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Abstract. Recent developments in MR data acquisition technology are
starting to yield images that show anatomical features of the hippocampal
formation at an unprecedented level of detail, providing the basis for hip-
pocampal subfield measurement. Because of the role of the hippocampus
in human memory and its implication in a variety of disorders and condi-
tions, the ability to reliably and efficiently quantify its subfields through
in vivo neuroimaging is of great interest to both basic neuroscience and
clinical research. In this paper, we propose a fully-automated method for
segmenting the hippocampal subfields in ultra-high resolution MRI data.
Using a Bayesian approach, we build a computational model of how images
around the hippocampal area are generated, and use this model to obtain
automated segmentations. We validate the proposed technique by com-
paring our segmentation results with corresponding manual delineations
in ultra-high resolution MRI scans of five individuals.

1 Introduction

Models of brain structures generated frommagnetic resonance imaging (MRI) data
have grown in complexity in recent years, evolving from simple models with few
classes such as graymatter, white matter and cerebrospinal fluid (CSF) [1,2,3], into
more complex ones representing a multitude of neuroanatomical structures [4,5,6].
Still, while many brain structures such as the thalamus, the amygdala, or the hip-
pocampus consist of multiple distinct, interacting subregions, they are mostly
treated as a single entity because of the limited image resolution of typical struc-
tural MRI scans. Recently, however, substantial developments in MR data acqui-
sition technology have made it possible to acquire images with remarkably higher
resolution and signal-to-noise ratio than was previously attainable [7]. Such scans
show many cortical and subcortical structures in unprecedented detail, and of-
fer new opportunities for explicitly quantifying individual subregions, rather than
their agglomerate, directly from in vivo MRI data.

Analyzing large imaging studies of ultra-high resolution MRI scans requires
computational techniques to automatically extract information from the images.
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This is technically difficult because, although the images show greater anatom-
ical detail than traditional MRI scans, many boundaries between substructures
of interest remain hard to discern. In manual delineations, the extent of spe-
cific subregions is often inferred from the extent of other, more clearly defined
structures by relying on prior neuroanatomical knowledge, rather than on local
intensity information alone. The success of automated methods therefore de-
pends critically on computational models that provide prior information about
the relative location, shape, and appearance of the structures of interest.

In this paper, we present an automated segmentation technique for the sub-
fields of the hippocampus in ultra-high resolution MRI data based on state-of-
the-art computational models. Although the methodology is applicable to other
brain structures as well, we identified the hippocampus as our driving application
because it is a necessary component in a variety of memory functions, as well as
the locus of structural change in aging, Alzheimer’s disease (AD), schizophrenia,
and other conditions. Distinct hippocampal subregions have been shown to be
implicated in different memory subsystems [8,9] and be differentially affected in
aging and AD [10]. Therefore, the ability to measure, through in vivo neuroimag-
ing, subtle changes in these subregions promises to have widespread application
in both basic neuroscience and clinical research.

2 Model-Based Hippocampal Subfield Segmentation

We use a Bayesian modeling approach, in which we first build an explicit compu-
tational model of how an MRI image around the hippocampal area is generated,
and subsequently use this model to obtain fully automated segmentations. The
model incorporates a prior distribution that makes predictions about where neu-
roanatomical labels typically occur throughout the image, and is based on the
generalization of probabilistic atlases [2,3,4,5,11] developed in [12]. The model
also includes a likelihood distribution that predicts how a label image, where
each voxel is assigned a unique neuroanatomical label, translates into an MRI
image, where each voxel has an intensity.

2.1 Prior: Mesh-Based Probabilistic Atlas

Let L = {li, i = 1, . . . , I} be a label image with a total of I voxels, with li ∈
{1, . . . , K} denoting the one of K possible labels assigned to voxel i. Our prior
models this image as being generated by the following process:

- A (irregular) tetrahedrical mesh covering the image domain of interest is de-
fined by the reference position of its N mesh nodes xr = {xr

n, n = 1, . . . , N},
and by a set of label probabilities α = {αn, n = 1, . . . , N}. Node n is as-
sociated with a probability vector αn = {α1

n, . . . , αK
n }, satisfying αk

n ≥ 0
and

∑K
k αk

n = 1, that governs how frequently each label occurs around that
node.

