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Abstract. We present a method to detect epileptic regions based on
functional connectivity differences between individual epilepsy patients
and a healthy population. Our model assumes that the global functional
characteristics of these differences are shared across patients, but it allows
for the epileptic regions to vary between individuals. We evaluate the de-
tection performance against intracranial EEG observations and compare
our approach with two baseline methods that use standard statistics.
The baseline techniques are sensitive to the choice of thresholds, whereas
our algorithm automatically estimates the appropriate model parameters
and compares favorably with the best baseline results. This suggests the
promise of our approach for pre-surgical planning in epilepsy.

1 Introduction

Focal epilepsy is a chronic neurological disorder, in which seizures are triggered
by a few isolated regions before spreading to the rest of the brain [1]. In cases
where anticonvulsant medication fails to mitigate these seizures, surgical resec-
tion of the epileptic regions may be prescribed. Accurate localization of these
regions is crucial to minimize the size of the excision, and hence, to limit poten-
tial damage to brain function. For some patients, localization is achieved using
intracranial electroencephalography (iEEG), in which electrodes are implanted
directly onto the cortical surface. Unfortunately, iEEG is highly invasive and
only provides limited coverage of the cortex.

Recently, it has been suggested that epilepsy is associated with func-
tional disorganization during and between seizures [2]. Resting state functional
MRI (rsfMRI) can help quantify this disorganization since temporal correlations
in rsfMRI reflect the intrinsic functional connectivity of the brain [3]. rsfMRI is
particularly attractive for epilepsy because it is non-invasive and provides full
coverage of the cortex. Prior empirical studies have revealed abnormal func-
tional connectivity in focal epilepsy patients [4], which may roughly correspond
to epileptic regions [5]. However, these analyses focused on pre-defined brain net-
works and produced results that are sensitive to user-specified parameters. Here,
we demonstrate a novel method that automatically identifies epileptic regions
based on global functional connectivity patterns.
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Most prior work in connectivity analysis is motivated by population studies
and is ill suited to epilepsy. For example, univariate tests and random effects
analysis are commonly used to identify statistical differences between a clinical
population and normal controls [6]. In contrast to population studies, we can-
not assume that the abnormal regions are common across patients. Furthermore,
connectivity analysis typically yields discriminative connections and provides lit-
tle insight into the associated region properties. Therefore, even patient-specific
connectivity analysis is not suitable for this application [7]. One solution is to
aggregate population differences across connections into information about re-
gions [8]. However, this approach still assumes a consistent set of abnormal
regions for the clinical population. In contrast, our method detects abnormal
regions within a heterogeneous patient group.

We demonstrate our algorithm on a case study of six epilepsy patients. Our
results correspond well with the epileptic regions localized via iEEG.

2 Extracting Diseased Regions from Connectivity

Fig. 1 illustrates our assumptions about the relationship between the diseased
brain regions and the observed abnormalities in functional networks. Our model
operates on a parcellation of the brain into regions that are consistently defined
across subjects. In this work, we subdivide the cortical surface into 50-100mm2

patches, which are comparable in size to the coverage of a single iEEG electrode.
Optimizing the parcellation to maximize detection accuracy is a non-trivial prob-
lem that we leave for future work.

We assume that epileptic regions are the foci of abnormal neural communica-
tions in the brain. Hence, they are associated with the greatest deviations from
the functional connectivity template of a control population. Below we formalize
the random variables in our model and summarize the corresponding inference
algorithm to fit the model to the data. We then describe how to evaluate the
the detection performance of our method.

Diseased Regions. The binary vector Rm = [Rm
1 , . . . , Rm

N ] indicates the state,
healthy (Rm

i = 0) or diseased (Rm
i = 1), for each region i ∈ {1, . . . , N} in

patient m, ∀m = 1, . . . ,M . We assume an i.i.d. Bernoulli prior for Rm
i with the

unknown parameter πr shared across regions and patients, i.e., P (Rm
i = 1) = πr.

