying physical processes (shadows, shading,etc.).

In recent work, we have extended our stack of ac-
etates model to use a smaller number of tilted acetates
with arbitrary plane equations (Baker et al., 1998).
This work is closely related to more traditional layered
motion models (Wang and Adelson, 1993; Ju et al.,
1996; Sawhney and Ayer, 1996; Weiss and Adelson,
1996), but focuses on recovering 3D descriptions in-
stead of 2D motion estimates. Each layer can also have
an arbitrary out-of plane parallax component (Baker et
al., 1998). The layers are thus used to represent the
gross shape and occlusion relationships, while the par-
allax encodes the fine shape variation. We are also

investigating efficient rendering algorithm for doing
view synthesis from such sprites with depth (Shade et
al., 1998).

9. Conclusions

In this paper, we have developed a new framework
for simultaneously recovering disparities, colors, and
opacities from multiple images. This framework en-
ables us to deal with many commonly occurring prob-
lems in stereo matching, such as partially occluded re-
gions and pixels which contain mixtures of foreground
and background colors. Furthermore, it promises to de-
liver better quality (sub-pixel accurate) color and opac-
ity estimates, which can be used for foreground object
extraction and mixing live and synthetic imagery.

To set the problem in as general a framework as pos-
sible, we have introduced the notion of a virtual camera
which defines a generalized disparity space, which can
be any regular projective sampling of 3-D. We represent
the output of our algorithm as a collection of color and
opacity values lying on this sampled grid. Any input
image can (in principle) be re-synthesized by warping
each disparity layer using a simple homography and
compositing the images. This representation can sup-
port a much wider range of synthetic viewpoints in view
interpolation applications than a single texture-mapped
depth image.

To solve the correspondence problem, we first com-
pute mean and variance estimates at each cell in our
(x, y, d) grid. We then pick a subset of the cells which
are likely to lie on the reconstructed surface using a
thresholded winner-take-all scheme. The mean and
variance estimates are then refined by removing from
consideration cells which are in the occluded (shadow)
region of each current surface element, and this process
is repeated.

Starting from this rough estimate, we formulate an
energy minimization problem consisting of an input
matching criterion, a smoothness criterion, and a prior
on likely opacities. This criterion is then minimized
using an iterative preconditioned gradient descent al-
gorithm.

While our preliminary experimental results look en-
couraging, there remains much work to be done in de-
veloping truly accurate and robust correspondence al-
gorithms. We believe that the development of such
algorithms will be crucial in promoting a wider use of
stereo-based imaging in novel applications such as spe-
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cial effects, virtual reality modeling, and virtual studio
productions.

Appendix

Camera models, disparity space, and induced ho-
mographies

The homographies mapping input images (rectified or
not) to planes in disparity space can be derived directly
from the camera matrices involved. Throughout this
appendix, we use projective coordinates, i.e., equality
is defined only up to a scale factor.

Let Mk be the 3 × 4 camera matrix which maps
real-world coordinates x = [X Y Z 1]T into a cam-
era’s screen coordinates xk = [u v 1]T , xk = Mkx.
Similarly, let M̂0 be the 4×4 collineation which maps
world coordinates x into disparity space coordinates
x̂0 = [x y 1 d]T , x̂0 = M̂0x.

We can write the mapping between a pixel in the dth
disparity plane, x0 = [x y 1]T , and its corresponding
coordinate xk in the kth input image as

xk = MkM̂−1
0 x̂0 = Hkx0+tkd,= (Hk + tk[0 0 d])x0,

(A1)
where Hk is the homography relating the rectified and
non-rectified version of input image k (i.e., the homog-
raphy for d = 0), and tk is the image of the virtual cam-
era’s center of projection in image k, i.e., the epipole
(this can be seen by setting d→∞).

