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Abstract

Connectivity analysis focuses on the interaction between brain regions. Such relationships
inform us about patterns of neural communication and may enhance our understanding of
neurological disorders. This thesis proposes a generative framework that uses anatomical
and functional connectivity information to find impairments within a clinical population.
Anatomical connectivity is measured via Diffusion Weighted Imaging (DWI), and functional
connectivity is assessed using resting-state functional Magnetic Resonance Imaging (fMRI).

We first develop a probabilistic model to merge information from DWI tractography and
resting-state fMRI correlations. Our formulation captures the interaction between hidden
templates of anatomical and functional connectivity within the brain. We also present an
intuitive extension to population studies and demonstrate that our model learns predictive
differences between a control and a schizophrenia population. Furthermore, combining the
two modalities yields better results than considering each one in isolation.

Although our joint model identifies widespread connectivity patterns influenced by a
neurological disorder, the results are difficult to interpret and integrate with our region-
centric knowledge of the brain. To alleviate this problem, we present a novel approach to
identify regions associated with the disorder based on connectivity information. Specifically,
we assume that impairments of the disorder localize to a small subset of brain regions,
which we call disease foci, and affect neural communication to/from these regions. This
allows us to aggregate pairwise connectivity changes into a region-based representation of
the disease. Once again, we use a probabilistic formulation: latent variables specify a
template organization of the brain, which we indirectly observe through resting-state fMRI
correlations and DWI tractography. Our inference algorithm simultaneously identifies both
the afflicted regions and the network of aberrant functional connectivity.

Finally, we extend the region-based model to include multiple collections of foci, which
we call disease clusters. Preliminary results suggest that as the number of clusters increases,
the refined model explains progressively more of the functional differences between the
populations.
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Chapter 1

Introduction

The brain is a complex organ capable of storing and processing information from a myriad

of sensory inputs. Anatomically, it is an intricate network in which cortical and subcortical

processing centers are connected by neural axons. Functionally, the brain is partitioned

into specialized regions that interact to perform complex tasks. Non-invasive imaging tech-

nologies allow us to probe this complex construction. Traditional analysis has focused on

localized properties of the brain, which include segmenting a specific structure [6], quanti-

fying changes in volume or tissue properties [72], and pinpointing functional activation [35].

Recently, the focus has shifted to brain connectivity, which measures the relationship

between regions rather than characteristics of an individual locale. These patterns of in-

teraction provide further insight into the organization of the brain and may deepen our

understanding of neuropsychiatric disorders. This thesis is concerned with anatomical

and functional connectivity between brain regions. Anatomical connectivity informs us

about the neural pathways in the brain; it represents the brain’s internal wiring. Diffusion

Weighted Imaging (DWI) is often used to measure anatomical connectivity. DWI captures

the anisotropic diffusion of water within the brain. We estimate the underlying white matter

fiber bundles using tractography [4, 5]. Functional connectivity assesses neural synchrony,

which relates to patterns of communication within the brain. Functional connectivity is typ-

ically measured via temporal correlations in resting-state functional Magnetic Resonance

Imaging (fMRI) data [14,32].

We explore two major ideas in this thesis: (1) multi-modal analysis of resting-state fMRI

and DWI data, and (2) identifying the effects of a neurological disorder based on multi-modal

information. Unlike conventional analysis, we formulate a unified, generative framework of

anatomical and functional connectivity. In this way, we model the interactions in the brain.

The goal is to enhance our understanding of the brain beyond collecting statistics. To date,

little progress has been made in this area. At the time of initial publication, ours were

the first stochastic models to combine anatomical and functional connectivity and to infer

patterns of abnormal connectivity induced by a disease. [95, 97].
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Figure 1-1: Motivation for our generative models of brain connectivity.

1.1 Departure from Traditional Analysis

Traditionally, connectivity analysis has focused on extracting and analyzing statistics of

the data. Variations in these statistics across individuals or between different populations

informs us about the brain. For example, functional systems are identified from resting-

state fMRI data as voxels whose dynamics strongly correlate with that of a given seed

region [8]. Similarly, multi-modal analysis searches for correlations between independently

computed fMRI and DWI measures [47, 48, 61, 85]. The information is later pooled into

a joint representation. Univariate tests and random effects analysis are commonly used in

population studies of connectivity [40,60,66,105]. This approach relies on a statistical score,

computed independently for each connection and modality, to determine connections that

differ between a clinical population and normal controls. Although multi-pattern analyses

of connectivity have been proposed [52, 53, 96], the majority of these methods identify but

cannot explain the resulting connectivity structure.

Our approach, as illustrated in Fig. 1-1, is to treat anatomical connectivity and func-

tional dynamics as components of an underlying generative process, which we observe via

resting-state fMRI data and DWI tractography. Specifically, we formulate a set of latent

variables to represent a (hidden) template for a given population. This is complemented

with a simple but effective data likelihood model; observed data in individual subjects are

generated stochastically based on the template. We further hypothesize that the effects of

a disorder can be explained via changes to the latent structure.

A departure from conventional philosophy, this hierarchical organization affords several

desirable properties. First, it is a natural representation for our real-world observations.

Namely, fMRI and DWI measure correlates of neural activity and axonal pathways, re-

spectively. They do not inform us directly about neural behavior and organization, which
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are the primary quantities of interest in neuroscience. Second, the template-to-subject hi-

erarchy accounts for variability within a population. This is because the subject data is

generated probabilistically and tends to differ slightly between individuals. Finally, mod-

eling the effects of a disorder within the latent structure is intuitive. In reality, the MRI

scanner converts brain information to fMRI/DWI data. Although there will be deviations

due to experimental noise, we do not expect the physics of this process to change when

presented with a clinical subject. Rather, there is some abnormality within the (hidden)

structural and/or functional workings of the brain.

1.2 Joint Model of Anatomical and Functional Connectivity

This thesis presents a generative model that combines information from resting-state fMRI

and DWI data. Specifically, we define latent anatomical and functional connectivity vari-

ables, which specify a template organization of the brain. Anatomical connectivity indicates

whether or not there is an underlying neurological connection between two regions. How-

ever, it does not quantify the number or trajectory of the corresponding white matter

fibers. Functional connectivity describes how two regions co-activate (positive synchrony,

negative synchrony or no relationship). Our multi-modal assumption is that latent anatom-

ical connectivity influences the observed fMRI correlations. This relationship accounts for

the neuro-scientific finding that a high degree of anatomical connectivity predicts higher

functional correlations [41, 48]. We model the clinical population as a corrupted version of

the healthy templates.

We efficiently estimate the templates of latent connectivity for each population using

the EM algorithm [23]. The EM algorithm optimizes the model parameters by maximizing

the data likelihood. In the process, it infers the posterior probability distribution of the

latent variables, and consequently identifies differences between the groups.

We apply our model to a population study of schizophrenia. Implicitly, we require some

amount of consistency across subjects to accurately infer the latent templates. Voxel-wise

connectivity measures are too variable, especially for the DWI data. Instead, we rely on

Brodmann areas to provide anatomically meaningful correspondences across subjects at the

level of functional divisions within the brain. These regions are also large enough to ensure

consistent tractography across subjects. We extract fMRI and DWI measures between pairs

of regions. This process is illustrated in Fig. 1-2.

We demonstrate that our model learns stable and predictive connectivity differences

attributed to the disease.
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Figure 1-2: Graphical illustration of connectivity measures in a single subject. We partition
the brain into N consistent regions, as shown on the left. We then extract symmetric N×N
matrices of fMRI and DWI measures, as suggested on the right. The fMRI correlations are
real-valued in the range [−1, 1]. The DWI measures are either zero, which represents a
missing connection, or real-valued in the range [0.2, 0.6].

1.3 Localizing the Effects of a Neurological Disorder

Our initial model demonstrates that neuropsychiatric disorders can be linked to aberrations

in connectivity. However, the results are somewhat difficult to interpret and validate. In

particular, the bulk of our knowledge about the brain is organized around regions (i.e.,

functional localization, tissue properties, morphometry) and not the connections between

them. Moreover, it is nearly impossible to design non-invasive experiments that target a

particular connection between two brain regions. These drawbacks are not unique to our

specific framework; rather, they are present in nearly every clinical study of connectivity [52,

53, 96]. We address this problem by proposing a unified framework that pinpoints regions,

which we call foci, whose connectivity patterns are most disrupted by a disorder.

Our second model assumes that the effects of a disorder are localized to a small collec-

tion of brain regions. The resulting impairments engender pathways of abnormal functional

connectivity emanating from the disease foci. This, in turn, causes the observed fMRI cor-

relations to differ between a control and a clinical population. Due to the global interaction

among latent variables, we employ a variational EM algorithm [57] to fit the model to the

data. Our method effectively aggregates population differences in connectivity to jointly

infer the diseased regions and the induced connectivity differences.

We consider two versions of the region-based formulation. The first variant is based

on the functional information. Here, we consider abnormalities on the complete graph of

pairwise functional connections. The second variant uses neural anatomy as a substrate
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for modeling functional connectivity. Specifically, we constrain the graph of aberrant func-

tional connections to coincide with latent anatomical pathways in the brain. Once again,

we use DWI data to infer these underlying tracts. Since neural communication between

brain regions is constrained by white matter fibers, our driving assumption is that the

strongest effects of a disorder will occur along direct anatomical connections. Although we

model whole-brain connectivity, we rely on functional abnormalities between anatomically

connected regions to identify the disease foci.

We demonstrate that our methods learn a stable set of afflicted regions in schizophrenia.

Our results identify the posterior cingulate, the superior temporal gyri and the transverse

temporal gyri as the most affected regions in schizophrenia. These regions have been con-

firmed in the schizophrenia literature [37,59].

1.3.1 Multi-Class Region Labels

A natural extension is to consider multiple sets of foci, distributed throughout the brain,

that are collectively responsible for abnormal neural communication.

Our revised model assumes that the diseased regions can be partitioned into H groups,

which we denote disease clusters; each cluster is responsible for a separate graph of ab-

normal functional connectivity. For simplicity, we focus on the fMRI-based model. The

conditional distributions differ slightly from the previous model due to the multi-class re-

gion assignments. However, we derive a corresponding variational EM algorithm to estimate

the model parameters.

We report preliminary results on our schizophrenia dataset when varying the number

of disease clusters H. Interestingly, we observe a nesting property, whereby the disease

clusters for smaller values of H are subsets of those for larger H. The core disease cluster

includes the significant regions identified by the initial functional model.

1.4 Schizophrenia Dataset

In this thesis we focus on schizophrenia as a representative neurological disease. Schizophre-

nia is a poorly-understood disorder marked by widespread cognitive difficulties affecting

intelligence, memory, and executive attention. These impairments are not localized to a

particular cortical region, but rather, they reflect abnormalities in widely-distributed func-

tional and anatomical networks [16, 37]. The current hypothesis is that schizophrenia dis-

turbs the interaction (i.e. connectivity) between regions of the brain [34, 63]. Hence, this

condition is well-suited to our whole-brain connectivity framework.
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1.5 Contributions of This Thesis

To summarize, this thesis introduces three main contributions that advance the field of

connectivity analysis for clinical applications:

1. Hierarchical generative models that use observed fMRI/DWI data to make inferences

about hidden processes in the brain. Differences induced by a neurological disease are

represented in the hidden layer.

2. Multi-modal analysis of resting-state fMRI and DWI data to identify abnormal con-

nections distributed throughout the brain.

3. Aggregating population differences in connectivity to localize foci of a disease. We

further extend this framework to identify clusters of diseased regions that together

influence whole-brain connectivity patterns.

1.6 Thesis Outline

The next chapter reviews background material, including the two imaging modalities used

in this work and their corresponding analysis methods. We also summarize the clinical

findings of schizophrenia and outline the graphical model notation used throughout this

thesis. Chapter 3 introduces our joint generative model to identify population differences

in connectivity based on fMRI and DWI data. We build upon our initial framework in

Chapter 4 to pinpoint foci of a neurological disorder. Chapter 5 develops an extension to

our region-based model that assumes multiple clusters of abnormal activity. Finally, we

conclude by discussing the implications of this dissertation and proposing future directions

of research in Chapter 6.



Chapter 2

Background

Functional and anatomical imaging modalities provide complementary viewpoints of the

brain. In this chapter we outline the evolution of connectivity analysis from the traditional

expert-driven approach to data-driven models that incorporate multiple sources of informa-

tion. We then summarize the literature surrounding schizophrenia and describe our clinical

dataset. We conclude with an overview of the probabilistic graphical model notation used

in this thesis.

2.1 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) captures vascular effects in the brain that

are associated with changes in blood oxygenation. Specifically, oxygenated hemoglobin in

the blood is diamagnetic and has different magnetic properties than de-oxygenated hemo-

globin, which is paramagnetic. Blood Oxygen Level Dependent (BOLD) fMRI measures

local shifts in oxygenation over time using a T2*-weighted imaging protocol. T2* relaxes

more slowly in oxygen-rich regions, resulting in higher signal intensity [77]. Similar to other

MRI-based imaging modalities, fMRI achieves a reasonable spatial resolution (2-5mm3);

however, the temporal resolution of the signals is limited (1-5 seconds between volumes).

The vascular signal obtained from BOLD fMRI provides an indirect measure of neural

activity. It has been shown that active regions of the brain exhibit locally increased blood

flow and oxygen metabolism, which may be linked to heightened energy utilization during

neurological processes [46]. However, the precise relationship between the hemodynamic

and the underlying neural signals is not well understood.