Latent Connectivity. The labels Rm imply a graph of abnormal functional
connectivity, which emanates from diseased regions based on a simple set of rules:
(1) a connection between two diseased regions is always abnormal, (2) a connec-
tion between two healthy regions is always healthy, and (3) a connection between
a healthy and a diseased region is abnormal with probability η. We use latent
functional connectivity variables Fij and F̄m

ij to model the neural synchrony
between regions i and j in the control population and in patient m, respec-
tively. Formally, the latent functional connectivity template Fij of the control
population is a tri-state random variable drawn from a multinomial distribution
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(a) Abnormal Networks

(b) iEEG Electrodes (c) Graphical Model

Fig. 1. (a) Latent network model of diseased regions in a heterogeneous population.
The red nodes are diseased regions and are unique for each patient; red edges correspond
to abnormal functional connections emanating from the diseased regions. (b) Electrode
arrays are placed on the surface of each patient’s brain. Red circles denote electrodes
that exhibit abnormal activity. (c) Graphical representation of our generative model.
Vector Rm specifies diseased regions in patient m. Fij and F̄m

ij represent the latent
functional connectivity between regions i and j in the control population and in themth

patient, respectively. Bl
ij and B̄m

ij are the observed time course correlations in control
subject l and epilepsy patient m, respectively. Boxes denote non-random parameters;
circles indicate random variables; shaded variables are observed.

with parameter πf . These states represent little or no functional co-activation
(Fij = 0), positive functional synchrony (Fij = 1), and negative functional syn-
chrony (Fij = −1). For notational convenience, we represent Fij as a length-three
indicator vector [Fij,−1 Fij0 Fij1] with exactly one of its elements equal to

one, i.e., P (Fijk = 1) = πf
k .

Ideally, F̄m
ij �= Fij for abnormal connections and F̄m

ij = Fij for healthy con-
nections. To account for noise and subject variability, we assume that the latent
connectivity can deviate from the above rules with probability ε:

P (F̄m
ij |Fij , Ri, Rj) =
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(1)

such that ε1 = ηε + (1 − η)(1 − ε). The first condition in Eq. (1) states that if
both regions are healthy (Rm

i = Rm
j = 0), then the edge 〈i, j〉 is healthy and the

functional connectivity of patient m is equal to that of the control population
with probability 1 − ε, and it differs with probability ε. The second term is
similarly obtained by replacing ε with 1 − ε. The probability ε1 in the third
condition reflects the coupling between η and ε when the region labels differ.



Detecting Epileptic Regions 101

Although we specify separate region and connectivity variables for each pa-
tient, the parameters {πr, η, ε} associated with the disease are shared across the
patient group. Under this assumption, the characteristics of change are common
across patients, but the disease is localized to a different subset of regions in
each individual. Our model can also be applied to a single patient.

Data Likelihood. The rsfMRI correlationBl
ij is a noisy observation of the func-

tional connectivity template Fij , i.e., P (Bl
ij |Fijk = 1; {μ, σ2}) = N (

Bl
ij ;μk, σ

2
k

)
,

where N (·;μ, σ2) is a Gaussian distribution with mean μ and variance σ2. We
fix μ0 = 0 to center the parameter estimates. The likelihood of B̄m

ij has the same
functional form and parameter values, but uses the latent functional connectivity
F̄m
ij of patient m instead of the control template Fij .

Approximate Inference. We combine the prior and likelihood terms to obtain
the full probability distribution for the generative model in Fig. 1(c). Our goal
is to estimate the region labels {Rm} from the observed rsfMRI correlations
{B, B̄}. To improve robustness of the estimation, we marginalize out the latent
functional connectivity F̄m for all patients m = 1, . . . ,M .

The resulting expressions are heavily coupled across patients and across
pairwise connections. Therefore, we use a fully factorized variational approxi-
mation (mean-field) to the posterior distribution of the remaining latent vari-
ables {Rm, F} for maximum likelihood estimation of the parametersΘ = {π, ε, η,
μ, σ2}. We emphasize that both the posterior distributions of the latent variables
and the non-random model parameters Θ are estimated directly from the data.

