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Abstract. We propose a novel approach to identify the foci of a neuro-
logical disorder based on anatomical and functional connectivity infor-
mation. Specifically, we formulate a generative model that characterizes
the network of abnormal functional connectivity emanating from the af-
fected foci. We employ the variational EM algorithm to fit the model and
to identify both the afflicted regions and the differences in connectivity
induced by the disorder. We demonstrate our method on a population
study of schizophrenia.

1 Introduction

Aberrations in functional connectivity inform us about neuropsychiatric disor-
ders. Functional connectivity is measured via temporal correlations in resting-
state functional Magnetic Resonance Imaging (fMRI) data [1]. Univariate tests
and random effects analysis are commonly used in population studies of connec-
tivity [2]. This approach relies on a statistical score, computed independently
for each functional correlation, to determine significantly different connections
within a clinical population. Multi-pattern analysis of functional connectivity
has also been explored for clinical applications [3–5]. Although these studies
identify functional connections affected by the disease, connectivity results are
difficult to interpret and validate. Specifically, the bulk of our knowledge about
the brain is organized around regions (i.e., functional localization, tissue prop-
erties, morphometry) and not the connections between them. Moreover, it is
nearly impossible to design non-invasive experiments that target a particular
connection between two brain regions.

In contrast to prior work, we propose a novel framework that pinpoints re-
gions, which we call “foci”, whose functional connectivity patterns are the most
disrupted by the disorder. Using a probabilistic setting, we define a latent (hid-
den) graph that characterizes the network of abnormal functional connectivity
emanating from the affected brain regions. This generates population differences
in the observed fMRI correlations. We employ the variational EM algorithm
to fit the model to the observed data. Our algorithm jointly infers the regions
affected by the disease and the induced connectivity differences.

We use neural anatomy as a substrate for modeling functional connectivity.
In particular, we rely on Diffusion Weighted Imaging (DWI) tractography to
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estimate the underlying white matter fibers in the brain. The latent anatomical
connectivity inferred from these fibers constrains the graph of aberrant func-
tional connections. Previous work in joint modeling of resting-state fMRI and
DWI data [4, 6–8] suggests that a direct anatomical connection between two
regions predicts a higher functional correlation; however, multi-stage pathways
may explain some of the functional effects. Since neural communication in the
brain is constrained by white matter fibers, we hypothesize that the strongest
effects of a disorder will occur along direct anatomical connections. Hence, we
model whole-brain functional connectivity but only use functional abnormalities
between anatomically connected regions to identify the disease foci. We empha-
size that our model can be readily applied to the complete graph of pairwise
functional connections and need not incorporate anatomy.

We demonstrate that our method learns a stable set of afflicted regions on
a population study of schizophrenia. Schizophrenia is a poorly understood dis-
order marked by impairments in widely-distributed functional and anatomical
networks [2, 9]. Accordingly, we apply our model to whole-brain connectivity
information. Our results identify the posterior cingulate and superior temporal
gyri as most affected regions in schizophrenia.

2 Generative Model and Inference

The basic assumption of our model is that impairments of the disorder localize to
a small subset of brain regions, which we call foci, and affect the neural signaling
along pathways associated with these regions. Fig. 1 presents a network diagram
of the brain and the corresponding graphical model.

The nodes in Fig. 1(a) correspond to regions in the brain. The green nodes are
healthy, and the red nodes are diseased. The edges denote neural connections,
which are captured by latent anatomical connectivity Aij . Specifically, the pres-
ence or absence of edge 〈i, j〉 in the network is governed by the value of Aij . The
anatomical network structure is shared between the control and clinical popu-
lations. The regions in this work correspond to (large) Brodmann areas. Prior
results in the field suggest that the anatomical differences between schizophrenia
patients and normal controls are very small in this case.

Based on the region assignments, aberrant functional connectivity along
anatomical pathways is defined using a simple set of rules: (1) a connection
between two diseased regions is always abnormal (solid red lines in Fig. 1(a)),
(2) a connection between two healthy regions is never abnormal (solid green
lines), and (3) a connection between a healthy and a diseased region is abnormal
with probability η (dashed lines). We use latent functional connectivity variables
Fij and F̄ij to model the neural synchrony between two regions in the control
and clinical populations, respectively. Ideally, F̄ij �= Fij for abnormal connec-
tions and F̄ij = Fij for healthy connections. However, due to noise, we assume
that the latent templates can deviate from the above rules with probability ε.