2.1.1 Functional Localization

Traditional fMRI studies assess the response to a given experimental paradigm in order

to localize brain functionality. This task-based data is usually analyzed with the General

Linear Model (GLM) [35, 36], which assumes a linear contribution of each experimental

condition to the fMRI time courses. Mathematically, let yi represent the observed fMRI

25
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Figure 2-1: Parametric form of the Hemodynamic Response Function.

time course at spatial location i, and let X be the design matrix which contains temporal

information about each experimental condition. The GLM uses the regression framework:

yi = Xβi + ǫi, (2.1)

where βi is the unknown activation vector that contains the magnitudes of response to each

stimulus, and ǫi is modeled as white Gaussian noise. The standard least-squares solution

to Eq. (2.1) is given by

β̂i = (XTX)−1XTyi. (2.2)

A high-valued entry in β̂i indicates that voxel i reacts strongly to the corresponding stimulus.

Hence, the entries of β̂i inform us about the role of voxel i in the brain.

Task-based fMRI assumes a parametric form for the vascular impulse response, known

as the Hemodynamic Response Function (HRF) [36], which is depicted in Fig. 2-1. The

HRF is convolved with the experimental protocol to obtain columns of the design matrix

X. In contrast, resting-state fMRI measures spontaneous oscillations in the absence of

any experimental paradigm [14, 32]. Although we can no longer use the GLM to solve

for activation patterns, correlations within resting-state signals are believed to reflect the

intrinsic functional connectivity of the brain [8]. The remainder of this thesis will focus

exclusively on resting-state fMRI data.

2.1.2 Exploring Functional Coherence

Recent studies based on fMRI have revealed the presence of spontaneous, low-frequency

(<0.08 Hz) fluctuations in the brain [8]. While independent of external cognitive stim-
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(a) Posterior cingulate seed (b) Highly correlated voxels

Figure 2-2: Example of seed based correlation analysis. We specify (a) a seed in the posterior
cingulate region of the default network and (b) identify voxels strongly correlated with the
seed time course.

uli, these signals are strongly correlated across brain structures. Functional connectivity

analysis aims to detect and characterize these coherent patterns of activity as a means of

understanding the organization of the brain.

Expert-Driven Analysis

Seed based correlation analysis [8] is the most common approach for assessing functional

connectivity. Here, an expert specifies a ‘seed’ region of interest (ROI) R within the desired

functional system (e.g., motor cortex, visual cortex, default network). The seed is typically

a small ball (3-5 voxels in diameter) embedded within the gray matter tissue. Let ȳR =
1
|R|

∑

j∈R yj denote the mean fMRI time course computed over all voxels j in R. We can

obtain the correlation coefficients

ρi =
〈yi, ȳR〉

||yi|| ||ȳR||
(2.3)

between the mean signal ȳR and time course yi for each voxel i in the brain. Functional

systems are identified by thresholding the correlation coefficients at a user-specified value.

Fig. 2-2 illustrates this procedure using a seed in the posterior cingulate cortex.

Seed based analysis has been extremely useful in identifying brain systems reliably across

subjects. It has also shown promise in discovering new systems. One such example is the

default network [12, 14], which is active when an individual is resting or performing an

internally focused task, and it deactivates during sensory-motor experiments. The default

network is believed to mediate internal cognition about the environment or past/future
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events and may even play a role in memory formation [14]. The posterior cingulate cortex

in Fig. 2-2 lies within the default network.

Data-Driven Methods

Despite being a valuable tool, seed based analysis is limited by our ability to specify the

initial ROI. Furthermore, the choice of threshold can significantly affect the consistency

of the results within a population. Currently, there is no universally-accepted method

to select a threshold. In response to these limitations, data-driven approaches, such as

clustering [19, 39, 94, 102] and Independent Component Analysis (ICA) [2, 17], are gaining

prominence. Here, the aim is to partition the brain into different functional systems.

One simple but effective clustering method for resting-state fMRI is the K-Means al-

gorithm [39, 94]. This method assumes that the time course yi of voxel i is drawn from

one of K multivariate Gaussian distributions, each with a unique mean mk and a spherical

covariance:

yi = mk(i) + ǫi, ∀i = 1, . . . , N, (2.4)

where N is the number of voxels in the volume, k(i) is the cluster assignment for voxel i,

and ǫi is i.i.d. Gaussian noise. The K-Means algorithm alternates between assigning each

voxel to the closest mean, as measured by the L2 Euclidean distance

d2(yi, mk) = ||yi − mk||
2, ∀k = 1, . . . , K, (2.5)

and recomputing the mean signals of each cluster as the average of all time courses assigned

to it. This näıve implementation is a natural data-driven extension to seed based analysis.

Specifically, resting-state fMRI time courses are often normalized to have zero mean and

unit variance. Therefore, d2(yi, mk) = 2 − 2ρ(yi, mk). Hence, minimizing L2 distance is

equivalent to maximizing the correlation coefficient.

Spectral Clustering is an alternative technique that relies on a pairwise affinity matrix

constructed from the data points [76, 98]. The eigenvectors of this matrix induce a low-

dimensional representation for the data, which in turn, encourages a natural grouping.

This approach does not presume any parametric form for the data and can identify clusters

with complex signal geometries [76]. Elements of the symmetric pairwise affinity matrix W

are often modeled using a Gaussian kernel:

Wij = e−d2(yi,yj)/2σ2

, (2.6)
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where yi and yj represent two voxel time courses, d2(yi, yj) is given by Eq. (2.5), and σ2 is

the kernel width parameter.

Given the affinity matrix W, Normalized Cut Spectral Clustering [82] partitions the

dataset to minimize the ratio of the sum of affinities Wij between clusters to the sum of

affinities within a cluster. We can formulate a continuous relaxation of this combinatorial

problem via the eigenvalue equation:

D−1/2WD−1/2z = λz, (2.7)

where D is a diagonal matrix such that Dii =
∑

j Wij . The left and right multiplications by

D−1/2 in Eq. (2.7) correspond to a symmetric normalization of W where each entry Wij is

divided by
√

DiiDjj . The largest eigenvectors {z1, . . . , zK+1} of the matrix D−1/2WD−1/2

tend to isolate voxel groups with small pairwise L2 distances. The low-dimensional repre-

sentation can be easily clustered using the simple K-Means algorithm.

In contrast to clustering methods, Independent Component Analysis (ICA) [51] assumes

that resting-state fMRI data is a linear mixture of K spatially independent sources [2, 17].

Mathematically, let N be the number of voxels in the brain and T be the number of time

points. The T ×N data matrix Y = [y1, . . . , yN ]T is the product of a T ×K mixing matrix

M and a K × N component matrix C, i.e.,

Y = MC. (2.8)

The rows of C contain independent spatial maps of the brain, and the matrix M specifies

the time-varying contributions of each component. The goal of ICA is to determine a K×T

unmixing matrix B such that

C ≈ BY, (2.9)

and such that the rows of C are maximally independent.

The InfoMax algorithm [65] selects the optimal unmixing matrix B∗ by maximizing the

joint entropy of the transformed component map estimates Ĉ = g(Q), where

Q = 2B(YYT)−1/2Y (2.10)

is a scaled version of the data, and g(·) is the logistic function

g(z) =
1

1 + exp−z
(2.11)
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applied element-wise to each entry in the matrix Q. The highly nonlinear transformation

between Q and Ĉ preserves higher order statistical information. The InfoMax algorithm is

implemented iteratively; elements of B are updated in small batches.

Other methods identify functionally coherent regions by incorporating population-level

information [92,93]. For example, the method of [92] uses a dictionary learning framework

to estimate a functional atlas. Similarly, the authors of [93] improve subject-wise functional

connectivity estimates by imposing a common sparsity structure.

Limitations

The cluster assignments and spatial component maps estimated using data-driven methods

are very similar to functional networks obtained from seed based analysis. However, unlike

the expert approach, these results are often inconsistent across subjects [39]. Consequently,

we can only identify large sensory-motor systems across individuals in a population. The

specificity does not improve much with larger datasets. For example, a comprehensive

study of functional connectivity was conducted using 1000 subjects [102]. The most refined

parcellation consisted of 17 clusters, which is still quite coarse. The problem is exacerbated

in a clinical setting, as the diseased population may no longer be homogeneous.

In this thesis we use a template-based framework in which all subjects share the same

global organization. Subject variations are handled using a probabilistic setting. Our

goal is to characterize patterns of connectivity within the brain and to understand how

these interactions change in the presence of a neurological disorder. We do not attempt

to delineate elements of the underlying network, i.e., regions. Instead, we specify them a

priori based on a standard anatomical parcellation.

2.2 Diffusion Weighted Imaging

Diffusion Weighted Imaging (DWI) characterizes the anisotropic diffusion of water as it

traverses soft tissue. Specifically, water diffuses more freely along rather than across white

matter fiber bundles in the brain. This effect sheds light onto the structural organization of

the brain. Since its introduction to the neuroscience community, DWI has been useful in a

variety of clinical applications. It has been particularly successful in pinpointing abberations

generated by white matter diseases such as multiple sclerosis and Alzheimer’s disease [50].

It has also been used to localize the origins of acute-phase stroke [101].

A single DWI volume is obtained by applying a magnetic pulse sequence in a particular

gradient direction vk. The resulting intensity Sk in a particular voxel is modeled via the
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modified Stejskal-Tanner Equations [5, 7]:

Sk = S0e
−b · vT

k
D vk , (2.12)

where S0 is the intensity at the same voxel obtained with no gradient pulse, and the sym-

metric positive semi-definite diffusion tensor D reflects the directional mobility of water.

The b-value b is pre-calculated based on the gradient pulse characteristics (timing, ampli-

tude, shape). The values of S0 and D vary for each voxel in the brain; however, b is often

constant for the entire acquisition.

By collecting several images from unique gradient directions, one can estimate the entries

Dij = Dji of the symmetric diffusion tensor in Eq. (2.12).

2.2.1 Assessing Anatomical Connectivity

Scalar measures of connectivity can be derived from the diffusion tensor D estimated at

each voxel. Let λ1 > λ2 > λ3 denote the eigenvalues of D. The mean diffusivity, computed

as λ̄ = 1
3(λ1 + λ2 + λ3), quantifies the aggregate amount of diffusion in a given voxel. In

contrast, anisotropy measures the degree to which D deviates from a spherical (isotropic)

shape. For example, Fractional Anisotropy (FA) is defined as follows:

FA =

√

3[(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̂)2]
√

2(λ2
1 + λ2

2 + λ2
3)

.

In this thesis, we use FA as a scalar measure of connectivity for DWI data.

FA is a sensitive measure that is affected by a number of biological processes. For ex-

ample, changes in myelination as well as inflammation of the underlying white matter fibers

can drastically alter the local FA values. For clinical applications, statistical differences in

anisotropy are often used to identify the effects of a neurological disease [50,63].

The diffusion tensor can also be used to estimate white matter bundles via a procedure

called tractography. Early work in this area focused on two broad classes of tractography

algorithms. Streamline tractography creates a vector field using the principal diffusion direc-

tion (the eigenvector associated with the largest eigenvalue of D) coupled with smoothness

constraints. A white matter tract corresponds to the path a particle would follow in this

vector field from a given starting location [4]. In contrast, stochastic tractography generates

a probability map of diffusion starting at a given location. The fiber tracts are modeled

as sequences of unit vectors. Each vector is sampled from a posterior distribution, which

combines a prior term based on the previous direction and a likelihood that is related to
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Figure 2-3: Results from two-tensor (blue) and single-tensor (red) tractography when seeded
in the mid-saggital plane. The two-tensor method identifies more fiber trajectories.

the diffusion tensor D [33]. Stochastic tractography generates a large number of tracts from

each starting location. The goal of subsequent processing is to provide a rough estimate of

the underlying fibers and to quantify the uncertainty.

Given the tractography results, it is common to compute anatomical connectivity along

the estimated white matter pathways. Such measures include the probability of diffusion

between two brain regions, the number of fibers linking the regions, and the mean FA along

the tracts connecting them.

There are drawbacks to both streamline and stochastic tractography. Traditional stream-

line algorithms suffer from diminished performance in regions with multiple fiber orienta-

tions. In particular, when two fibers cross or merge, the estimated diffusion tensor is nearly

isotropic, and the algorithm may not follow the correct trajectory. Although stochastic

tractography is more sensitive to multiple fibers, it has difficulty finding long-range con-

nections. Since the algorithm samples each step, the probability of connecting two points

tends to decay with the distance between them. In addition, stochastic tractography tends

to find and follow large white matter bundles, which may not capture the full network of

connections.

Recently, more sophisticated tractography methods have been proposed. For example,

weighted mixtures and higher order tensors are used to handle complex diffusion patterns.

Similarly, non-parametric methods estimate an Oriented Distribution Function (ODF) at

each voxel to describe an arbitrary fiber configuration [1, 24]. In this thesis, we employ a

two-tensor tractography algorithm [71], which relies on an unscented Kalman filter to fit a

local neural fiber model. Fig. 2-3 illustrates that the two-tensor algorithm (blue) finds a

denser set of connections than streamline tractography (red).
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2.3 Traditional Multi-modal Analysis of Brain Connectivity

Early work in multimodal analysis focused on the relationship between task fMRI activations

and the underlying anatomy. One popular technique is to use regions of fMRI activation as

seed points for tractography [26, 42, 79]. Another approach is to quantify the relationship

between anatomical connectivity and measures of functional co-activation in pre-defined

regions of interest [55, 89]. Presently, the focus has shifted to resting-state fMRI for joint

analysis [80]. Studies independently compute statistics of the fMRI and DWI signals (such as

fMRI correlations, FA values, etc.) and search for correspondences between these metrics

a posteriori [41, 48, 61]. For example, they identify connections with highly correlated

anatomical and functional measures or connections along which the fMRI and DWI metrics

are uniformly large.

These methods have yielded many insights into the nature of connectivity in the brain.