The marginal posterior probability p̂mi = P (Rm
i = 1|B, B̄; Θ̂) quantifies how

likely region i in patient m is to be diseased given the observed connectivity
data {B, B̄} and the parameter estimates Θ̂.

Baseline Methods. Our generative framework automatically infers the region
labels based on global connectivity patterns. To evaluate the accuracy and sta-
bility of our approach, we consider two baseline methods that also translate
connection information into region properties.

The first method counts the number of connections that differ from a con-
trol population. Formally, we quantify the deviation associated with connec-
tion 〈i, j〉 in patient m via the z-statistic zmij = (B̄m

ij −mij)/sij , where mij and
sij are the mean and standard deviation of the corresponding rsfMRI correla-
tions {Bl

ij : l = 1 . . . L} within the healthy population. The connectivity statistic
summarizes the deviations associated with region i in patientm as the proportion
of significantly different connections: ẑmi (α) = 1

N−1

∑
j �=i �(|zmij | > α), where α

is a user-specified significance threshold and �(·) is a function that is equal to 1 if
its argument is true and is 0 otherwise. The absolute value accommodates both
positive and negative correlation differences.

The second method computes the degree dmi of region i in patientm by count-
ing the number of connections with rsfMRI correlation above a user-specified
threshold β, i.e., dmi =

∑
j �=i �(B̄

m
ij > β). The associated degree statistic z̄mi (β)

quantifies how abnormal the degree of a node is relative to the null distribution
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estimated from the normal population. This statistic is closely related to the
approach of [5], which, to the best of our knowledge, is the only existing method
to localize epileptic regions based on whole-brain rsfMRI connectivity analysis.

Model Evaluation. The iEEG electrode labels indicate one of three possible
scenarios: abnormal activity as a seizure begins (ictal), abnormal activity be-
tween seizures (interictal), and no abnormal activity. Our goal is to identify the
ictal areas that correspond to epileptic regions while simultaneously avoiding
detection in the areas of normal activity.

As the iEEG electrodes lie on the surface of the brain, the cortical origin of
the abnormal activity measured at each electrode is uncertain. This uncertainty
is exacerbated by potential misalignment and significant brain shift due to the
required craniotomy. Therefore, quantifying the agreement between the electrode
labels and the diseased regions identified by the methods is not necessarily help-
ful. Instead, we qualitatively evaluate the performance of each method by visual
comparison. We deem successful detections to be those that overlap with or are
immediately adjacent to the ictal areas. We emphasize that the electrode grids
cover only a fraction of the cortical surface; we cannot draw conclusions about
any detections outside of this coverage.

3 Experimental Results

We have performed extensive simulations on synthetic data, in which the ob-
servations are sampled from our model. The experiments demonstrate that our
inference algorithm recovers the true region labels for a wide range of model ini-
tializations. We omit these results here and instead focus on the clinical findings.

Data and Pre-processing. We illustrate our method on a clinical study of
six focal epilepsy patients. For each patient, the data includes an anatomical
scan (MPRAGE, TE=3.44ms, FOV=256mm× 256mm, res=1mm3), a between-
seizure rsfMRI scan (EPI, 152-456 vols, TR=5s, TE=30ms, res=2mm3), a CT
volume acquired after iEEG electrode implantation (res=0.5× 0.5× 2.5-5mm),
and the iEEG electrode labels. Anatomical and rsfMRI scans were acquired for
38 control subjects using the same imaging protocols.

We uniformly subdivide the Freesurfer cortical surface template [9] into N =
1153 regions and non-linearly register the resulting parcellation to the MNI152
template [10]. Our rsfMRI processing pipeline includes motion correction via
rigid registration, slice timing correction and spatial normalization to the MNI152
template. We then spatially smooth each volume using a 6mm Gaussian kernel,
temporally low-pass filter the time courses and remove global contributions from
the white matter, ventricles and the whole brain. The rsfMRI observation Bl

ij is
computed as the Pearson correlation coefficient between the mean time courses
of region i and region j in subject l.