- The mesh is deformed from its reference position by sampling from a Markov
random field (MRF) model regulating the position of the mesh nodes:
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p(x) ∝ exp
(

− Uxr(x)
)

= exp
(

−
T∑

t=1

U t
xr(x)

)
, (1)

where U t
xr (x) is a penalty for deforming tetrahedron t from its shape in the

reference position xr, and Uxr (x) is an overall deformation penalty obtained
by summing the contributions of all T tetrahedra in the mesh. We use the
penalty proposed in [13], which goes to infinity if the Jacobian determinant
of any tetrahedron’s deformation approaches zero, and therefore insures that
the mesh topology is preserved.

- In the deformed mesh with position x, the probability of observing label k
in a pixel i with location xi is modeled by

pi(k|x) =
N∑

n=1

αk
nφn(xi), (2)

where φn(·) denotes an interpolation basis function attached to mesh node n
that has a unity value at the position of the mesh node, a zero value at the
outward faces of the tetrahedra connected to the node and beyond, and a
linear variation across the volume of each tetrahedron. Assuming conditional
independence of the labels between voxels given the mesh node locations, we
obtain the probability of seeing label image L: p(L|x) =

∏I
i=1 pi(li|x).

It has previously been demonstrated that the mesh’s connectivity, reference
position xr, and label probabilities α can be learned from a set of manually la-
beled example images [12]. The learning involves selecting the model that max-
imizes the probability of observing the example label images, or, equivalently,
that minimizes the number of bits needed to encode them. An example of the
prior, derived from 4 manually labeled hippocampi, is shown in figure 2. Note
that the image domain is non-uniformly sampled, with areas containing little
information covered by larger tetrahedra.

2.2 Likelihood: Imaging Model

For the likelihood distribution, we employ a simple, often-used model according
to which a Gaussian distribution with mean μk and variance σ2

k is associated
with each label k. Given label image L, an intensity image Y = {yi, i = 1, . . . , I}
is generated by drawing the intensity in each voxel independently from the Gaus-
sian distribution associated with its label:

p(Y |L, θ) =
I∏

i=1

p(yi|μli , σ
2
li) =

I∏

i=1

1
√

2πσ2
li

exp
(

− (yi − μli)
2

2σ2
li

)

,

where the parameters θ = {μ1, σ
2
1 , . . . , μK , σ2

K} are assumed to be governed by
a uniform prior: p(θ) ∝ 1.
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2.3 Model Parameter Estimation

In a Bayesian setting, assessing the Maximum A Posteriori (MAP) parameter
values {x̂, θ̂} involves maximizing

p(x, θ|Y ) ∝ p(Y |x, θ)p(x)p(θ) ∝
(

I∏

i=1

K∑

k=1

p(yi|μk, σ2
k)pi(k|x)

)

p(x),

which is equivalent to minimizing
I∑

i=1

(

− log
[ K∑

k=1

p(yi|μk, σ2
k)pi(k|x)

])

− log p(x). (3)

We use an EM-style majorization technique [14,15], where we calculate a sta-
tistical classification that associates each voxel with each of the neuroanatomical
labels

W k
i =

p(yi|μk, σ2
k)pi(k|x)

∑
k′ p(yi|μk′ , σ2

k′ )pi(k′|x)
and subsequently use this classification to construct an upper bound to eq. (3)
that touches it at the current parameters estimates [16]:

I∑

i=1

(

− log
[ K∏

k=1

(
p(yi|μk, σ2

k)pi(k|x)
W k

i

)W k
i
])

− log p(x). (4)

Optimizing this upper bound w.r.t. the Gaussian distribution parameters θ,
while keeping x fixed, yields the closed-form expressions

μk =
∑I

i=1 W k
i yi

∑I
i=1 W k

i

, σ2
k =

∑I
i=1 W k

i (yi − μk)2
∑I

i=1 W k
i

, k = 1, . . . , K.