For example, fMRI-guided tractography has improved the mapping of the motor, visual

and language areas [26, 42, 79]. It has also been established that while a high degree of

anatomical connectivity predicts higher functional correlations, the converse does not always

hold [41, 48]. For example, strong functional correlations can be found between spatially

distributed locations in the brain, whereas one is more likely to identify white matter tracts

connecting nearby regions. We incorporate this latter finding into our joint connectivity

model presented in the next chapter.

The main limitation of these simplistic approaches is that the analysis is performed

separately on each modality, and information is later pooled into a joint representation.

Furthermore, the methods perform independent tests for each connection. This ignores

distributed patterns in functional and anatomical connectivity within the brain. We address

these limitations by assuming that the structure and organization of the brain is captured by

some underlying generative process, which gives rise to the observed fMRI/DWI measures.

We use both modalities to infer population templates of connectivity and demonstrate that

our method captures stable differences in a clinical population.

2.4 Exploring Network Structure of the Brain

Alternative methods have emerged to address the independence across connections, both in

unimodal and multi-modal applications. These approaches treat the brain as a comprehen-

sive network with interactions between nodes. Here, each node represents a voxel or region

of interest, and edges are derived from fMRI correlations and DWI measures. Analysis of



34 CHAPTER 2. BACKGROUND

these networks has revealed a consistent small-world (structural and functional) architecture

of the brain. This organization implies clusters of tightly coupled nodes with a few long-

range connections between them. One property of small-world networks is a short average

path length, which indicates higher communication efficiency within the network [15,84].

Standard graph metrics (centrality, clustering coefficient, degree distributions) have also

been applied to the networks implied by imaging measures. This analysis revealed functional

hubs in the default network [12, 13] and anatomical hubs in the medial cortex [43]. These

hubs represent relay stations within the brain and facilitate communication between regions.

Abnormalities within such hubs may be linked to disease.

Recent work also considered the relationship between the brain’s structural organization

and functional dynamics. It has been suggested that nodes with similar anatomical connec-

tivity patterns tend to exhibit similar functionality. Additionally, structural connectivity

should constrain the functional interactions, as all information is transmitted via neurons.

The approach of [85] goes one step further and computationally models the interaction. The

authors construct cortical connection graphs based on histological data of the macaw brain.

They simulate the corresponding functional correlations using a dynamical system, which

specifies the relationships within the graph. Although promising, this analysis has not been

replicated using in vivo data from humans. The work of [48] explores how well the anatom-

ical network structure explains large-scale properties of functional systems. Their results

confirm previous findings that the presence of an anatomical connection is informative for

prediction functional correlations, and that both anatomical and functional connectivity

measures tend to decay with the distance between two regions. The results also suggest

that multi-stage anatomical links explain some of the high functional correlations.

The method of [21] is the only alternative to our joint connectivity model that proposes

a generative framework. The collection of fMRI time courses is modeled as a sample from

a stationary autoregressive process. The observed covariance matrix is constrained by the

anatomical connectivity information. Once the functional interactions are determined, the

authors use a multiple linear regression framework to determine which anatomical connec-

tions contribute to a particular functional correlation.

Despite the advancements in multi-modal analysis, prior work focuses entirely on con-

nections. In Chapter 4 we carry the analysis one step further and infer properties of indi-

vidual brain regions. To the best of our knowledge, ours is the first generative framework

to aggregate information from resting-state fMRI and DWI data to localize region effects.
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2.5 Population Studies of Connectivity

Resting-state fMRI and DWI data are particularly attractive for clinical populations since

patients are not required to perform challenging experimental paradigm. Univariate tests

and random effects analysis are, to a great extent, the standard in population studies of

connectivity [40, 66, 103]. These methods identify significantly different connections using

a statistical score. Typically, the scores are computed independently for each functional

correlation or DWI measure. Consequently, the analysis cannot capture abnormalities in

distributed networks of connectivity within the brain.

Prior work has also explored multi-pattern analysis for functional connectivity [52,53,91,

96]. For example, [91] develops a random effects model for covariance matrices to identify

functional connectivity differences in stroke patients. In contrast, [52, 53] employ group

Independent Component Analysis (gICA) to represent the fMRI data as a set of spatially-

independent regions with associated time courses. In [53], group functional connectivity is

computed as the maximum lagged correlation between the component time courses; two-

sample t-tests are used to identify significant population differences. In [52], a neural

network is constructed for patient classification of first-episode schizophrenia. Similarly,

we previously used a metric called Gini Importance to summarize multivariate patterns

of interaction [96]. A patient classifier trained on these measures demonstrated superior

classification accuracy than when trained on univariate statistics. Further details of this

method are provided in the Appendix. In Chapter 3, we present a probabilistic framework

for connectivity analysis. Differences between two populations are explained via changes

in latent anatomical and functional connectivity variables. Connections are tied through

global parameters, which modulate distributed effects of the disorder.

Although these studies identify connectivity patterns associated with a disease, the re-

sults are difficult to interpret given that much of our knowledge about the brain is organized

around regions (i.e., functional localization, tissue properties) and not the connections be-

tween them. Furthermore, short of direct stimulation, we do not know how to design in

vivo experiments that target a particular connection between two brain regions. Hence,

validation of these findings is challenging, if not impossible. Our framework in Chapter 4

integrates population changes in functional connectivity to localize foci of a disorder.

2.6 Schizophrenia: Findings and Hypotheses

Schizophrenia is a neuropsychiatric disorder characterized by gross distortions in the per-

ception of reality. Despite generating considerable interest in the neuroscience community,



36 CHAPTER 2. BACKGROUND

the origins and expression of the disease are still poorly understood [87]. For example,

structural findings only weakly and inconsistently correlate with the clinical and cognitive

symptoms of schizophrenia [81]. Similarly, functional experiments report deficits in many

cognitive domains, most notably memory and attention, but do not consistently report

clinical correlates [74].

At present, the cognitive impairments of schizophrenia are thought to reflect underlying

abnormalities in distributed brain networks. In particular, schizophrenia may compromise

neural communication between cortical regions [34]. Recent studies have also focused on

the degeneration of anatomical connectivity [63], fueled in part by post mortem and genetic

evidence of myelination anomalies in patients with schizophrenia.

Findings from resting-state fMRI data include reduced connectivity in the brain’s de-

fault network [9, 12], dorsolateral prefrontal cortex [103] and a widespread reduction in

connectivity throughout the brain [66]. In contrast, although the majority of DWI stud-

ies report white matter abnormalities, there is no consensus on the location and nature of

these changes [62, 63]. The most commonly reported anomalies are between frontal and

temporal lobes and between the hemispheres [63]. They are believed to reflect the un-

derlying neuro-developmental or neuro-degenerative processes affecting myelinated axons.

Since DWI tractography and resting-state fMRI data provide different information about

the underlying structure and dynamics of the brain, we believe that joint analysis of these

modalities will improve our understanding of brain connectivity and of the effects that

schizophrenia has on the connectivity pattern.

2.7 Schizophrenia Dataset

In this section we outline the acquisition protocol used to collect the data and our subsequent

pre-processing steps. The fMRI/DWI connectivity measures are presented in later chapters.

2.7.1 Image Acquisition

The study collects data from 19 male patients with chronic schizophrenia and 19 healthy

male controls. The control participants were group matched to the patients on age, handed-

ness, parental socioeconomic status, and an estimated premorbid IQ. For each subject, an

anatomical scan (SPGR, TR = 7.4s, TE = 3ms, FOV = 26cm2, res = 1mm3), a diffusion-

weighted scan (EPI, TR = 17s, TE = 78ms, FOV = 24cm, res = 1.66× 1.66× 1.7mm, 51

gradient directions with b = 900s/mm2, 8 baseline scans with b = 0s/mm2) and a resting-

state functional scan (EPI-BOLD, 196 volumes with TR = 3s, TE = 30ms, FOV = 24cm,

res = 1.875 × 1.875 × 3mm) were acquired using a 3T GE Echospeed system.
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2.7.2 Pre-Processing

SPGR We segment the structural images into 77 cortical and subcortical regions using

Freesurfer [29]. The parcellation roughly corresponds to Brodmann areas in the brain. We

then align each subject’s structural image to the the corresponding DWI and fMRI volumes

via non-rigid registration [3, 70]. This allows us to define a consistent set of regions across

modalities and across subjects. Since our procedure never aligns images across subjects, we

avoid the challenges of group-wise registration [30,58,106].

DWI The DWI data is corrected for eddy-current distortions using the FSL FLIRT algo-

rithm [54, 83]. A two-tensor tractography algorithm is used to estimate the white matter

fibers [71] for each subject.

The DWI connectivity is extracted along the identified fibers. Specifically, the fiber

defines a binary categorization of values depending on whether or not two regions are

connected. We prefer this scheme over continuous measures of connection strength (ex.

probability of diffusion), which tend to decay as the distance between two regions increases.

This decay is observed even if there are several white matter tracts bridging the regions.

fMRI We discarded the first five fMRI time points (burn-in) and performed motion cor-

rection by rigid body alignment and slice timing correction using FSL [83]. The fMRI data

is then fed through a standard functional connectivity pre-processing pipeline [8]. Specifi-

cally, each volume is spatially smoothed using a Gaussian filter, and each voxel time course

is temporally low-pass filtered with 0.08Hz cutoff and motion corrected via linear regres-

sion. Finally, we removed global contributions to the time courses from the white matter,

ventricles and the whole brain. The fMRI signal in the ventricle correlates with respira-

tion [90] and degrades the signal quality. Similarly, regressing the white matter and whole

brain signals reduce the noise present in the data.

The fMRI connectivity is obtained by correlating the mean time courses of each brain

region. This is a common measure to assess region-based functional connectivity.

2.8 Graphical Model Notation

This thesis uses a probabilistic framework to analyze brain connectivity. Graphical models

allow us to efficiently describe the relationships in our formulation. Here, we introduce the

notation used throughout this thesis. We refer the reader to [56,57,99] for a comprehensive

overview of probabilistic graphical models and the corresponding inference algorithms.

The graphical model representation captures the conditional independence structure
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Figure 2-4: Example graphical model to illustrate our notation. Circles indicate random
variables and squares denote non-random parameters. The shaded variables are observed.

between variables. Fig. 2-4 presents a simple example to highlight this property. Here, X

and {Yn} are random variables, whereas θX and θY are unknown non-random parameters.

The shading indicates that X is a latent variable, but that we observe the values of {Yn}.

Note that X, Yn, θX , θY need not be scalar. Instead, each symbol may represent a collection

of random variables and parameters, respectively.

The arrows in Fig. 2-4 inform us about the conditional relationships. For example,

arrow (a) signifies that the prior distribution of X depends on θX , i.e., P (X; θX). Similarly,

arrows (b) and (c) specify the dependencies for Yn. The plate at the bottom of Fig. 2-4

indicates that the random variables Y1, . . . , YN are independent and identically distributed

given X and θY . Hence, the conditional distribution of Y = {Yn} factorizes as follows:

P (Y |X; θY ) =
N
∏

n=1

P (Yn|X; θY ). (2.13)

We use a maximum likelihood framework to fit our models to the observed data. For the

simple case presented in Fig. 2-4, we seek the optimal parameter values θ∗X , θ∗Y that maximize

the data likelihood P (Y ; θX , θY ) after marginalizing the latent variables. Mathematically,

{θ∗X , θ∗Y } = max
θX ,θY

P (Y ; θX , θY ) = max
θX ,θY

∫

X

[

P (X; θX)
N
∏

n=1

P (Yn|X; θY )

]

dX (2.14)

In this thesis we employ both the Expectation-Maximization (EM) algorithm and the Vari-

ational EM algorithm. In each case, we recover the posterior probability distribution of the

latent variables P (X|Y ; θ∗X , θ∗Y ) along with the model parameters.
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2.9 Summary

To summarize, prior analysis of brain connectivity has relied on data statistics to iden-

tify patterns of interaction. In most cases, the correspondences between fMRI and DWI

data, as well as the effects of a neurological disorder, are determined by univariate tests.

While insightful, this type of analysis has produced widely varied results in clinical studies.

Moreover, connectivity results are often difficult to interpret and validate. Nonetheless, few

methods investigate the relationship between connections and individual brain regions.

In contrast to prior work, we take a generative approach to connectivity. In the next

chapter we introduce a novel multi-modal framework to infer distributed patterns of abnor-

mal connectivity induced by a neuropsychiatric disease. Chapter 4 builds on our original

framework to aggregate population differences in connectivity to pinpoint regions that are

most affected by a disorder. Finally, in Chapter 5 we extend the region-based model to

multiple clusters of disease hubs.
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Chapter 3

Modeling Anatomical and Functional

Connectivity

As discussed in Chapter 2, the interaction between anatomical and functional imaging

modalities offers a rich framework for understanding the effects of neuropsychiatric disor-

ders. However, much of the prior research has focused on ad-hoc correspondences between

independently computed statistics of the fMRI and DWI data. Additionally, clinical stud-

ies typically identify significant population differences separately within each modality and

compare them a posteriori. This approach treats structural and functional connections as

independent and ignores distributed patterns of connectivity.

In this chapter we propose and demonstrate a novel probabilistic framework to infer the

relationship between resting-state fMRI correlations and DWI tractography. Specifically,

we introduce the notion of latent anatomical and functional connectivity between brain

regions. These variables represent an underlying process in the brain which cannot be

observed directly from the data. The resulting model describes how the latent connectivity

differs between two populations and makes intuitive assumptions about the fMRI and DWI

generation process to construct the data likelihood. Our fMRI/DWI observation model is

shared across subjects. Hence, we assume that the effects of a disorder can be explained

via changes in latent anatomical and functional connectivity. To the best of our knowledge,

ours is the first stochastic model to combine resting-state fMRI and DWI data to infer

changes induced by a neurological disease.

We employ the EM algorithm to efficiently estimate templates of latent connectivity

for each population and to identify group differences. The EM algorithm optimizes the

model parameters by maximizing the data likelihood. We employ permutation tests and

cross validation to verify the robustness of our method. We perform an extensive evaluation

of the model on synthetic data. In addition, we learn stable patterns of interaction in a

population study of schizophrenia. The work presented in this chapter was published in [97].