The CT volume is rigidly registered to the MPRAGE volume using FSL [10].
While the registration is mostly accurate, the electrodes appear within the cor-
tical surface due to brain shift during implantation. We correct for brain shift
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Fig. 2. Marginal posterior probability p̂mi inferred by our algorithm (left) and the
degree statistic z̄mi (right), projected to the smoothed pial surface of each patient. The
correlation threshold is set to β = 0.5. iEEG electrodes are shown as circles with colors
denoting expert labels: normal activity (black), interictal abnormal activity (yellow)
and ictal abnormal activity (red). Only views with electrode coverage are shown.

by projecting each electrode center onto its closest vertex on the smoothed pial
surface [9]. For evaluation, we project the baseline and model results onto the
smoothed pial surface by associating each vertex with the maximum value along
its normal, up to 20mm inside the cortex. This is because abnormal activity
measured on the brain surface can originate from within the cortical ribbon.

Detecting Epileptic Regions. Fig. 2 visualizes the marginal posterior prob-
ability p̂mi obtained by our method, with the degree statistic z̄mi as a baseline
result. We set the correlation threshold at β = 0.5, which yields qualitatively
similar results to those presented in [5]. We display only the regions for which
z̄mi > 2, which roughly corresponds to an uncorrected p-value of p < 0.05.
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Fig. 3. Region localization for Patient 1 when sweeping the significance threshold α
for the connectivity statistic ẑmi (top left) and the correlation threshold β for the
degree statistic z̄mi (bottom). The model results are presented for comparison (top
right). iEEG electrodes are shown as circles with colors denoting expert labels: normal
activity (black), interictal abnormal activity (yellow) and ictal abnormal activity (red).

Our algorithm identifies a much richer set of abnormal regions than the degree
statistic z̄mi . This translates to better detection of the ictal areas in Patient 1,
Patient 4 and Patient 6. Our model also localizes many of the interictal areas
in Patient 3, Patient 4 and Patient 5. While not strictly epileptic, interictal re-
gions can develop after surgery to trigger seizures in the future [1]. In general,
our algorithm avoids regions with normal activity. It also detects regions where
there is no electrode coverage. Although we can only speculate about whether
these regions are epileptic, they may be good candidate locations for electrode
placement in pre-surgical planning. Patient 6 is the most difficult case as evi-
denced by the widespread electrode coverage. Here, both baseline methods fail to
detect the frontal areas; instead, they favor regions with no electrode coverage.
In contrast, our model correctly identifies all the ictal regions.

Optimizing the threshold α of the connectivity statistic against the iEEG
electrode labels leads to a similar detection accuracy to that of our method
but with more false detections in the areas of normal activity (not shown). The
optimal parameter value varies across subjects, which highlights the challenge
of using standard hypothesis testing in this application.

Parameter Sweep. Fig. 3 illustrates how varying the user-defined threshold
parameters in the baseline methods affects the results. Although the connectivity
statistic ẑmi can identify the ictal regions, the results are sensitive to the thresh-
old α. In contrast, the degree statistic z̄mi marginally detects the ictal regions for
any threshold β. Lowering β would include more regions, but it does not make
sense to use such a low correlation threshold to identify functional connections.
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In contrast to the baseline methods, our algorithm is completely data-driven and
automatically selects the appropriate parameter values. Empirically, we observe
a sensitivity to threshold values for all six patients.

4 Conclusions

We have proposed a novel generative framework for epilepsy based on rsfMRI
correlations. Our model assumes that epileptic foci induce a network of abnormal
functional connectivity in the brain. The resulting algorithm consistently detects
regions in the immediate vicinity of the ictal spiking areas, as localized by iEEG.
Future directions include applying the method to a larger patient cohort and
evaluating the effects of region size on the detection performance. Small patches
can better localize the epileptic regions but are susceptible to inter-subject vari-
ability and registration errors. Conversely, large patches mitigate these issues
but may smooth away focal effects. Overall, our results illustrate the promise of
our approach for pre-surgical planning in epilepsy.
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