If we first rectify an input image, we can re-project
it into a new disparity plane d using

xk = Hkx′
0 = Hkx0 + tkd

where x′
0 is the new coordinate corresponding to x0 at

d = 0. From this,

x′
0 = x0 + t̂kd =

(
I + t̂k[0 0 d]

)
x0 = Ĥkx0,

where t̂k = H−1
k tk is the focus of expansion, and the

new homography Ĥk = I+ t̂k[0 0 d] represents a sim-
ple shift and scale. It can be shown (Collins, 1996) that
the first two elements of t̂k depend on the horizontal
and vertical displacements between the virtual camera
and the kth camera, whereas the third element is pro-
portional to the displacement in depth (perpendicular
to the d plane). Thus, if all of the cameras are coplanar
(regardless of their vergence), and if the d planes are

parallel to this common plane, then the re-mappings of
rectified images to a new disparity correspond to pure
shifts.

Note that in the body of the paper, when we speak of
the homography (A1) parameterized by Hk and tk, we
can replace Hk and tk by I and t̂k if the input images
have been pre-rectified.

Gradient descent algorithm

To implement our gradient descent algorithm, we need
to compute the partial derivatives of the cost functions
C1 . . . C3 with respect to all of the unknowns, i.e., the
colors and opacities ĉ(x, y, d). In this section, we will
use ĉ = [r g bα]T to indicate the four-element vector of
colors and opacities, and α to indicate just the opacity
channel. In addition to computing the partial deriva-
tives, we will compute the diagonal of the approximate
Hessian matrix (Press et al., 1992; pp. 681-685), i.e.,
the square of the derivative of the term inside the ρ
function.

The derivative of C1 given in (9) can be computed
by first expressing c̃k(u, v) in terms of c̃k(u, v, d),

c̃k(u, v) =
dmax∑

d=dmin

c̃k(u, v, d)Vk(u, v, d)

=
dmax∑

d′=d

c̃k(u, v, d′)Vk(u, v, d′)

+ (1− α̃k(u, v, d))ãk(u, v, d− 1),

where

ãk(u, v, d) =
d∑

d′=dmin

c̃k(u, v, d′)Vk(u, v, d′)

is the accumulated color/opacity in layer d, with
c̃k(u, v) = ãk(u, v, dmax). We obtain

∂rk(u, v)
∂rk(u, v, d)

=
∂gk(u, v)

∂gk(u, v, d)
=

∂bk(u, v)
∂bk(u, v, d)

= Vk(u, v, d)

and

∂c̃k(u, v)
∂α̃k(u, v, d)

= [0 0 0 Vk(u, v, d)]T − ãk(u, v, d− 1).

Let ek(u, v) = c̃k(u, v)−ck(u, v) be the color error in
imagek, and assume for now thatwk = 1 andρ1(ek) =
‖ek‖2 in (9). The gradient ofC1 w.r.t. c̃k(u, v, d) is thus

g̃k(u, v, d) = Vk(u, v, d)(ek(u, v)
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− [0 0 0 ek(u, v) · ãk(u, v, d− 1)]T )

while the diagonal of the Hessian is

h̃k(u, v, d) = Vk(u, v, d)[1 1 1 1− ‖ãk(u, v, d− 1)‖2]T .

Once we have computed the derivatives w.r.t. the
warped predicted color values c̃k(u, v, d), we need to
convert this to the gradient w.r.t. the disparity space
colors ĉ(x, y, d). This can be done using the transpose
of the linear mapping induced by the backward warp
Wb used in (5). For certain cases (pure shifts), this is the
same as warping the gradient g̃k(u, v, d) and Hessian
h̃k(u, v, d) through the forward warpWf ,

ĝ1(x, y, d, k) = Wf (g̃k(u, v, d);Hk + tk[0 0 d]),

ĥ1(x, y, d, k) = Wf (h̃k(u, v, d);Hk + tk[0 0 d]).

For many other cases (moderate scaling and shear), this
is still a good approximation, so it is the approach we
currently use.