The remainder of this chapter is organized as follows. Section 3.1 introduces our gen-

41
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(a) Joint fMRI/DWI Model (b) Model of Population Differences

Figure 3-1: (a) Joint connectivity model for a single population. Aij represents the latent
anatomical connectivity between regions i and j, and Fij denotes the corresponding latent
functional connectivity. Dl

ij and Bl
ij are the observed DWI and fMRI measurements, re-

spectively, between regions i and j in the lth subject. (b) Joint model for the effects of
schizophrenia. The control population is generated according to the model in (a). The
schizophrenia templates are identified by an overbar.

erative models; we develop the corresponding inference algorithms in Section 3.2. Sec-

tion 3.3 presents the framework used for the empirical validation of our approach. Sec-

tions 3.4 and 3.5 report experimental results based on synthetic and clinical data, respec-

tively. Section 3.6 discusses the behavior of our model, its advantages and its drawbacks.

3.1 Generative Model

We combine the DWI tractography and fMRI correlations in a unified generative model of

the brain. Specifically, latent anatomical and functional connectivity specify a template or-

ganization of the brain for a given population. Anatomical connectivity indicates whether or

not there is an underlying neurological connection between two regions. It does not quantify

the number or trajectory of the corresponding white matter fibers. Functional connectivity

describes how two regions co-activate (positive relationship, negative relationship or no re-

lationship). We do not have access to these underlying variables. Rather, we observe noisy

measurements via DWI tractography and resting-state fMRI correlations. Although DWI

and fMRI signals vary across subjects, we assume they are generated probabilistically from

a common latent template.

We first develop the probabilistic framework within a control population. This formu-

lation serves as a foundation for modeling group differences, presented later in the chapter.
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Table 3.1: Random variables (top) and non-random parameters (bottom) in the graphical
models shown in Fig. 3-1. The latent variables are discrete; the observed variables and
non-random parameters are continuous.

Aij Latent anatomical connectivity between regions i and j (control group)
Āij Latent anatomical connectivity between regions i and j (clinical group)
Fij Latent functional connectivity between regions i and j (control group)
F̄ij Latent functional connectivity between regions i and j (clinical group)
Dl

ij Observed DWI measure between regions i and j in subject l (control group)

D̄m
ij Observed DWI measure between regions i and j in subject m (clinical group)

Bl
ij Observed fMRI correlation between regions i and j in subject l (control group)

B̄m
ij Observed fMRI correlation between regions i and j in subject m (clinical group)

πa Prior for binary anatomical connectivity Aij

πf Prior for multinomial functional connectivity Fij

ǫa Probability of change in anatomical connectivity
ǫf Probability of change in functional connectivity
ρt Probability of failing to find a white matter tract given Aij = t (t = 0, 1)
χt Mean DWI value if there is a white matter tract given Aij = t (t = 0, 1)
ξ2
t Variance of DWI values if there is a white matter tract given Aij = t (t = 0, 1)

µtk Mean fMRI value given Aij = t and Fij = k (t = 0, 1, k = −1, 0, 1)
σ2

tk Variance of fMRI values given Aij = t and Fij = k (t = 0, 1, k = −1, 0, 1)

3.1.1 Single Population Model

Fig. 3-1(a) depicts our model for a single population, and Table 3.1 summarizes our notation.

The individual subject data arises from the latent population templates of connectivity. All

latent and observed variables are generated independently for each pairwise connection; the

data likelihood parameters are shared across connections.

Prior Let N be the total number of regions in the brain. We use Aij and Fij to denote

the latent anatomical and functional connectivity indicators between region i and region j

(1 ≤ i, j ≤ N). The anatomical connectivity Aij indicates the presence or absence of a direct

anatomical pathway between two regions. We model Aij as a binary random variable; the

scalar parameter πa specifies the a priori probability that a connection is present:

P (Aij ; π
a) = (πa)Aij (1 − πa)1−Aij . (3.1)

In contrast, the functional connectivity Fij is a tri-state random variable. These states

represent (1) little or no functional co-activation (Fij = 0), (2) positive functional synchrony

(Fij = 1), and (3) negative functional synchrony (Fij = −1) between two regions. Strong
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negative correlations are often found in resting-state fMRI data. Since there is no consen-

sus about their origin and significance [90], we isolate negative connectivity as a separate

category. For notational convenience, we represent Fij as a length-three indicator vector

Fij = [Fij,−1 Fij0 Fij1]
T with exactly one of its elements equal to one:

P (Fij ; π
f ) =

1
∏

k=−1

(πf
k )Fijk , (3.2)

where πf
k is the probability that the functional connection between region i and region j is

assigned to state k.

Although we model latent connectivity via discrete random variables, the posterior

probability distributions of the variables {A, F} provide a natural measure of connection

strength. These distributions form the basis for subsequent analysis in population studies.

Below, we describe how the latent connectivity templates affect the observed measures

in individual subjects. Empirically, we observe that the variability of the DWI and fMRI

measures of connectivity across connections and across subjects can be reasonably approx-

imated using Gaussian distributions (Section 3.5.1 provides more details). It is not surpris-

ing since both measures are computed as averages of the observed image data and should

therefore approach Gaussian distributions as the number of elements increases. Moreover,

using Gaussian likelihoods for the observed data greatly simplifies the learning/inference

algorithm and allows for efficient fitting of the model parameters.

DWI Likelihood Let L be the number of subjects. The DWI measurement Dl
ij between

regions i and j in the lth subject depends on the anatomical connectivity Aij . In this work

we use the average FA along white matter fibers to assess DWI connectivity. The model

can be readily extended to accommodate other measures of connectivity by redefining the

data likelihood term below.

Our observation model for Dl
ij explicitly accounts for errors in tractography. These

include missing tracts between anatomically connected regions and spurious tracts between

isolated ones. In particular, if tractography identifies one or more white matter fibers

between two regions, the value of Dl
ij is modeled as a Gaussian random variable whose

mean and variance depend on the anatomical connectivity indicator Aij . Otherwise, Dl
ij is

set to zero. Mathematically,

P (Dl
ij |Aij = t; {ρ, χ, ξ}) = ρtδ(D

l
ij) + (1 − ρt)N (Dl

ij ; χt, ξ
2
t ), (3.3)
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where δ(·) is the Dirac delta function and N (· ; χ, ξ2) denotes a Gaussian distribution with

mean χ and variance ξ2. ρ0, ρ1 are the probability of failing to find a white matter tract

between the regions in the absence (Aij = 0) or presence (Aij = 1) of a latent anatomical

connection, respectively. Ideally, ρ0 = 1 and ρ1 = 0, i.e., a white matter tract should be

found if and only if there is an underlying anatomical connection. However, detection via

tractography is imperfect. In practice Dl
ij is strictly positive if a tract is found between the

regions. The Gaussian distribution in Eq. (3.3) adequately captures the data variation as

our results in Section 3.5.1 suggest.

fMRI Likelihood We model the BOLD fMRI correlation Bl
ij between regions i and j in

the lth subject as a Gaussian random variable whose mean and variance depend on both the

latent functional connectivity Fij and anatomical connectivity Aij . This reflects the finding

that direct anatomical connections predict higher functional correlations [48,61]:

P (Bl
ij |Aij = t, Fij = k; {µ, σ}) = N (Bl

ij ; µtk, σ
2
tk). (3.4)

In this work we compute Bl
ij using Pearson correlation coefficients. Once again, our empir-

ical analysis in Section 3.5.1 suggests that the Gaussian likelihood in Eq. (3.4) provides a

reasonable approximation for the data distribution 1.

Combining all the elements of the model in Eqs. (3.1)-(3.4), we obtain the joint log-likelihood

of all hidden and observed variables for a single connection 〈i, j〉:

log P (Aij , Fij ,Dij ,Bij ; {π, µ, σ2, ρ, χ, ξ2})

= Aij log(πa) + (1 − Aij) log(1 − πa) +
1
∑

k=−1

Fijk log(πf
k )

+ (1 − Aij)
L
∑

l=1

log
(

ρ0δ(D
l
ij) + (1 − ρ0)N (Dl

ij ; χ0, ξ
2
0)
)

+ Aij

L
∑

l=1

log
(

ρ1δ(D
l
ij) + (1 − ρ1)N (Dl

ij ; χ1, ξ
2
1)
)

+
L
∑

l=1

1
∑

k=−1

[

(1 − Aij)Fijk logN (Bl
ij ; µ0k, σ

2
0k) + AijFijk logN (Bl

ij ; µ1k, σ
2
1k)
]

. (3.5)

1Although the Beta distribution is a natural model for correlation values, which are limited to the range
[−1, 1], inferring the Beta parameters is more difficult and potentially more sensitive to noise
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3.1.2 Population Differences

Fig. 3-1(b) presents an extension of our model to a population study involving normal

controls and schizophrenia patients. We assume that the differences between the groups are

explained entirely by changes in latent connectivity and that the two populations share the

same data likelihood model.

In particular, we model the control population according to Fig. 3-1(a) and treat the

latent connectivity templates {Ā, F̄} of the schizophrenia population as a “corrupted” ver-

sion of the healthy template. Specifically, with (small) probability, each connection can

switch its state:

P (Āij |Aij ; ǫ
a) = (ǫa)Aij(1−Āij)+(1−Aij)Āij · (1 − ǫa)AijĀij+(1−Aij)(1−Āij) , (3.6)

P (F̄ij |Fij ; ǫ
f ) =

(

ǫf

2

)(1−FT

ij F̄ij) (
1 − ǫf

)FT

ij F̄ij

. (3.7)

Rather than parameterizing all possible connectivity differences, we rely on scalars ǫa and

ǫf to govern the probability of change within each modality. For binary random variables

Aij and Āij , this implies that the probability of change in anatomical connectivity does not

depend on the value of Aij . A similar property holds for the tri-state random variables Fij

and F̄ij . Moreover, Eq. (3.7) assumes that functional connectivity switches to its other two

states with equal probability. Empirically, our results are more robust using Eqs. (3.6-3.7)

than if we infer all transition probabilities for each modality.

3.2 Inference

We employ the maximum likelihood (ML) framework to estimate the model parameters:

Θ̂∗ = argmax
Θ

∑

〈i,j〉

log P (Dij ,Bij ; Θ) = argmax
Θ

∑

〈i,j〉

log
∑

Aij ,Fij

P (Aij , Fij ,Dij ,Bij ; Θ), (3.8)

where Θ is the set of model parameters. Θ = {π, µ, σ2, ρ, χ, ξ2} for the single-population

model; Θ = {π, µ, σ2, ρ, χ, ξ2, ǫ} for the model of population differences.

We derive the Expectation-Maximization (EM) algorithm [23] for fitting the models.

The EM algorithm constructs the joint posterior of all hidden variables, which is then used

to infer population differences. The posterior distribution can be computed directly from

the observed data and the model parameters {π, µ, σ2, ρ, χ, ξ2, ǫ}. Since these parameters

are shared across connections/subjects, our model is based on a small set of unknown values.
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3.2.1 Single Population Model

We use Xij = {Aij , Fij} and Yij = {Dij ,Bij} to denote the hidden and observed variables,

respectively, associated with the connection between region i and region j.

Since Aij is a binary random variable and Fij is a tri-state random variable, the latent

vector Xij assumes one of six distinct values. The EM algorithm iterates between estimating

the posterior probability of the hidden variables Xij and estimating the model parameters

Θ. Due to the independence of pairwise connections, this problem reduces to a standard

mixture model with six components.

For notational simplicity, we index the 6 states of X using a set {1, . . . , 6}. We construct

the associated prior distribution P (Xij = h; Θ) and data likelihood P (Yij |Xij = h; Θ)

by evaluating Eq. (3.1-3.4). For example, if the index h denotes the latent assignment

Aij = t, Fij = k,

P (Xij = h; Θ) = (πa)t(1 − πa)(1−t) · πf
k , (3.9)

P (Yij |Xij = h; Θ) =
L
∏

l=1

[

ρtδ(D
l
ij) + (1 − ρt)N (Dl

ij ; χt, ξ
2
t )
]

· N (Bl
ij ; µtk, σ

2
tk). (3.10)

Independence across pairwise connections gives rise to a simple sum in the log-likelihood

of the observed and hidden variables:

L(X,Y; Θ) =
∑

〈i,j〉

log P (Xij ; Θ)P (Yij |Xij ; Θ).