With these estimates of θ, the classification and the corresponding upper bound
are updated, and the estimation of θ is repeated, until convergence. We then
re-calculate the upper bound, and optimize it w.r.t. the mesh node positions x,
keeping θ fixed. Optimizing x is a registration process that deforms the atlas
mesh towards the current classification, similar to the schemes proposed in [5,17].
The gradient of eq. (4) with respect to x is given in analytical form through the
interpolation model of eq. (2) and the deformation model of eq. (1). We perform
this registration by gradient descent. Subsequently, we repeat the optimization
of θ and x, each in turn, until convergence.

2.4 Image Segmentation

Once we have an estimate of the model parameters {x̂, θ̂}, we can use it to obtain
an approximation to the MAP anatomical labeling. Approximating p(L|Y ) =
∫
x

∫
θ p(L|Y, x, θ)p(x, θ|Y )dxdθ by p(L|Y, x̂, θ̂) ∝ p(Y |L, θ̂)p(L|x̂), we have

L̂ = arg max
L

p(L|Y ) � arg max
{li,i=1,...,I}

I∏

i

p(yi|μ̂li , σ̂
2
li)pi(li|x̂),

which is obtained by assigning each voxel to the label with the highest posterior
probability, i.e., l̂i = argmaxk W k

i .
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3 Experiments

We performed experiments on ultra-high resolution MRI data collected as part
of an ongoing imaging study assessing the effects of normal aging and AD
on brain structure. Using a prototype custom-built 32-channel head coil with
a 3.0T Siemens Trio MRI system [7], we acquired images via an optimized
high-resolution MPRAGE sequence that enables 380 μm in-plane resolution
(TR/TI/TE = 2530/1100/5.39 ms, FOV=448, FA = 7 ◦, 208 slices acquired
coronally, thickness = 0.8mm, acquisition time = 7.34 min). To increase the
signal-to-noise ratio, 5 acquisitions were collected and motion-corrected to ob-
tain a single resampled (to 380 μm isotropic) high contrast volume that covers
the entire medial temporal lobe.

Using a protocol developed specifically for this purpose, the subfields of the
right hippocampus were manually delineated in images of 5 subjects (2 younger
and 3 older cognitively normal individuals). These delineations included the
fimbria, presubiculum, subiculum, CA1, CA2/3, and CA4/DG fields, as well as
choroid plexus, hippocampal fissure, and lateral ventricle, as shown in figure 1.
Voxels outside of these structures were automatically labeled as gray matter,
white matter, or CSF using an EM-based tissue classifier [2].

We restricted our automated analysis to a region of interest (ROI) around the
right hippocampus only. To this end, we defined a cuboid ROI of size 100x60x160
voxels in an image of a younger normal individual not included in the study
(template image). This ROI was automatically aligned to each image under
study using an affine Mutual Information based registration technique [18,19],
by first aligning the whole template image covering the entire brain, followed by
a registration of the ROI only. Atlas meshes were then computed and applied in
the area covered by this ROI in each image.

We used a 3-level multi-resolution optimization strategy, in which the im-
age under study and the atlas mesh were subject to a gradually decreasing
amount of spatial smoothing. In order to simplify the optimization process,
we restricted the number of labels throughout the multi-resolution scheme to
four, merging the gray matter with the presubiculum, subiculum, and CA fields,
the white matter with the fimbria, the lateral ventricle with choroid plexus,
and CSF with the hippocampal fissure. This restriction was then removed to
obtain the final segmentation. The whole segmentation process was fully au-
tomated and took about 1.5 hours per subject on a 2.33GHz Intel Core2
processor.