The observed DWI measurementsDl
ij and fMRI correlationsBl

ij provide noisy
information about the latent network structure.
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(a) Network Model of Brain Connectivity (b) Graphical Model

Fig. 1. (a) A network model of connectivity. The nodes correspond to regions in the
brain, and the lines denote anatomical connections between them. The green nodes
and edges are normal. The red nodes are foci of the disease, and the red edges specify
pathways of abnormal functional connectivity. The solid lines are deterministic given
the region labels; the dashed lines are probabilistic. (b) Graphical model representation.
Vector R specifies diseased regions. Aij and Fij represent the latent anatomical and
functional connectivity, respectively, between regions i and j. Dl

ij and Bl
ij are the

observed DWI and fMRI measurements in the lth subject. Variables associated with the
diseased population are identified by an overbar. Boxes denote non-random parameters;
circles indicate random variables; shaded variables are observed.

Disease Foci. The random variable R = [R1, . . . , RN ] is a binary vector that
indicates the state, healthy (Ri = 0) or diseased (Ri = 1), for each brain region i.
We assume an i.i.d. Bernoulli prior for the elements of R:

P (Ri;π
r) = (πr)Ri(1− πr)1−Ri , (1)

where πr is an unknown parameter shared by all nodes in the network.

Latent Connectivity. We model anatomical connectivity Aij as a binary ran-
dom variable with a priori probability πa that a connection is present:

P (Aij ;π
a) = (πa)Aij (1 − πa)1−Aij . (2)

Latent functional connectivity Fij is modeled as a tri-state random variable
drawn from a multinomial distribution with parameter πf . These states represent
little or no functional co-activation (Fij = 0), positive functional synchrony
(Fij = 1), and negative functional synchrony (Fij = −1). For convenience, we
represent Fij as a length-three indicator vector with exactly one of its elements
[Fij,−1 Fij0 Fij1] equal to one:

P (Fij ;π
f ) =

1∏

k=−1

(
πf
k

)Fijk

. (3)
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The latent functional connectivity F̄ij of the clinical population is also tri-state
and is based on Fij and the healthy/diseased indicator vector R:

P (F̄ij |Fij , Ri, Rj , Aij) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1− ε)F
T
ij F̄ij

(
ε
2

)1−FT
ij F̄ij , Aij = 1, Ri = Rj = 0,

εF
T
ij F̄ij

(
1−ε
2

)1−FT
ij F̄ij , Aij = 1, Ri = Rj = 1,

ε
FT
ij F̄ij

1

(
1−ε1

2

)1−FT
ij F̄ij , Aij = 1, Ri �= Rj ,

M(πf ), Aij = 0,

(4)

such that M(·) is a multinomial distribution and ε1 = ηε + (1 − η)(1 − ε). The
first condition in Eq. (4) states that if there exists a latent anatomical connection
(Aij = 1) and if both regions are healthy (Ri = Rj = 0), then the edge 〈i, j〉 is
healthy. Consequently, the functional connectivity of the clinical population is
equal to that of the control population with probability 1− ε, and it differs with
probability ε. The second term is similarly obtained by replacing ε with 1 − ε.
The probability ε1 in the third condition reflects the coupling between η and ε
when the region labels differ. The final term of Eq. (4) implies that F̄ij is drawn
from the prior πf , irrespective of Fij and R, if there is no anatomical connection
between the regions i and j.

Data Likelihood. The DWI measurement Dl
ij for the l

th subject in the control
population is a noisy observation of the latent anatomical connectivity Aij :

P (Dl
ij |Aij ; {ρ, χ, ξ2}) = P0(D

l
ij ; {ρ, χ, ξ2})1−Aij · P1(D

l
ij ; {ρ, χ, ξ2})Aij , (5)

where Pk(Dij) = ρkδ(Dij) + (1 − ρk)N (Dij ;χk, ξ
2
k) for k = 0, 1. ρk represents

the probability of failing to find a tract between two regions, which corresponds
to Dl

ij = 0. Otherwise, Dl
ij is drawn from a Gaussian distribution with mean χk

and variance ξ2k (k = 0, 1). The data D̄m
ij for the clinical population follows the

same likelihood.
The BOLD fMRI correlation Bl

ij is a noisy observation of the functional con-
nectivity Fij :