E-Step: We fix the model parameter estimates Θ̂ and update the posterior probability

estimates p̂ijh of the latent variables:

p̂ijh = P (Xij = h|Yij ; Θ̂) ∝ P (Xij = h; Θ̂)P (Yij |Xij = h; Θ̂) s.t.
6
∑

h=1

p̂ijh = 1. (3.11)

The M-Step parameter updates depend on the marginal probabilities of each latent

variable. For convenience, we define them below:

âij = P (Aij = 1|Yij ; Θ̂) =
∑

h:Aij=1

p̂ijh (3.12)

ŝ
(tk)
ij = P (Aij = t, Fij = k|Yij ; Θ̂) =

∑

h:Aij=t,Fij=k

p̂ijh. (3.13)
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M-Step: We fix the posterior probability estimates p̂ijh and update the model parameter

estimates Θ̂. Given a guess of the parameters Θ̂ from the previous iteration, we construct

a lower bound to the log-likelihood Ψ(Θ, Θ̂) = EX|Y

[

log P (X,Y; Θ)|Y, Θ̂
]

. With some

algebraic manipulation, we obtain

Ψ(Θ, Θ̂) =

6
∑

h=1

∑

〈i,j〉

P (Xij = h|Yij ; Θ̂) log [P (Xij = h; Θ)P (Yij |Xij = h; Θ)]

=
6
∑

h=1

∑

〈i,j〉

p̂ijh [log P (Xij = h; Θ) + log P (Yij |Xij = h; Θ)] . (3.14)

The parameter updates are obtained by differentiating Eq. (3.14) with respect to Θ

and setting the gradient equal to zero. For notational convenience, we let C represent the

number of (distinct) pairwise connections, and we let L0
ij be the number of subjects for

which Dl
ij = 0 (i.e., no tract was detected). The binomial and multinomial priors reduce to

intuitive sums of the latent posterior probability estimates:

π̂a =
1

C

∑

〈i,j〉

âij , π̂f
k =

1

C

∑

〈i,j〉

∑

h:Fijk=1

p̂ijh. (3.15)

The probability ρ is the empirical likelihood of not finding a white matter tract between

two regions:

ρ̂1 =

∑

〈i,j〉 âijL
0
ij

∑

〈i,j〉 L · âij
. (3.16)

The Gaussian likelihood parameters for the DWI measurements D are given by the

weighted empirical mean and empirical variance over all non-zero values:

χ̂1 =

∑

〈i,j〉 âij
∑

l:Dl
ij>0 Dl

ij
∑

〈i,j〉 âij(L − L0
ij)

, (3.17)

ξ̂2
1 =

∑

〈i,j〉 âij
∑

l:Dl
ij>0 (Dl

ij − χs)
2

∑

〈i,j〉 âij(L − L0
ij)

. (3.18)

The updates for ρ0, χ0, ξ
2
0 (corresponding to latent connectivity Aij = 0) are trivially ob-

tained from the above expressions by substituting (1 − âij) for âij .

The likelihood parameters for the functional observations B are similarly constructed
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as weighted statistics of the data:

µ̂tk =

∑

〈i,j〉 ŝ
(tk)
ij

∑L
l=1 Bl

ij
∑

〈i,j〉 L · ŝ
(tk)
ij

, (3.19)

σ̂2
tk =

∑

〈i,j〉 ŝ
(tk)
ij

∑L
l=1(B

l
ij − µ̂tk)

2

∑

〈i,j〉 L · ŝ
(tk)
ij

. (3.20)

3.2.2 Modeling Population Differences

The algorithms presented above can be easily extended to the two-population model in

Figure 3-1(b). This complete model is the primary focus of our work in the following

sections. Below, we let Xij = {Aij , Fij , Āij , F̄ij} and Yij = {Dl
ij , B

l
ij , D̄

m
ij , B̄m

ij } denote the

hidden and observed variables, respectively, of the connection between regions i and j.

Both Aij and Āij are binary random variables and both Fij and F̄ij are tri-state random

variables. Therefore, the latent vector Xij assumes one of 36 distinct values. Once again,

we index the latent states of Xij using h ∈ {1, . . . , 36} and map the estimation problem to

the standard mixture model with 36 components.

E-Step: We construct the full prior and likelihood distributions P (Xij = h; Θ) and data

likelihood P (Yij |Xij = h; Θ) using Eqs. (3.1-3.7). The posterior estimate p̂ijh is computed

analogously to Eq. (3.11) for each value of (i, j, h).

We define the following marginal posterior probabilities of the clinical templates:

r̂ij = P (Āij = 1|Yij ; Θ̂) =
∑

h:Āij=1

p̂ijh (3.21)

û
(tk)
ij = P (Āij = t, F̄ij = k|Yij ; Θ̂) =

∑

h:Āij=t,F̄ij=k

p̂ijh. (3.22)

M-Step: As in the preceding section, we let L0
ij be the number of control subjects for

whom Dl
ij = 0 and M0

ij be the number of schizophrenia patients for whom D̄m
ij = 0.

Once again, the probability estimates are intuitive sums of the latent posteriors. In this

case, we must also solve for the parameters ǫa, ǫf in Eqs. (3.6-3.7):

π̂a =
1

C

∑

〈i,j〉

âij , π̂f
k =

1

C

∑

〈i,j〉

∑

h:Fijk=1

p̂ijh, (3.23)

ǫ̂a =
1

C

∑

〈i,j〉

∑

h:Aij 6=Āij

p̂ijh, ǫ̂f =
1

C

∑

〈i,j〉

∑

h:Fij 6=F̄ij

p̂ijh. (3.24)
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Since both populations share the same data likelihood model, the updates for {µ̂, σ̂2, ρ̂, χ̂, ξ̂2}

are derived from Eqs. (3.16-3.20) by incorporating one data term for each population:

µ̂tk =

∑

〈i,j〉

[

ŝ
(tk)
ij

∑L
l=1 Bl

ij + û
(tk)
ij

∑M
m=1 B̄m

ij

]

∑

〈i,j〉

[

L · ŝ
(tk)
ij + M · û

(tk)
ij

] , (3.25)

σ̂2
tk =

∑

〈i,j〉

[

ŝ
(tk)
ij

∑L
l=1(B

l
ij − µ̂tk)

2 + û
(tk)
ij

∑M
m=1(B̄

m
ij − µ̂tk)

2
]

∑

〈i,j〉

[

L · ŝ
(tk)
ij + M · û

(tk)
ij

] , (3.26)

ρ̂1 =

∑

〈i,j〉

[

âijL
0
ij + r̂ijM

0
ij

]

∑

〈i,j〉 [L · âij + M · r̂ij ]
, (3.27)

χ̂1 =

∑

〈i,j〉

[

âij
∑

l:Dl
ij>0 Dl

ij + r̂ij
∑

m:D̄m
ij >0 D̄m

ij

]

∑

〈i,j〉

[

âij(L − L0
ij) + r̂ij(M − M0

ij)
] , (3.28)

ξ̂2
1 =

∑

〈i,j〉

[

âij
∑

l:Dl
ij>0 (Dl

ij − χ̂1)
2 + r̂ij

∑

m:D̄m
ij >0 (D̄m

ij − χ̂1)
2
]

∑

〈i,j〉

[

âij(L − L0
ij) + r̂ij(M − M0

ij)
] . (3.29)

We have presented the EM algorithm for both models in Fig. 3-1. The posterior distributions

over the latent variables play a crucial role in the clinical application of our model as follows.

3.2.3 Quantifying Group Differences

We assume that group differences are expressed in the latent templates {Aij , Fij , Āij , F̄ij}.

Therefore, the main quantity of interest is the probability of change in the anatomical or

functional connectivity templates for a given pairwise connection. We let ǫ̂a
ij denote the

probability of a change in the anatomical connectivity between regions i and j, and we let

ǫ̂f
ij denote the corresponding probability of change in functional connectivity. We estimate

these values based on the inferred posterior probabilities {p̂ijh}:

ǫ̂a
ij =

∑

h:Aij 6=Āij

p̂ijh , ǫ̂f
ij =

∑

h:Fij 6=F̄ij

p̂ijh . (3.30)

These values are the main output of our algorithm in the context of population studies.

3.3 Model Evaluation

This section details the methods used to validate our experimental results.



3.3. Model Evaluation 51

3.3.1 Model Significance

Although our model is based on standard Gaussian and multinomial probability distribu-

tions, the joint distribution is not Gaussian due to multiplicative interactions among latent

variables and the effects of unknown non-random parameters. Therefore, we evaluate signifi-

cance through non-parametric permutation tests. Specifically, we construct the distribution

of the statistics in Eq. (3.30) under the null hypothesis by randomly permuting the subject

labels (NC vs. SZ) 10, 000 times. For each permutation, we fit the model and compute

the relevant statistics ǫ̂a
ij , ǫ̂

f
ij . The significance (p-value) of each connection is equal to the

proportion of permutations for which the computed statistic is greater than or equal to the

value obtained under the true labeling.

3.3.2 Classification Accuracy

We also quantify the model’s predictive power via ten-fold cross validation. We randomly

divide the subjects into 10 groups, each with an equal number of controls and schizophrenia

patients. 2 We fit the model using 9 training groups and employ a likelihood ratio test

to predict the diagnoses (NC or SZ) of the held-out subjects. Our ratio test compares

the likelihood of a new subject being generated from the control and the schizophrenic

templates:
P ({Dij , Bij}|{Âij , F̂ij}, Θ̂

∗)

P ({Dij , Bij}|{
ˆ̄Aij ,

ˆ̄Fij}, Θ̂∗)

′NC′

≷
′SZ′

1, (3.31)

where {Âij , F̂ij ,
ˆ̄Aij ,

ˆ̄Fij} denotes the maximum a posteriori (MAP) estimate for the latent

templates when fitted to the training data, and {Dij , Bij} represents the observed DWI and

fMRI data of a given test subject.

This process is repeated for each training-test set combination. In addition, we re-

peat the ten-fold cross validation 20 times using different groupings of subjects to evaluate

the variability of the results. For comparison, we perform ten-fold cross validation using

the support vector machine (SVM) classifiers trained on the fMRI correlations and DWI

tractography measures individually, as well as on the combined dataset.

2Our clinical dataset consists of 19 patients and 19 controls, which we divide into nine groups of four
subjects and one group of two subjects. These groups specify the testing sets in our classification experiments.
Since we infer differences between the populations, it is important to maintain equal numbers of control and
schizophrenia subjects in each group to avoid biasing the solution towards one population.
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(a) DWI-only Model (b) fMRI-only Model

Figure 3-2: (a) DWI connectivity model for population differences. (b) fMRI connectivity
model for population differences. Aij represents the latent anatomical connectivity between
regions i and j, and Fij denotes the corresponding latent functional connectivity. Dl

ij and

Bl
ij are the observed DWI and fMRI measurements, respectively, between regions i and j

in the lth subject. The schizophrenia templates are identified by an overbar. The variables,
parameters and likelihood of (a) remains unchanged from the joint model. The likelihood
in (b) is modified to reflect only the three functional connectivity states.

3.3.3 Baseline Methods

To evaluate the performance gain from combining fMRI and DWI data, we construct sep-

arate generative models for each modality, as depicted in Fig. 3-2. Here, we sever the

connection between the anatomical connectivity templates A, Ā and the fMRI data.

Since the DWI data is independent of latent functional connectivity, all parameters,

random variables and likelihoods remain unchanged for the DWI-only model (Fig. 3-2a).

The only modification in the fMRI-only model (Fig. 3-2b) involves the observed fMRI

data. In particular, there are only three sets of likelihood parameters {µ, σ2} corresponding

to the three latent functional connectivity states. Formally, we replace the likelihood in

Eq. (3.4) with

P (Bl
ij |Fij ; {µ, σ}) =

1
∏

k=−1

N (Bl
ij ; µk, σ

2
k)

Fijk , k = −1, 0, 1 (3.32)

for the control subjects and

P (B̄m
ij |F̄ij ; {µ, σ}) =

1
∏

k=−1

N (B̄m
ij ; µk, σ

2
k)

F̄ijk , k = −1, 0, 1 (3.33)

for the schizophrenia population.
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We employ EM solutions, similar to those in Section 3.2. The empirical probabilities

of change ǫ̂a
ij , ǫ̂

f
ij are computed according to Eq. (3.30) by replacing p̂ijh with the posterior

estimates of the appropriate model.

We perform permutation tests and cross validation using the DWI- and fMRI-specific

models. These results allow us to evaluate the benefits of incorporating both imaging

modalities in our analysis.

3.3.4 Implementation Details

In this section we describe the optimization choices in our implementation of the EM algo-

rithm. We concentrate on the model of population differences.

Initialization

Like many hill-climbing methods, the quality of our results depends on proper initialization.

We initialize the model parameters Θ = {π, µ, σ2, ρ, χ, ξ2, ǫ} based on empirical measures

computed from the clinical data. In particular, we randomly sample the initial values of

πa, πf
k , ǫa and ǫf from the interval [0.3, 0.6]. This scheme produces values near the center

of the parameter space. We set σ2
tk and ξ2

t to the variances (across all connections and

subjects) of the fMRI correlations and the non-zero DWI data, respectively. We set µt0 = 0,

µt1 = −µt,−1 = σ, where σ2 is the empirical variance. This captures our assumptions about

the effect of latent functional connectivity on fMRI correlations and reflects the fact that

the relationship between latent anatomical connectivity and fMRI data is less clear. Finally,

we randomly sample χ0 and χ1 from the range of DWI FA values and generate ρ0 > ρ1.

It is sufficient to initialize the model parameters. The algorithm starts with computing

the joint posterior probability distribution (E-Step). Empirically, we find that the results

are stable with respect to different initializations of the model parameters. Therefore, we

reinitialize the algorithm five times to sample the probability space, and subsequently select

the maximum likelihood solution.

Convergence and Run Time

We ran the EM algorithm ten times using different subsets of subjects in each cross vali-

dation iteration. Convergence was based on the relative change in log-likelihood between

consecutive iterations. On average, the algorithm converges in 87 iterations (E-step/M-step

updates), and the average runtimes is 1.2 seconds per iteration. Thus, it requires on average

1.7 minutes to solve the model using EM. The iteration runtime scales linearly with the

number of subjects. All simulations were performed using MATLAB on a single processor

modern workstation.
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Figure 3-3: Proportion of mis-labeled connectivity relationships as a function of the pro-
portion of latent connections affected by the disease. The bold lines represent the average
error over 10 resamplings of the observed data, and the error bars represent one standard
deviation. The likelihood parameterization is fixed according to the clinical dataset.

3.4 Experimental Results - Synthetic Data

We first evaluate the robustness and sensitivity of our algorithm using synthetic data.

Throughout this section we fix the latent template and sample the observed data {B, B̄, D, D̄},

assuming 20 subjects in each population. We then infer the original latent templates from

these noisy measurements. The error is computed as the proportion of connections for which

the MAP connectivity estimates do not match the ground truth templates. We repeat the

experiment ten times to collect error statistics.

