Performance Issues in Shape Classification
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Abstract. Shape comparisons of two groups of objects often have two
goals: to create a classifier to separate the groups and to provide informa-
tion that shows differences between classes. We examine issues that are
important for shape analysis in a study comparing schizophrenic patients
to normal subjects. For this study, non-linear classifiers provide large ac-
curacy gains over linear ones. Using volume information directly in the
classifier provides gains over a classifier that normalizes the data for vol-
ume. We compare two different representations of shape: displacement
fields and distance maps. We show that the classifier based on displace-
ment fields outperforms the one based on distance maps. We also show
that displacement fields provide more information in visualizing shape
differences than distance maps.

1 Introduction

Statistical studies of shape generally compare the shape of a structure selected
from two different groups. They are used to form connections between shape
and the presence or absence of disease [1J2], testing hypotheses in the differences
between men and women [TI314], as well as examining biological processes. The
goals of such studies are to classify new examples of a structure and to show a
doctor the differences between classes.

This paper examines a set of issues in classifying structures and presenting
information to doctors. Is it more important to use a good representation or
a particular classification method? Is the choice of alignment technique criti-
cal? We examine these issues in one study: segmented amygdala-hippocampus
complexes from fifteen normal and fifteen schizophrenic subjects [5].

1.1 Classification Methods

Until recently, most researchers classifying by shape used linear classifiers to
separate two groups. The technology has generally been motivated by the desire
to create deformable models of shape as the basis of automatic segmenters [6].
One creates a deformable model of shape using Principal Component Analysis
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(PCA) on representations of example structures. A generative model can then
be made by allowing the shape to deform along the most important modes of
variation. To compare two groups, one forms such a model for each group, and
separates the two models using a hyperplane. Visualization of differences between
classes can be examined by moving perpendicular to the hyperplane.

Golland et al. demonstrated that non-linear classification can potentially
improve the separation between groups of shapes. The gradient of the classifier
can be used to show differences between groups.

1.2 Representation
There are numerous attractive representations of shape for classification. Most

representations implicitly determine the points on a surface. For example, sur-
faces can be parameterized in a series of spherical harmonics [T]. Medial repre-
sentations [7] are parameterizations of shapes based on a chain or sheet of atoms
that project a surface. Distance maps embed a surface by labeling the voxels of
a 3D-volume with the distance from the surface. Each of these parameterized
models avoid establishing direct correspondences between surfaces.

Other representations, conversely, use explicit representations of correspon-
dences. One can represent the surface of structures by a triangular mesh where
the vertices of the mesh are at corresponding points on the different structures.
One can also use volumetric displacement fields which establish correspondences
on the surface as well as the interior of shapes.

Correspondence-based representations have the potential to yield more in-
formation than implicit representations. Displacement fields can show not only
whether surfaces moved in or out, but can also show local rotation or compres-
sion of an organ. For this reason, we consider displacement fields in this paper.

Unfortunately, medical structures typically have large smooth surfaces so
that finding correspondences is challenging. It is not intuitive where points in
one smooth surface should lie on a second surface. One typically overcomes the
challenge by matching two shapes while minimizing an additional constraint.
For example, one can match structures by treating them as viscous fluids [§],
though many have argued that this type of matching can form un-realistic cor-
respondences. Finding corresponding surfaces that form a minimum description
length of a dataset is a promising idea, though it is difficult to find in three
spatial dimensions [9]. There have also been various types of surface matching
by matching points of one surface to the closest points in another [TOJTT].

Intuitively, in a good match, high curvature regions in one object match high
curvature regions in a second object. Matching by minimizing an elastic energy
should accomplish this feat. Matching a sharp portion of one surface against a
sharp portion of another surface is lower energy than flattening the region to
match against an less sharp adjacent region. Therefore, we align shapes using a
linear elastic model.

2 Methods

We explore several issues that are important to shape-based classification. We
examine two different representations of shape. We then compare the results of
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linear and non-linear classifiers. We explore the effects of normalizing the data
by volume. Finally, we consider the effects of different alignment methods. Every
combination is examined, though we report only a subset of the results.

The data consists of segmented amygdala-hippocampus complexes, fifteen
from schizophrenic patients and fifteen from normal patients [5]. The objects
are represented using both signed distance maps and displacement fields. Signed
distance maps are formed by labeling each voxel with its distance from a sur-
face [2]. The resulting representation is the vector of labels of the voxels.

To form the displacement field representations of the left complexes, one left
amygdala-hippocampus complex is chosen randomly as a basis. It is meshed with
tetrahedra to facilitate the matching process. The mesh is then treated as a linear
elastic material and deformed to match the amygdala hippocampus complexes
as described in [12]. A similar procedure is carried out for the right complexes
starting with meshing a complex and then matching to the rest of the data.
For each match, the displacement of the nodes of the tetrahedra form a roughly
uniform sampling of the displacement field. The resulting representation vector
is the concatenation of all the displacements of the nodes of the tetrahedra.