P (Bl
ij |Fij ; {μ, σ2}) =

1∏

k=−1

N (
Bl

ij ;μk, σ
2
k

)Fijk
. (6)

We fix μ0 = 0 to center the parameter estimates. The likelihood for the clinical
population B̄m

ij has the same functional form and parameter values as Eq. (6)

but uses the clinical template F̄ij instead of the control template Fij .
Using histograms of the data, we verified that the Gaussian distributions

in Eqs. (5-6) provide reasonable approximations for the DWI and fMRI data.
Pragmatically, they greatly simplify the learning/inference steps.

Variational EM. We employ a maximum likelihood (ML) framework to fit the
model to the data. The region variable R induces a complex coupling between
pairwise connections. Therefore, we use a variational approximation [10] for the
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latent posterior probability distribution when deriving the ML solution. Our
variational posterior assumes the following form:

Q(R,A, F, F̄ ) = Qr(R) ·Qc(A,F, F̄ ) = Qr(R)
∏

<i,j>

Qc
ij(Aij , Fij , F̄ij), (7)

where Qc
ij(·) is an 18-state multinomial distribution corresponding to all con-

figurations of anatomical and functional connectivity. This factorization yields
a tractable inference algorithm and also preserves the dependency between Aij ,
Fij , and F̄ij given the region indicator vector R.

For a fixed setting of model parameters, we obtain the distribution Q(·)
that minimizes the variational free energy by alternatively updating Qr(R) and
Qc(A,F, F̄ ) until convergence. Due to space constraints, we omit the update
rules. We emphasize that both the posterior distribution Q(·) and the model
parameters are estimated directly from the observed data without tuning any
auxiliary parameters.

Model Evaluation. The marginal posterior distribution Qr(Ri = 1) tells us
how likely region i is to be diseased given the observed connectivity data. We
estimate the marginal posterior by averaging across Gibbs samples S:

qi = Qr(Ri = 1) =
1

S

S∑

s=1

Rs
i . (8)

We evaluate the significance of our model through non-parametric permutation
tests. To construct the null distribution for {qi}, we randomly permute the sub-
ject diagnosis labels (NC vs. SZ) 1,000 times. For each permutation, we fit the
model and compute the statistic in Eq. (8). The significance of each region is
equal to the proportion of permutations that yield a larger value of qi than
the true labeling. These uncorrected p-values confirm that a particular region is
rarely selected. Since our inference algorithm estimates the joint posterior dis-
tribution over the entire vector R, and since none of the permutations return
the same set of disease foci, it is unclear that element-wise correction provides
any additional insight.

Based on the MAP estimate of each Ri and the ML estimates of the model
parameters, we can also construct the graph of functional connectivity differences
to gain insight into the behavior of individual connections.

Our framework enables us to estimate all unknown parameters. However, we
further explore the solution space by specifying the expected number of diseased
regions via the prior πr. In particular, the evolution of disease foci across a range
of prior values (in this work πr ∈ [0, 0.5]) illustrates the stability of our model
in explaining the data. Moreover, tuning πr is an intuitive way to inject clinical
knowledge into our framework and may be useful in certain applications.

Finally, we have run extensive simulations on synthetic data, which demon-
strate that our model recovers the ground truth region labels. However, due to
space constraints, we focus on real data in this paper.
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Fig. 2. Significant regions based on permutation tests (qi > 0.5, uncorrected p <
0.044). The colorbar corresponds to the negative log p-value. We present the lateral
and medial viewpoints for each hemisphere. The highlighted regions are the posterior
cingulate (R PCC) and the superior temporal gyrus (L STG & R STG).

3 Results

We demonstrate our model on a study of 19 male patients with chronic schizophre-
nia and 19 male healthy controls. For each subject, an anatomical scan (SPGR,
TE = 3ms, res = 1mm3), a diffusion-weighted scan (EPI, TE = 78ms, res =
1.66 × 1.66 × 1.7mm, 51 gradient directions with b = 900s/mm2, 8 baseline)
and a resting-state functional scan (EPI-BOLD, TR = 3s, TE = 30ms, res =
1.875× 1.875× 3mm) were acquired using a 3T GE Echospeed system.