In the first experiment we assume that the latent connectivity templates are similar for

both populations. Specifically, the control templates have 180 pairwise connections for each

of the 6 distinct values of latent connectivity templates {Aij , Fij} (N = 1080, comparable

to the clinical dataset), and we randomly alter a small percentage of connections to obtain

the schizophrenia templates. This reflects our clinical hypothesis that the changes induced

by schizophrenia occur in a small yet spatially-distributed subset of connections.

We fix the fMRI likelihood parameters according to the values estimated in our clinical

dataset. This corresponds to σ2
tk = 0.05, µ0,−1 = −0.15, µ1,−1 = −0.1, µ00 = 0, µ10 =

0.2, µ01 = 0.3, and µ11 = 0.5. Likewise, we fix the DWI likelihood parameters at ξ2
t =

0.005, χ0 = 0.45, χ1 = 0.35, ρ0 = 0.6 and ρ1 = 0.4. The quantity |χ1 − χ0| = 0.1,

which influences the separation between DWI distributions for present and absent latent

anatomical connectivity, is equivalent to that of the clinical dataset. The values for ρ0
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and ρ1 are much closer than what we estimate from real data. Otherwise, we find that

anatomical connectivity is perfectly recovered, and we cannot probe the model’s behavior.

Fig. 3-3 shows the errors in determining the latent templates both for the consistent

connections and for the ones affected by the disorder. The bold lines in Fig. 3-3 represent

the average error over ten independent samples of the entire data set. The error bars repre-

sent one standard deviation. Clearly, when the proportion of affected connections is small,

the algorithm has slightly more difficulty identifying them. Similarly, if the proportion of

affected connections is large, the algorithm has difficulty recovering the consistent connec-

tions. For example, when 10% of connections are affected, the model correctly identifies

90% of them. But if 90% of the connections are affected, the model recovers 99% of them.

The maximum error is less than 15%. This suggests that our algorithm can accurately fit

the model, which is promising for the application to clinical data.

In the second experiment, we explore the breakdown points of our model. We consider

the case when the DWI likelihood distributions provide little information about latent

anatomical connectivity as well as the case when the fMRI likelihood distributions are

nearly uninformative about latent anatomical and/or functional connectivity. The Gaussian

variances are fixed at σ2
tk = σ2 = 0.01 and ξ2

t = ξ2 = 0.005.

We parameterize the DWI model as follows:

χ0 = 0.5 − a χ1 = 0.5 + a

ρ0 = 0.5 + b ρ1 = 0.5 − b (3.34)

where a, b ≥ 0. The parameter a controls the difference in DWI distributions for the two

underlying anatomical connectivity values. The parameter b determines to how much more

likely one is to find a DWI tract between two regions given a direct anatomical connection

than if no connection is present.

We parameterize the Gaussian means for the fMRI model as follows:

µ00 = µ10 = 0

µ01 = c = −µ0,−1

µ10 = d = −µ1,−1 (3.35)

where c, d ≥ 0. The parameters c and d control the functional separation in the absence

and presence of a latent anatomical connection, respectively. The quantity (d−c) relates to

the effect anatomical connectivity has on the magnitude of fMRI correlations. This setup
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Figure 3-4: Proportion of mis-labeled connectivity relationships between the latent tem-
plates. The bold lines represent the average error over 10 resamplings of the observed data
{B, B̄, D, D̄}. The error bars represent one standard deviation from the mean. The DWI
likelihood parameterization is fixed at a = 0 and b = 0.05.
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Figure 3-5: Proportion of mis-labeled connectivity relationships between the latent tem-
plates. The error is averaged over 10 resamplings of the data. The fMRI likelihood param-
eterization is fixed at c = 0 and d = 0.05.

allows for adequate flexibility in manipulating the generative process while simultaneously

reducing the number of free parameters to explore.

We assume a uniform distribution of latent connectivity values; the templates contain

30 pairwise connections for each of the 36 values of {Aij , Fij , Āij , F̄ij} (N = 1080). We

generate 20 subjects from each population and sweep the parameters in Eqs. (3.34-3.35).

For each parameter set, we generate data from the two-population model in Fig. 3-1(b) and
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solve for the latent connectivity. We repeat this procedure several times to ensure stability

of the reported behavior.

We first specify the DWI parameterization such that the probability of finding a tract

is slightly greater than 0.5 given a latent anatomical connection (b = 0.05), and such that

there is no difference in DWI likelihood when a tract is observed (a = 0). Fig. 3-4 reports

the errors in predicting latent connectivity changes between the populations. We observe

that as c, d increase from zero, the algorithm uses the fMRI data and the slight difference in

DWI likelihood to estimate latent functional connectivity. Another interesting observation

is the predictable dip in error in Fig. 3-4(a) when c, d ≥ σ = 0.1 and |d − c| ≥ σ. In

this case the fMRI likelihoods based on positive/negative latent functional connectivity

are simultaneously far from zero and distinct given the presence or absence of a latent

anatomical pathway. The algorithm uses the first separation (far from zero) to identify

latent functional connectivity and the second (distinct based on anatomy) to infer latent

anatomical connectivity.

Second, we fix the fMRI parameterization such that there is a slight separation between

the mixture distributions given the presence of a latent anatomical connection (c = 0, d =

0.05). Fig. 3-5 reports the errors in predicting the connectivity changes. An informative

DWI likelihood (higher values of a, b) allows us to correctly estimate the anatomical tem-

plates. However, it does not improve the estimates of latent functional connectivity. This

is because our model does not include a direct link between the functional templates and

the DWI data.

In summary, highly separable fMRI data allows us to estimate the functional templates

and improves slightly our inference of latent anatomical connectivity. In contrast, highly

separable DWI data produces accurate anatomical templates but does not improve the func-

tional connectivity estimates. When both datasets are informative, the algorithm recovers

all the latent templates and model parameters.

3.5 Experimental Results - Clinical Data

We demonstrate our model on the clinical study of schizophrenia (see Section 2.7). We

compute the DWI connectivity Dl
ij between regions i and j in subject l by averaging FA

along all fibers connecting the two regions. If no tracts are found, Dl
ij is set to zero. We

extract the fMRI connectivity Bl
ij as the Pearson correlation coefficient between the mean

time courses of regions i and j in subject l.

To inject prior clinical knowledge, we pre-select 8 brain structures (corresponding to

16 regions) that are believed to play a role in schizophrenia: the superior temporal gyrus,
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rostral middle frontal gyrus, hippocampus, amygdala, posterior cingulate, rostral anterior

cingulate, parahippocampal gyrus, and transverse temporal gyrus. We model only the 1096
(

16 × 76 −
(

16
2

))

pairwise connections between these ROIs and all other regions in the brain.

3.5.1 Empirical Study of Data Distributions

In this section we present aggregate properties of our data, which motivate our choice

of likelihood parameterization in Section III. We group both populations together, as the

differences induced by schizophrenia are subtle and do not affect the global distributions.

We first fit the distributions of fMRI correlations and DWI FA values to our likelihood

model in Eqs. (3.3-3.4). Since we cannot access the latent connectivity Aij and Fij , we

approximate these variables by working with average measures of the data across subjects.

In particular, we threshold the proportion of subjects that exhibit white matter tracts

between regions to estimate Âij . Similarly, we threshold the average fMRI correlations to

estimate F̂ij . We then analyze the distribution of DWI FA values and fMRI correlations

across all connections in all subjects.

Fig. 3-6 depicts the histograms of fMRI correlations for all combinations of roughly

estimated latent connectivity. Fig. 3-7 illustrates histograms of the non-zero DWI values for

the two types of anatomical connectivity. We have overlaid the fitted Gaussian distributions

in each plot. The yellow dots correspond to empirical means. We observe that the variability

in DWI and fMRI data across connections is across subjects are reasonably approximated

using Gaussian distributions.

Fig. 3-7 also suggests that the average DWI measure is slightly higher for connections

in which tractography identifies white matter tracts in only a few subjects (Âij = 0). We

explore this phenomenon by considering the distribution of FA values along all fibers when

(1) white matter tracts are detected in all subjects, and (2) white matter tracts are detected

in only one subject. Our analysis considers the first scenario to represent a “true” anatomical

connection and the second to be spurious fibers. Fig. 3-8 illustrates the histograms of two

representative connections for each of the above cases.

Empirically, we observe that the distributions of FA values along spurious fibers is

more uniformly distributed across a broad range of values (FA ∈ [0.2, 0.8]), whereas the

distribution along true fibers is concentrated towards the lower end of this range (FA ∈

[0.3, 0.5]). The average FA for a false-positive connection is higher than the FA for a

correctly-identified connection.

There are several factors which may contribute to this phenomenon. For example,

since tractography is guided by the estimated tensors, perhaps the algorithm latches onto
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Figure 3-6: Histograms of fMRI correlations based on estimated connectivity. Gaussian dis-
tributions that have been fitted to the data are overlaid in red. The yellow dots correspond
to empirical means.
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(a) Âij = 0
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(b) Âij = 1

Figure 3-7: Histograms of non-zero DWI data based on estimated anatomical connectivity.
Gaussian distributions that have been fitted to the data are overlaid in red. The yellow
dots correspond to empirical means.

artificially high anisotropy in the DWI images to produce these erroneous tracts. Our two-

tensor tractography algorithm [71] may also play a role. We fit one tensor along the main

fiber bundle and use a second tensor to account for residual anisotropy. Our tractography

algorithm computes only FA along the main fiber, which may impact the overall distribution.

3.5.2 Joint Connectivity Model for the Clinical Data

We first fit the joint model in Fig. 3-1(a) to each population separately, as well as to

the entire dataset. Table 3.2 reports the parameters of the three cases. We observe that

the ML solutions {π.µ, σ, ρ, χ, ξ} are largely consistent between the groups and for the

combined case. This suggests that population differences have a larger influence on the

latent connectivities rather than on the data likelihood parameters.

Table 3.2 highlights some interesting properties of the data. For example, µ0k < µ1k for

all k, which indicates that the presence of an anatomical connection between two regions

increases the mean functional correlation. This result is consistent with prior work [48,61].

Additionally, χ0 > χ1 implies that false-positive white matter tracts have higher mean FA

values than correctly-identified white matter tracts. This is consistent with our empirical

evaluation of the data in Section 3.5.1.

3.5.3 Population Study

Fig. 3-9 depicts the significantly different (ǫ̂ij > 0.75) anatomical and functional connections

identified by the algorithm. In this case, we identify connections with an uncorrected p-value
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(a) R-Parahippocampal ↔ R-Hippocampus

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) L-Posterior Cingulate ↔ L-Postcentral

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(c) R-Cuneus ↔ L-Transverse Temporal Gyrus

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(d) R-Rostral Ant Cingulate ↔ R-Inf Parietal

Figure 3-8: Histograms of FA values along fibers for representative connections detected in
all subjects (a-b) and representative connections detected in a single subject (c-d).

of 0.05. Our results exhibit patterns that have previously been reported in the schizophre-

nia literature and are linked to clinical hypotheses regarding the disorder. For example,

we observe that schizophrenia patients exhibit increased functional connectivity between

the parietal/posterior cingulate region and the frontal lobe and reduced functional connec-

tivity between the parietal/posterior cingulate region and the temporal lobe in Fig. 3-9.

These results confirm the findings of functional abnormalities involving the default network

and of widespread functional connectivity changes in schizophrenia [37, 66]. Likewise, the

differences in anatomical connectivity are distributed across the brain.

Table 3.3 and Table 3.4 report the corresponding region pairs and significance values,

where we have highlighted the connections that overlap with our discriminative analy-

sis. Specifically, we perform robust feature selection using the Gini Importance (GI) score
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Table 3.2: Parameters of the joint model in Fig. 3-1(a). The analysis is performed separately
for the control (NC) and the schizophrenic (SZ) populations, as well as for the entire dataset
(NC+SZ).

πA πF,−1 πF0 πF1 ρ0 ρ1 χ0 χ1 ξ2
0 ξ2

1

NC 0.37 0.49 0.40 0.11 0.65 0.10 0.42 0.34 0.005 0.003
SZ 0.37 0.42 0.44 0.14 0.67 0.11 0.41 0.34 0.005 0.003

NC+SZ 0.37 0.43 0.43 0.14 0.66 0.11 0.41 0.34 0.005 0.003

µ0,−1 µ1,−1 µ00 µ10 µ01 µ11

NC -0.13 -0.054 0.059 0.23 0.35 0.55
SZ -0.19 -0.087 0.007 0.21 0.30 0.55

NC+SZ -0.17 -0.071 0.015 0.21 0.29 0.55

σ2
0,−1 σ2

1,−1 σ2
00 σ2

10 σ2
01 σ2

11

NC 0.053 0.055 0.049 0.055 0.055 0.044
SZ 0.048 0.058 0.053 0.056 0.061 0.043

NC+SZ 0.050 0.057 0.053 0.056 0.061 0.044

derived from the Random Forest algorithm [11]. Details of this work are provided in Ap-

pendix A. We discuss the relevance of this comparison in the following section.

Fig. 3-10 shows representative DWI fibers for the significant anatomical connections

identified by the joint model. In each case, we display the corresponding tracts within a

single subject from the population with higher connectivity. We note that the results of the

joint model do not completely agree with those of the single-modality models.

Finally, we observe consistency in parameter estimates across random subject re-labelings

in the permutation procedure (not shown). This suggests that the main effects of the label

permutations are reflected in the latent connectivity rather than in the data likelihood.

Fig. 3-11 reports classification accuracy for the joint generative model, for the individual

generative models, and for the SVM classifiers. Training accuracy is presented as validation

that the model does learn discriminative features. We acknowledge the low classification

accuracy in Fig. 3-11 but emphasize that our model is not formulated for classification. In

contrast, we aim to understand the interaction between fMRI and DWI data using a set of

assumptions about connectivity and schizophrenia. Differences between the two populations

are modeled through shifts in the likelihood parameters rather than by changes in specific

fMRI and DWI values. Therefore, we do not expect our approach to achieve the classification

performance of algorithms specifically tailored for classification. Rather, Fig. 3-11 illustrates

three main points. First, the joint model achieves above-chance generalization accuracy.