When both sides are considered together, the vectors of each side are simply
concatenated. Each section of the paper indicates whether data has been nor-
malized by volume, or not scaled at all. Except for Section B3], all results use
a second order moment alignment of the data. In that section, we also aligned
using the second order moments of the mesh nodes, the mesh tetrahedra mo-
ments, and absolute orientation [I3] (removing global translations and rotations
from a deformation field). We tested aligning left and right amygdalas together
and seperately.

Let « be the representation vector of the complexes for either representation.
The squared distance between two amygdalas, ||& — x’||?, is defined to be (x —
x')T(z — x’). For displacement fields, this distance is simply the square of the
length of the displacement field between each complex. For distance maps, there
is no simple interpretation of distance between shapes.

We train linear and non-linear classifiers of the data. The non-linear classifier
is a support vector machine (SVM), described in [2]. We use the Radial Basis
Function (RBF), K (z, ;) = —ell®==l1’/7 in the SVM where ~ is proportional
to the square of the width of the kernel. We pick v to optimize the leave-one-out
cross-validation accuracy of the classifier.

Our goal is not only to form the classifier, but to explicitly represent the shape
differences between groups. Differentiating a pre-thresholded, SVM classifying
function with respect to shape would seem to yield the answer. The derivative
at T is ), %akyk(mk —x)el1*=2kl/7 wwhere the {a4} are constants determined
by the SVM and {y;} are —1 for on group and 1 for the other. Using distance
maps this answer is not sufficient. A small change to a distance map does not
yield another distance map. Therefore, one must project a derivative back onto
the manifold of distance maps [2]. However, displacement fields form a vector
space; a small change in a displacement field yields another displacement field.
Thus for this case, differentiating the classifier is sufficient for our goals.
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3 Results

We formed displacement fields between complexes using a linear elastic model
[12]. Figure[[lshows a number of points found to correspond. The hand segmented
complexes have notably different structure. The typical member of the data set
has a nearly horizontal “tail” like the rightmost two complexes; a few have the
tail at an angle (leftmost), or practically no such structure at all (second from
the left). Even with the shape differences, in all examples, Point 1 stays slightly
above the tip of the head and Point 2 stays on the side of the head. Examining
the head of the complexes, some bases are nearly flat and level while others are
curved and angled. A review of points near the base also shows that points are
approximately in the same position relative to major structures.

Fig. 1. Surfaces of four matched left complexes; the tail and head are at the top and
bottom of the image respectively. To show correspondence across the shapes, points
were randomly selected and represented by small spheres on each surface. Points 1 and
2 are referenced in the text.

3.1 Classifier Comparison

We compare the cross validation accuracy of linear and RBF-based [2] classifiers.
Table 0l shows the classification accuracy using data normalized to remove rela-
tive volume. The table shows that support vector machines generally performed
better than linear classifiers by 10 to 20 percentage points. We found this to be
the case in all trials, with one exception. When deformation fields were aligned
using absolute orientation [T3], linear classifiers improved their classifying ability
to as high as 70%. (See Section [3.3])

For individual sides, deformation field-based classifiers perform slightly better
than distance map-based classifiers. When considering both sides together, that
performance improvement becomes much larger. For comparison to other meth-
ods, Table [ shows results from Gerig et al. [I] who made a classifier comparing
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Table 1. A comparison of cross-validation accuracy for RBF and linear classifiers. The
data is normalized to the same volume. The range is the 95% confidence interval.

Normalized Cross Validation Accuracy using Linear Classifier
Structure Displacement Field |Distance Map

Left Complex 60 + 18% 57+ 18%

Right Complex 53+ 18% 53 +18%

Both Complexes 57 +18% 53 + 18%

Normalized Cross Validation Accuracy using RBF
Structure Displacement Field |Distance Map| Gerig et al.
Left Complex 67 £ 18% 70+ 17%

Right Complex 73+ 17% TTE1T%

Both Complexes 80 + 16% 67 +18% 73+ 17%

Table 2. Cross-validation accuracy for the different representations using RBF' classi-
fiers. For deformation fields and distance maps, the data is not normalized by volume.
For the third column, volume was added separately to shape data [I].

Structure Cross Validation Accuracy using RBF
Displacement Field |Distance Map|Gerig et al.

Left Complex TT+1T% 73+ 17%

Right Complex 7T+ 1% 70+ 17%

Both Complexes 87 + 16% 70+ 17% 87 +£16%

the two sides in each subject using the same data. That classifier’s accuracy is
in between the two we tested.

3.2 Including Volume

Table 2] examines the effects of not normalizing for volume in the data, using
RBFs. Comparing Tables[Tl and 2] volume generates improvements for the dis-
placement field based classifier of between 3 and 10 percentage points. For the
classifier based on distance maps, volume improves or hurts a classifier, but the
effect is roughly 3 percentage points each way. Gerig et al. [I] include volume as
a separate feature in their classifier; doing so improves the performance of their
classifier to the same as the deformation field-based classifier.