Computing the gradient ofC2 w.r.t. ĉ(x, y, d) is much
more straightforward,

ĝ2(x, y, d) =
∑

(x′, y′, d′)
∈ N4(x, y, d)

ρ̇2(c(x′, y′, d′)− c(x, y, d)),

whereρ2 is applied to each color component separately.
The Hessian will be a constant for a quadratic penalty
function; for a non-quadratic function, the secant ap-
proximation ρ̇(r)/r can be used (Sawhney and Ayer,
1996).

Finally, the derivative of the opacity penalty function
C3 can easily be computed for φ = x(1− x),

ĝ3(x, y, d) = [0 0 0 (1− 2α(x, y, d))]T .

To ensure that the Hessian is positive, we set
ĥ3(x, y, d) = [0 0 0 1]T .

The gradients for the three cost functions can now
be combined

ĝ(x, y, d) = λ1

K∑

k=1

ĝ1(x, y, d, k) + λ2ĝ2(x, y, d)

+ λ3ĝ3(x, y, d),

ĥ(x, y, d) = λ1

K∑

k=1

ĥ1(x, y, d, k) + λ2ĥ2(x, y, d)

+ λ3ĥ3(x, y, d),

and a gradient descent step can be performed,

ĉ(x, y, d)← ĉ(x, y, d)+ε1ĝ(x, y, d)/(ĥ(x, y, d)+ε2).
(A2)

In our current experiments, we use ε1 = ε2 = 0.5.13

Notes

1. Note that this 4-D space is not the same as that used in the Lumi-
graph (Gortler et al., 1996), where the description is one of rays
in 3-D, as opposed to color distributions across multiple cameras
in 3-D. It is also not the same as an epipolar-plane image (EPI)
volume (Bolles et al., 1987), which is a simple concatenation of
warped input images.

2. The color values c can be replaced with gray-level intensity
values without affecting the validity of our analysis.

3. In our current implementation, the warping (resampling) algo-
rithm uses bi-linear interpolation of the pixel colors and opacities.

4. For certain epipolar geometries, even more efficient algorithms
are possible, e.g., by simply shifting along epipolar lines (Kanade
et al., 1996).

5. In many traditional stereo algorithms, it is common to effectively
set the mean to be just the value in one image, which makes these
algorithms not truly multiframe (Collins, 1996). The sample
variance then corresponds to the squared difference or sum of
squared differences (Okutomi and Kanade, 1993).

6. To account for resampling errors which occur near rapid color
or luminance changes, we set the threshold proportional to the
local image variation within a 3 × 3 window, Var3×3. In our
experiments, the threshold is set to θ = θmin +θsVar3×3, with
θmin = 10 and θs = 0.02.

7. We may, for computational reasons, choose to represent this
volume using colors premultiplied by their opacities (associated
colors (Porter and Duff, 1984; Blinn, 1994a)), in which case
voxels for which alpha (opacity) is 0 should have their color or
intensity values set to 0. See (Blinn, 1994a; Blinn, 1994b) for a
discussion of the advantages of using premultiplied colors.

8. If the input images have been rectified, or under certain imaging
geometries, this homography will be a simple scale and/or shift
(see the Appendix).

9. This is the inverse of the warp specified in (1).

10. Note that it is not possible to compute visibility in (x, y, d)
disparity space, as several opaque pixels in disparity space may
potentially project to the same input camera pixel.

11. More precisely, we may wish to measure the angle between the
viewing ray corresponding to (u, v) in the two cameras. How-
ever, the ray corresponding to (u, v) in the virtual camera de-
pends on the disparity d.

12. All color and opacity values are, of course, constrained to lie in
the range [0, 1], making this a constrained optimization problem.

13. A more sophisticated Levenberg-Marquardt minimization tech-
nique could also be implemented by adding an extra stabiliza-
tion parameter (Press et al., 1992). However, implementing a full
Levenberg-Marquardt with off-diagonal Hessian elements would
greatly complicate the implementation.
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