This suggests that the underlying connectivity might play a role in schizophrenia. Second,
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(a) Joint Model, Anatomical (b) Joint Model, Functional

(c) DWI-only Model (d) fMRI-only Model

Figure 3-9: Significant anatomical and functional connectivity differences (p < 0.05 and

ǫ̂a
ij , ǫ̂

f
ij > 0.75). Blue lines indicate higher connectivity in the control group; yellow lines

indicate higher connectivity in the schizophrenia population. (a-b) are derived from the
joint DWI/fMRI model. (c) depicts significant anatomical connections from the DWI-only
model, and (d) illustrates significant functional connections from the fMRI-only model.
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Table 3.3: Significant anatomical and functional connections based on the joint generative
model in Fig. 3-1(b). The blue connections are identified by our discriminative feature
selection method presented in Appendix A.

Anatomical Connections

Region 1 Region 2 p ǫ̂n
A

L Posterior Cingulate (L-PCC) L Hippocampus (L-Hipp) 0.0001 0.93
R Transverse Temporal (R-TTG) L Thalamus-Proper (L-ThP) 0.012 0.99
L Superior Temporal (L-STG) L Cuneus (L-Cun) 0.016 0.88
L Medial Orbitofrontal (L-MOrb) R Amygdala (R-Amy) 0.032 0.99
R Posterior Cingulate (R-PCC) L Rostral Ant. Cingulate (L-RAC) 0.039 0.96

Functional Connections

Region 1 Region 2 p ǫ̂n
F

R Pars Triangularis (R-pTri) L Posterior Cingulate (L-PCC) 0.0003 0.93
R Superior Frontal (R-SF) L Posterior Cingulate (L-PCC) 0.0005 0.94
R Parahippocampal (R-PHipp) R Enthorinal Cortex (R-Ent) 0.001 0.98
R Postcentral (R-postCG) L Transverse Temporal (L-TTG) 0.0011 0.91
L Transverse Temporal (L-TTG) L Precentral (L-preCG) 0.0013 0.95
R Posterior Cingulate (R-PCC) L Amygdala (L-Amy) 0.0015 0.97
R Inferior Temporal (R-InfT) L Parahippocampal (L-PHipp) 0.0019 0.95
R Rostral Mid. Frontal (L-RMF) L Caudal Ant. Cingulate (L-CAC) 0.0025 0.90
R Parahippocampal (R-PHipp) L Cerebellum (L-Cere) 0.0025 0.95
L Posterior Cingulate (L-PCC) L Amygdala (L-Amy) 0.0027 0.93
L Transverse Temporal (L-TTG) L Paracentral (L-pC) 0.0028 0.99
R Pars Triangularis (R-pTri) L Rostral Ant. Cingulate (L-RAC) 0.003 0.92
R Precentral (R-preCG) L Transverse Temporal (L-TTG) 0.0032 0.99
R Paracentral (R-pC) L Transverse Temporal (L-TTG) 0.0042 0.99
R Caudal Mid. Frontal (R-CMF) L Posterior Cingulate (L-PCC) 0.0056 0.96
R Rostral Ant. Cingulate (R-RAC) L Pars Opercularis (L-pOper) 0.013 0.92
R Transverse Temporal (R-TTG) L Precentral (L-preCG) 0.017 0.98
R Transverse Temporal (R-TTG) L Paracentral (L-pC) 0.019 0.98
R Pars Orbitalis (R-pOrb) L Transverse Temporal (L-TTG) 0.021 0.75
R Transverse Temporal (R-TTG) R Paracentral (R-pC) 0.024 0.90
R Medial Orbitalis (R-MOrb) R Amygdala (R-Amy) 0.029 0.77
R Posterior Cingulate (R-PCC) R Caudal Mid Frontal (R-CMF) 0.032 0.98
L Posterior Cingulate (L-PCC) L Putamen (L-Put) 0.033 0.96
L Transverse Temporal (L-TTG) L Postcentral (L-postCG) 0.037 0.79
R Transverse Temporal (R-TTG) L Thalamus-Proper (L-ThP) 0.038 0.80
L Posterior Cingulate (L-PCC) R Thalamus-Proper (R-ThP) 0.038 0.78
R Precuneus (R-pCun) R Parahippocampal (R-PHipp) 0.042 0.95
R Posterior Cingulate (L-PCC) L Putamen (L-Put) 0.042 0.83
L Transverse Temporal (L-TTG) L Isthmus Cingulate (L-IC) 0.047 0.83
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Table 3.4: Significant anatomical (top) and functional (bottom) connections based on the
single-modality generative models in Fig. 3-2. The green connection is identified by our
discriminative feature selection method presented in Appendix A.

Anatomical Connections

Region 1 Region 2 p-value ǫ̂a
n

L Posterior Cingulate (L-PCC) L Hippocampus (L-Hipp) 0.011 0.75
R Posterior Cingulate (R-PCC) L Rostral Ant. Cingulate (L-RAC) 0.029 0.99
L Superior Temporal (L-STG) L Cuneus (L-Cun) 0.029 0.79
R Rostral Mid Frontal (R-RMF) L Precentral (L-preCG) 0.033 0.93

Functional Connections

Region 1 Region 2 p-value ǫ̂f
n

R Posterior Cingulate (R-PCC) R Pars Opercularis (R-pOper) 0.0011 0.78
R Rostral Mid. Frontal (R-RMF) L Caudal Ant. Cingulate (L-CAC) 0.0028 0.95
R Pars Opercularis (R-pOper) L Posterior Cingulate (L-PCC) 0.0033 0.99
L Transverse Temporal (L-TTG) L Postcentral (R-postCG) 0.0047 0.97
R Precentral (R-preCG) L Superior Temporal (L-STG) 0.020 0.84
L Rostral Mid. Frontal (L-RMF) L Caudal Ant. Cingulate (L-CAC) 0.043 0.98
R Superior Temporal (R-STG) R Paracentral (R-pC) 0.048 0.94

modeling anatomical and functional connectivity jointly yields predictive advantages over

treating the fMRI and DWI data separately. Finally, even the SVM accuracy is low. In

addition, Appendix A presents an auxiliary discriminative analysis of our functional data.

We use state-of-the-art feature selection and classification algorithms to learn the relevant

connections and group subjects. Despite our sophisticated approach, the generalization

accuracy is only 75%. This underscores the well-documented challenge of finding robust

functional and anatomical changes induced by schizophrenia [22,63].

We note that much of the prior work on classification in schizophrenia did not rely on the

modalities used in this paper. In particular, most reported classifiers consider volumetric

changes found in T1 MRI [28] or activation patterns from task-based fMRI [31]. A few

studies have focused on resting-state fMRI [52] or DTI tractography [75]. In all cases

specialized features and classifiers were fine-tuned in order to obtain high accuracy.

3.6 Discussion

We formulate a generative model to infer changes in functional and anatomical connectivity

induced by schizophrenia using both resting-state fMRI correlations and DWI tractography,

and we present an algorithm for maximum likelihood estimation of the model parameters.

We simultaneously obtain the joint posterior probability distribution of all the hidden vari-
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(a) L-PCC ↔ L-Hipp (b) L-STG ↔ L-Cuneus

(c) R-TTG ↔ L-Thalamus Proper (d) R-PCC ↔ R-RAC

Figure 3-10: Representative DWI fibers for each of the significant anatomical connections
identified by the joint model in Table 3.3. The corresponding ROIs are displayed in pink;
the fibers are depicted in yellow.
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(b) Testing Accuracy

Figure 3-11: Training and testing accuracy of ten-fold cross validation using the joint gener-
ative model, the individual fMRI and DWI models and a linear SVM classifier. Red results
are obtained using both modalities; green results are based only the DWI data; blue results
are acquired from the fMRI data. The box denotes the upper and lower quartiles, the line
indicates the median values, and the whiskers correspond to the 10th and 90th percentiles.

ables, which allows us to identify population differences.

One interesting observation is the symmetry of functional connectivity differences across

the hemispheres in Fig. 3-9(b,d). In particular, if a given functional connection shows

significant differences between the populations, then functional connections involving those

same regions in the opposite hemisphere tend to also be significant. This may arise from

the well-documented symmetry found in resting-state fMRI correlations [90].

In contrast to functional connectivity, the model identifies few significant anatomical

connections, only two of which are consistent between the algorithms. Moreover, the inter-

hemispheric connections in Fig. 3-9(a) do not correspond to direct neural pathways within

the brain. Rather, these connections arise from artifacts in the DWI images as well as from

the behavior of our two-tensor tractography algorithm [71]. In particular, our algorithm

recovers a much richer set of white matter fibers relative to single-tensor methods. However,

this set includes a larger number of false-positive tracts.

The results may also be influenced by our selection of regions. If the regions are too

small, the variability in DWI tractography across subjects makes it difficult to infer the tem-

plate anatomical connectivity and group-level parameters. However, larger regions smooth

out important functional connectivity information. In this work, we rely on regions iden-

tified by Freesurfer. These estimates of Brodmann areas provide anatomically meaningful

correspondences across subjects that roughly correspond to functional divisions within the
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brain. Presently, we select the correlation between mean time courses as a measure of

functional connectivity. However, other statistics can be incorporated as well (for example,

the mode and/or variance of the distribution of voxel-wise correlations as well as fitting to

parameterized distributions). Finally, we emphasize that our framework applies readily to

any set of ROIs that are defined consistently across subjects.

Despite the limited differences in anatomical connectivity, one justification for including

the DWI data is the improved classification. We observe that combining fMRI and DWI

data achieves better generalization accuracy than that of similar models built from one of

these modalities. Additionally, most significant functional connections obtained through

the individual fMRI model are not consistent with those obtained via the joint models.

A second justification for including anatomy is the overlap between the significant func-

tional connections identified by our generative models and the GI-based connections pre-

sented in Appendix A. We observe that seven of the significant joint model connections

in Table 3.3 are among the most robust, predictive functional connections reported in Ta-

ble A.3. In contrast, there is only one consistent connections between the functional model

(Table 3.4) and our feature selection method.

Our experience with the algorithms suggests that that the joint model focuses on the

presence or absence of a white matter tract between two regions (rather than differences in

FA) to determine latent anatomical connectivity. In particular, if several subjects exhibit a

connection, then An is likely to be one; otherwise, it is likely to be zero. This is supported

by results in synthetic data. Given a large difference in the probabilities of not finding a

tract (e.g., ρ0 ≈ 0.65 and ρ1 ≈ 0.1, as estimated from the data), our algorithm correctly

distinguishes latent anatomical connectivity, regardless of FA values. Once the anatomical

connectivity pattern has been determined, the algorithm partitions the functional corre-

lations into two groups. The mean functional correlation increases when there is a latent

anatomical connection, which is reflected in the parameter estimates. The algorithms can

reassign “borderline” connections based on the parameter/posterior estimates. We believe

that this partition of fMRI correlations based on anatomical connectivity stabilizes the es-

timates of latent functional connectivity. This, in turn, allows the joint model to better

explain differences between two populations.

The significant connections in Fig. 3-9 may reveal underlying neurological changes in-

duced by the disease. We observe increased functional connectivity between the pari-

etal/posterior cingulate region and the frontal lobe and reduced functional connectivity

between the parietal/posterior cingulate region and the temporal lobe in the schizophrenia

population. Increased connectivity between the default network and the medial frontal lobe,
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both at rest and during task, has been reported in schizophrenia [37, 104]. It is believed

to interfere with perception of the external world through the misdirecting of attentional

resources. Interestingly, decreased connectivity within the default network has been de-

scribed as well [9,103]. The later study reported decreased functional connectivity between

the posterior cingulate gyrus and the hippocampus, which is consistent with our findings.

The relationship between disruptions in functional connectivity and the integrity of the

fornix has also been suggested. Similar to [103], our results reveal anatomical abnormalities

within the two consistent anatomical connections (between the posterior cingulate and the

hippocampus and between the superior temporal gyrus and the cuneus), which exhibits

reduced anatomical connectivity in schizophrenia. We also observe a relationship between

anatomical and functional connectivity disruptions within the posterior/temporal parts of

the default network. Along with prior findings, our results suggest an inverse relationship

between connectivity in the temporal and frontal parts of the default network. Such “anti-

correlations” have been previously described between the default and task-related networks,

but never within the default network itself.

We recognize the limitations of our joint generative model, especially those related to

its simplicity. For example, we consider only direct anatomical connections between two

regions while ignoring multistage pathways. In reality, there is some interaction between

connections, which can be used to extract anatomical and functional networks within the

brain. We model latent connectivity via discrete random variables, which may marginalize

subtle variations between groups, and we assume that all subject data are drawn from the

same distribution, whereas the strength of fMRI correlations and FA values can vary across

subjects. Finally, the relationship between the modalities is captured through the link from

anatomical connectivity to fMRI correlations.

These choices are deliberate on our part. Since the interaction between resting-state

fMRI correlations and DWI tractography is neither well understood nor well characterized,

we avoid placing strong prior assumptions on the structural-functional relationship. Our

goal at this stage is to model what we observe from the data using a simple, robust frame-

work. Furthermore, given the potentially large amounts of inter-subject variability and

external noise, we intentionally simplify the model to reduce the number of parameters and

avoid over-fitting. We address some of these limitations in the following chapter.
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Chapter 4

Identifying Foci of a Neurological

Disorder

Chapter 3 demonstrated that impairments of a neuropsychiatric disorder can be observed

through aberrations in connectivity. Although our generative models can identify functional

and anatomical connections influenced by the disease, connectivity results are difficult to

interpret and validate. At present, the bulk of our knowledge about the brain is orga-

nized around regions (i.e., functional localization, tissue properties, morphometry) and not

the connections between them. Moreover, it is nearly impossible to design non-invasive

experiments that target a particular connection between two brain regions.