We evaluated our automated segmentation results using a leave-one-out cross-
validation strategy: we built an atlas mesh from the delineations in 4 subjects, and
used this to segment the image of the remaining subject. We repeated this pro-
cess for each of the 5 subjects, and compared the automated segmentation results
with the corresponding manual delineations. Towards the tail of the hippocampus,
the manual delineations no longer discerned between the different subfields, but
rather lumped everything together as simply “hippocampus” (see figure 1). Since
the starting point of this “catch-all” label was arbitrary chosen in each subject,
with its volume ranging from 5 to 17% of the total hippocampal volume in differ-
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ent subjects, voxels that were labeled as such in either the automated or manual
segmentation were not included in the comparisons.

For each of seven structures of interest (fimbria, CA1, CA2/3, CA4/DG, pre-
subiculum, subiculum, and hippocampal fissure), we calculated the Dice overlap
coefficient, defined as the volume of overlap between the automated and manual
segmentation divided by their mean volume. Since we are ultimately interested in
detecting changes in hippocampal subfields between different patient populations,
we also evaluated how well differences in subfield volumes between subjects, as de-
tected by the manual delineations, were reflected in the automated segmentations.
To this end, we performed a linear regression on the absolute volumes detected by
both methods, calculating Pearson’s correlation coefficient for each structure.

4 Results

Figure 1 compares the manual and automated segmentation results qualitatively
on a set of cross-sectional slices. The upper half of figure 3 shows the average Dice
overlap measure for each of the structures of interest, along with the minimum
and maximum across the 5 subjects. All of the larger structures, ranging in
average size from 6,100 voxels for CA1 to 14,300 voxels for CA2/3, have an
average Dice coefficient of around 0.7 or higher. Smaller structures such as the
fimbria (on average 1,700 voxels) and the hippocampal fissure (on average 1,400
voxels) are more challenging and have a lower Dice coefficient of around 0.58
and 0.45, respectively.

Fig. 1. From left to right: ultra-high resolution MRI data, manual delineations, and
corresponding automated segmentations
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Fig. 2. Mesh-based probabilistic atlas, de-
rived from manual delineations in 4 sub-
jects, warped onto the 5th subject shown
in figure 1. Bright and dark intensities cor-
respond to high and low prior probability
for subiculum, respectively.

Fig. 3. Dice overlap measures (top) and
relative volume differences (bottom) be-
tween automated and manual segmenta-
tions. The colors are as in figure 1.

The lower half of figure 3 shows, for each structure, the volume differences
between the automated and manual segmentations relative to their mean vol-
umes. Regarding Pearson’s correlation coefficient, the automatically calculated
volumes of CA4/DG and CA2/3 are strongly correlated with the manual ones,
with a correlation coefficient of approximately 0.98 (p ≤ 0.004) and 0.93 (p ≤
0.024), respectively. CA1 and subiculum correlate to some degree (correlation
coefficient of 0.73 and 0.71, p-values not significant), whereas presubiculum and
fimbria do not seem to correlate at all (correlation coefficient of 0.02 and -0.18, p-
values not significant). Interestingly, despite the hippocampal fissure’s low Dice
overlap measure, its automated measurements correlate better with the manual
ones than do some structures with much higher Dice coefficients (correlation
coefficient 0.85, p ≤ 0.068). The low Dice coefficient is apparently caused by a
systematic underestimation of the hippocampal fissure volume by the automated
method.

5 Discussion

In this paper, we demonstrated a model-based approach to automated hippocam-
pal subfield segmentation in ultra-high resolution MRI and presented preliminary
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results on a small number of subjects. Future work will include a more thorough
validation, using more subjects with repeat scans and manual delineations by
different raters, so that the accuracy and repeatability of our method can be
placed in context. Furthermore, in order to analyze invaluable existing imaging
studies that were acquired at more standard image resolutions, we also plan to
develop a modified likelihood for standard resolution images that includes an
explicit model of the partial volume effect [20].
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