We segment the anatomical images into 77 cortical and sub-cortical regions
using FreeSurfer [11]. The DWI data is corrected for eddy-current distortions,
and two-tensor tractography [12] is used to estimate the white matter fibers. The
DWI measureDl

ij is computed by averaging FA along all detected fibers between

regions i and j. Dl
ij is set to zero if no tracts are found. We discard the first five

fMRI time points and perform motion correction by rigid body alignment and
slice timing correction using FSL [13]. The data is spatially smoothed using a
5mm kernel, temporally low-pass filtered with 0.08Hz cutoff, and motion cor-
rected via linear regression. We also remove global contributions from the white
matter, ventricles and the whole brain. The fMRI measure Bl

ij is the Pearson
correlation coefficient between the mean time courses of regions i and j.

Significant Regions. Our method identifies three foci such that qi > 0.5;
the uncorrected p-value of each region is less than 0.044. Fig. 2 displays the
significant regions, which we color according to − log(p). Our results implicate
the right posterior cingulate (qi = 1, p < 0.004), the right superior temporal
gyrus (qi = 1, p < 0.014), and the left superior temporal gyrus (qi = 1, p <
0.044).

Prior studies have found abnormalities in the superior temporal gyri in
schizophrenia [14]. These impairments correlate with clinical measures of au-
ditory hallucination and attentional deficits. The default network has been im-
plicated in resting-state fMRI studies [2]. Reduced connectivity in the posterior
cingulate correlate with both positive and negative symptoms of schizophrenia.

In Fig. 3, we observe that functional abnormalities originating in the poste-
rior cingulate project to the midbrain and frontal lobe, whereas abnormalities
stemming from the right and left superior temporal gyri tend to span their
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Fig. 3. Estimated graph of
functional connectivity dif-
ferences. The red nodes
indicate the disease foci.
Blue lines indicate reduced
functional connectivity and
yellow lines indicate in-
creased functional connec-
tivity in the schizophrenia
population.

Fig. 4. Evolution of the disease foci when varying the region prior πr. The color cor-
responds to the smallest value of πr such that qi > 0.2. The highlighted regions are
the posterior cingulate (L PCC & R PCC), the superior temporal gyrus (L STG &
R STG), the postcentral gyrus (R PC), the frontal pole (L FP), the caudal middle
frontal gyrus (R CMF), the transverse temporal gyrus (L TTG), the pars orbitalis
(L pOrb), the entorhinal cortex (R Ent) and the lateral occipital cortex (R LOcc).

respective hemispheres. Overall, schizophrenia patients exhibit reduced func-
tional connectivity. Of notable exception are connections to the frontal lobe.
This phenomenon has been reported in prior studies of schizophrenia [9] and is
believed to interfere with perception by misdirecting attentional resources.

Effects of the Region Prior. Fig. 4 illustrates the results of varying the
prior πr for the region indicator vector R. Empirically, we observe that sets of
regions affected by the disease form a nested structure as πr increases. We color
each of the selected regions according to the smallest value of πr such that the
marginal posterior qi > 0.2. The yellow regions are always identified as foci,
whereas the orange/red regions are selected for larger values of the prior πr.

The nesting property is a highly desirable feature of our model. It suggests
an initial set of disease foci, identical to the significant regions in Fig. 2. We
can then tune a single scalar to progressively include regions that exhibit some
functional abnormalities but are not as strongly implicated by the data.

4 Conclusion

We proposed a novel probabilistic framework for multimodal analysis of fMRI
and DWI data that integrates population differences in connectivity to isolate
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foci of a neurological disorder. This is achieved by defining a network of ab-
normal connectivity emanating from the affected regions. We demonstrate that
our method identifies a stable set of schizophrenia foci consisting of the right
posterior cingulate and the right and left superior temporal gyri. Prior clinical
studies have linked these regions to the effects of schizophrenia. Moreover, we
uncover additional regions by adjusting the prior on the number of disease foci.
These results establish the promise of our approach for aggregating connectivity
information to localize region effects.
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