3.3 Alignment

We rigidly align shapes so that classifiers are not confused by variations in pa-
tient position during imaging. We tried the many alignment methods listed in
Section 2] Choosing different alignment methods causes classifiers to have a range
of between 3 and 10 percentage points, typically closer to 3%. The worst results
are shown in Table[I], 67% accuracy. The best results are 87% achieved in three
different ways. Most results are between 70 and 80%. Examining visualization
of the differences between the classes as in Section [3.4], the different alignments
had small impacts on the differences found between groups.
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3.4 Visualization of Differences

An important goal of this study is to visualize differences between the classes.
Figure[2 shows those differences, found from derivatives of the classifier evaluated
at the examples as described in Section 2l For displacement field based classifiers,
we found the gradients to be visually similar evaluated at nearly all the left
complexes, and visually similar at nearly all of the right complexes. For distance
map based classifiers, the gradients were visually similar across right complexes,
but not across left complexes. Figure [2] also shows that for both classifiers, the
deformations detected for the two groups are similar in nature but opposite in
sign.

In the bottom of Figure [2, the derivatives of the classifier based on defor-
mation fields are shown in the form of a vector field (because distance maps do
not use correspondences, it is not possible to show motions tangential to the
surface using distance maps). The vector fields show that there is motion along
the surface in several places. Most notably, there is a clear rotation of the “tail”
of the complex in the image. Conversely, most of the motion in the base is sim-
ply compression or expansion. There is also a rotation in the head of the left
amygdala, though much smaller in magnitude than the rotation in the tail, and
very difficult to see in the image.

4 Discussion

We examined which issues in shape classification have the largest impact on
classification accuracy. It is clear from Table [ that the non-linear RBF-based
methods outperform linear classifiers by 10 to 20 percentage points. Volume
information (Table[Z) consistently improves results the deformation field-based
classifier, by 4 to 10 percentage points, as well as the classifier of Gerig et al. [1].
Thus, for this case, including volume information was helpful, but not as helpful
as using a non-linear classifier over a linear one. Alignment techniques generally
had a smaller effect. Differences between alignment methods generally produced
accuracy changes of only a few percentage points.

In this study, displacement fields outperformed distance maps. Classifica-
tion rates were higher in almost every test performed. Interestingly, Tables [I]
and [J suggest that deformation field-based classifiers were able to find correla-
tions between the deformations on different sides to improve the classification
rate, while distance maps-based classifiers were not. Perhaps most importantly,
displacement fields provided vector fields in visualizations which added an im-
portant tool for visualizing shape differences.

One concern with these results is that the non-linear classifiers created from
such small numbers of examples may not generalize to new data. That the clas-
sifiers found a qualitatively similar class difference evaluated at many complexes
is a good indicator of those classifiers ability to generalize to other data. Also,
the observation that in several cases, displacement-field based classifiers worked
somewhat well with a simple linear classifier (Section Bl) may also be such an
indication.
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Fig.2. The top four plots show the deformation of the surfaces relative to the
surface normal for the left amygdala-hippocampus complex. For Schizophrenic sub-
jects, “deformation” indicates changes to make the complexes more normal. For Nor-
mal subjects, “deformation” indicates changes to make the complexes more diseased.
The 2x2 grid of surfaces shows deformations of Schizophrenic/Normal subjects us-
ing Distance Maps/Displacement Fields as representations. In each entry in the grid,
the two largest deformations evaluated at the support vectors of the SVM classi-
fier are shown; the larger one is on the left. The grayscale is used to indicate the
direction and magnitude of the deformation, changing from white (inward) to grey
(no motion) to black (outward). The bottom two plots are the deformations fields
used to generate the plots directly above them. Note that motion along the surface
does not affect the colors in the surfaces. For a color version of this figure, go to
http://www. ai.mit.edu/people/samson/papers/publications. html

We are also concerned how well these conclusions generalize to other data
sets. We believe that non-linear classification methods will almost always out-
perform linear classification methods. We also believe that the gains due to the
inclusion of volume, or various alignment techniques exist, but will be much
smaller. When correspondences can be found, correspondence-based methods
do provide an advantage over non-correspondence-based methods because they
provide additional information for visualizing class differences.
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5 Conclusion

We examined several issues that are important for performing shape comparison
studies: complexity of the classifier, volume information, alignment method, and
representation. For the shape differences between amygdala-hippocampus com-
plexes, non-linear classifiers provide 10-20 percentage point accuracy gains over
linear methods. For this study, not normalizing for volume provides a smaller
gain, in the range of 4 to 10 percentage points. Using different alignment methods
generally produce an even smaller impact on classification accuracy.

We have shown that for the cases examined, deformation field-based classi-
fiers outperform distance maps as a measure of shape. Deformation fields form
classifiers of higher accuracy and produce more information for the visualization
of shape differences.
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