In this chapter we build upon our original framework to pinpoint regions, which we call

foci, whose connectivity patterns are most disrupted by the disorder. Our method effec-

tively translates differences in connectivity between a control and a clinical population into

estimates of the regions associated with the disease. Using a probabilistic setting, we define

a latent (hidden) graph that characterizes the network of abnormal functional connectivity

emanating from the affected brain regions. This generates population differences in the

observed fMRI correlations. We employ the variational EM algorithm to fit the model to

the observed data. Our algorithm jointly infers the regions affected by the disease and the

induced connectivity differences. To the best of our knowledge, ours is the first stochastic

model to relate connectivity information to region labels.

We present two versions of the model. The first variant considers the complete graph

of pairwise functional connections. The second model uses neural anatomy as a substrate

for modeling functional differences. In particular, we rely on Diffusion Weighted Imaging

(DWI) tractography to estimate the underlying white matter fibers in the brain. The

latent anatomical connectivity inferred from these fibers constrains the graph of aberrant

functional connections. Previous work in joint modeling of resting-state fMRI and DWI

data suggests that a direct anatomical connection between two regions predicts a higher

functional correlation [21, 41, 61, 97]; however, multi-stage pathways may explain some of

71
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the functional effects. Since neural communication between brain regions is constrained by

white matter fibers, we hypothesize that the strongest effects of a disorder will occur along

direct anatomical connections. Hence, we model whole-brain functional connectivity but

only use functional abnormalities between anatomically connected regions to identify the

disease foci. The work in this chapter will appear in [95].

The remainder of this chapter is organized as follows. We present our generative model in

Section 4.1 and develop the corresponding inference algorithm in Section 4.2. Section 4.3 de-

scribes the framework used for the empirical validation of our approach. Sections 4.4 and 4.5

report experimental results based on synthetic and clinical data, respectively. Finally, Sec-

tion 4.6 discusses the behavior of our model, its advantages and drawbacks, and future

directions of research.

4.1 Generative Model

We assume that the disorder is characterized by impairments in a small subset of brain

regions, which we designate as foci. The impairments affect neural signaling along pathways

associated with the diseased regions. We use a probabilistic framework to represent the

interaction between regions and the effects of the disease. Once again, latent variables

specify a template organization of the brain, which we cannot directly access. Instead,

we observe noisy measurements of the hidden structure via resting-state fMRI correlations

and DWI tractography. The fMRI and DWI signals are generated stochastically from a

group-wise latent template shared by all subjects.

We first develop the model for functional data. This formulation serves as a founda-

tion for incorporating anatomical connectivity, as presented later in the section. Table 4.1

summarizes our notation in this paper. Many of the variables and probability distributions

presented in this section are identical to our previous formulation in Chapter 3. However,

due to the novelty and complexity of our approach, we opt for a complete description of

the models, which includes necessary repetition.

4.1.1 Functional Model

Fig. 4-1 depicts a network diagram of the brain and the corresponding graphical model for

the functional connectivity data. The nodes in Fig. 4-1(a) denote regions in the brain, and

edges correspond to pairwise functional connections between them. The green nodes/edges

are healthy and the red nodes/edges are diseased.

Based on the region assignments, we define a binary graph T of aberrant functional

connectivity using a simple set of rules: (1) a connection between two diseased regions is
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Table 4.1: Random variables (top) and non-random parameters (bottom) in our graphical
models shown in Figs. 4-1 and Fig. 4-2. The latent variables are discrete; the observed
variables and non-random parameters are continuous.

R Binary vector that indicates the state (healthy/diseased) for each brain region i
Aij Latent anatomical connectivity between regions i and j
Tij Edge 〈i, j〉 in the latent graph of abnormal functional connectivity
Fij Latent functional connectivity between regions i and j (control group)
F̄ij Latent functional connectivity between regions i and j (clinical group)
Bl

ij Observed fMRI correlation between regions i and j in subject l (control group)

B̄m
ij Observed fMRI correlation between regions i and j in subject m (clinical group)

Dl
ij Observed DWI measure between regions i and j in subject l (control group)

D̄m
ij Observed DWI measure between regions i and j in subject m (clinical group)

πr Prior for binary region indicator Ri

πf Prior for multinomial functional connectivity Fij

πa Prior for binary anatomical connectivity Aij

η Probability of a diseased connection between a healthy and diseased node
ǫ Probability of deviating from the latent graph of aberrant functional connectivity

µk Mean fMRI correlations given Fij = k (k = −1, 0, 1)
σ2

k Variance of fMRI correlations given Fij = k (k = −1, 0, 1)
ρt Probability of failing to find a white matter tract given Aij = t (t = 0, 1)
χt Mean DWI value if there is a white matter tract given Aij = t (t = 0, 1)
ξ2
t Variance of DWI values if there is a white matter tract given Aij = t (t = 0, 1)

always abnormal (Tij = 1, solid red lines in Fig. 4-1(a)), (2) a connection between two

healthy regions is always healthy (Tij = 0, solid green lines), and (3) a connection between

a healthy and a diseased region is abnormal with probability η (dashed lines). We use the

latent functional connectivity variables Fij and F̄ij to model the synchrony between two

regions in the control and clinical populations, respectively. Ideally, F̄ij 6= Fij for abnormal

connections and F̄ij = Fij for healthy connections. However, due to noise and intersubject

variability, we assume that the latent templates can deviate from the graph T with (small)

probability ǫ, which we estimate from the data.

The observed fMRI correlations Bl
ij provide noisy information about the latent network.

Disease Foci Let N be the total number of regions in the brain. The random variable

R = [R1, . . . , RN ] is a binary vector that indicates the state, healthy (Ri = 0) or diseased

(Ri = 1), for each brain region (i = 1, . . . , N). We assume an i.i.d. Bernoulli prior for the

elements of R:

P (Ri; π
r) = (πr)Ri(1 − πr)1−Ri , (4.1)
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(a) Network Model of Brain Connectivity (b) Graphical Model

Figure 4-1: (a) A network model of connectivity for the functional data. The nodes corre-
spond to regions in the brain, and the lines denote pairwise functional connections between
them. Only a subset of edges is shown; the model is defined on the full graph of pairwise
connections. The green nodes and edges are normal. The red nodes are foci of the disease;
red edges specify pathways of abnormal functional connectivity. The solid lines are deter-
ministic given the region labels; the dashed lines are probabilistic. (b) The corresponding
graphical model. Vector R specifies diseased regions. Fij denotes the latent functional
connectivity between regions i and j. Bl

ij is the observed fMRI measurements in the lth

subject. Variables associated with the diseased population are identified by an overbar.

where the scalar parameter πr specifies the a priori probability that a region is diseased.

The prior is shared by all nodes in the network.

Graph of Abnormal Connectivity The binary graph T represents the abnormal func-

tional connectivity emanating from the disease foci. Each edge Tij is generated indepen-

dently given the labels of regions i and j:

P (Tij |Ri, Rj ; η) =























δT (Tij), Ri = Rj = 0,

1 − δT (Tij), Ri = Rj = 1,

ηTij (1 − η)1−Tij , Ri 6= Rj ,

(4.2)

where δT (·) is an indicator function that equals to one if and only if its argument is zero,
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and η is the scalar parameter that represents the probability of a connection between a

healthy and a diseased region being altered.

Latent Functional Connectivity Using Eq. 3.2 we model the latent functional connec-

tivity Fij of the control population as a tri-state random variable drawn from a multinomial

distribution with parameter πf :

P (Fij ; π
f ) =

1
∏

k=−1

(

πf
k

)Fijk

. (4.3)

Once again, these states represent little or no functional co-activation (Fij = 0), positive

functional synchrony (Fij = 1), and negative functional synchrony (Fij = −1).

The latent functional connectivity F̄ij of the clinical population is also tri-state and

is based on Fij and the graph Tij . If the edge 〈i, j〉 is healthy (Tij = 0), the functional

connectivity of the clinical population is equal to that of the control population with prob-

ability 1 − ǫ, and it differs with probability ǫ. Conversely, if the edge 〈i, j〉 is diseased

(Tij = 1), then the functional connectivity of the clinical population differs from the control

population with probability 1 − ǫ, and it is equal with probability ǫ. Formally,

P (F̄ij |Fij , Tij ; ǫ) =

[

(1 − ǫ)FT

ij F̄ij

( ǫ

2

)1−FT

ij F̄ij

]1−Tij
[

ǫFT

ij F̄ij

(

1 − ǫ

2

)1−FT

ij F̄ij

]Tij

. (4.4)

fMRI Likelihood Let L be the number of subjects in the control population and M

be the number of subjects in the clinical population. The BOLD fMRI correlation Bl
ij

between regions i and j in the lth subject of the control population is a noisy observation of

the functional connectivity indicator Fij . In particular, Bl
ij is a Gaussian random variable

whose mean and variance depend on the value of Fij :

P (Bl
ij |Fij ; {µ, σ2}) =

1
∏

k=−1

N
(

Bl
ij ; µk, σ

2
k

)Fijk

, (4.5)

where N (· ; µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2. We fix

µ0 = 0 to center the parameter estimates. This acts as a type of regularization for the

model. Without this constraint, the ML data distributions overlap significantly, which

makes it difficult to infer latent functional connectivity. The likelihood for the clinical

population B̄m
ij has the same functional form and parameter values as Eq. (4.5) but uses

the clinical template F̄ij instead of the control template Fij .
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(a) Network Model of Brain Connectivity (b) Graphical Model

Figure 4-2: (a) A network model of connectivity. The nodes correspond to regions in the
brain, and the lines denote anatomical connections between them. The green nodes and
edges are normal. The red nodes are foci of the disease; red edges specify pathways of
abnormal functional connectivity. The solid lines are deterministic given the region labels;
the dashed lines are probabilistic. (b) Corresponding graphical model. Vector R specifies
diseased regions. Aij represents the latent anatomical connectivity between regions i and j.
Fij denotes the corresponding latent functional connectivity. Dl

ij and Bl
ij are the observed

DWI and fMRI measurements, respectively, in the lth subject. Variables associated with
the diseased population are identified by an overbar.

4.1.2 Multi-modal Analysis

Since functional communication in the brain is constrained by neural axons, our second

model assumes that the salient effects of a disorder will occur along anatomical pathways.

This extension is illustrated in Fig. 4-2. The edges in Fig. 4-2(a) correspond to neural

connections, which are captured by latent anatomical connectivity Aij . Specifically, the

presence or absence of an edge 〈i, j〉 in the network is governed by the binary value of Aij .

The anatomical network structure is shared between the control and clinical populations.

The regions in this work correspond to (large) Brodmann areas. Our results in Chapter 3

suggest that the anatomical differences between schizophrenia patients and normal controls

are very small in this case. Once again, the observed DWI measurements Dl
ij and fMRI

correlations Bl
ij provide noisy information about the latent network structure.
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Latent Anatomical Connectivity Once again, the latent anatomical connectivity vari-

able Aij indicates the presence or absence of a direct anatomical pathway between regions

i and j. We model Aij as a binary random variable according to Eq. (3.1):

P (Aij ; π
a) = (πa)Aij (1 − πa)1−Aij . (4.6)

where πa is the a priori probability that a connection is present.

Graph of Abnormal Connectivity The binary graph T of aberrant functional connec-

tivity is now defined along latent anatomical pathways. Therefore, we modify the rules from

Section 4.1.1 and generate the edge Tij between regions i and j as follows:

P (Tij |Ri, Rj ; η) =







































δT (Tij), Aij = 0,

δT (Tij), Aij = 1, Ri = Rj = 0,

1 − δT (Tij), Aij = 1, Ri = Rj = 1,

ηTij (1 − η)1−Tij , Aij = 1, Ri 6= Rj ,

(4.7)

In particular, the first condition in Eq. (4.7) states that Tij = 0 when the corresponding

anatomical connection is absent.

Functional Connectivity of the Clinical Population We adapt the distribution for

the latent functional connectivity F̄ij in Eq. (4.4) to reflect the anatomical constraint:

P (F̄ij |Fij , Tij , Aij ; ǫ) =





[

(1 − ǫ)FT

ij F̄ij

( ǫ

2

)1−FT

ij F̄ij

]1−Tij
[

ǫFT

ij F̄ij

(

1 − ǫ

2

)1−FT

ij F̄ij

]Tij




Aij

(

1
∏

k=−1

(

πf
k

)F̄ijk

)1−Aij

. (4.8)

If there is a latent anatomical connection between regions i and j (Aij = 1), then F̄ij is

generated according to Eq. (4.4). If there is no anatomical connection (Aij = 0), then the

final term of Eq. (4.8) implies that F̄ij is drawn from the prior πf , irrespective of Fij .

DWI Likelihood Using Eq. (3.3), the DWI measurement Dl
ij for the lth subject in the

control population is a noisy observation of the anatomical connectivity Aij :

P (Dl
ij |Aij ; {ρ, χ, ξ2}) = P0(D

l
ij ; {ρ, χ, ξ2})1−Aij · P1(D

l
ij ; {ρ, χ, ξ2})Aij , (4.9)
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where Pt(Dij) = ρtδ(Dij) + (1 − ρt)N (Dij ; χt, ξ
2
t ) for t = 0, 1, and δ(·) is the Dirac delta

function. The data D̄m
ij of the clinical population follows the same likelihood.

We do not modify the fMRI likelihood to reflect latent anatomical connectivity, as in

Eq. (3.4). Rather, we assume that both the interaction between anatomy and function and

the effects of a disorder occur within the latent structure.

4.2 Variational Inference

Since we are primarily interested in the region labels R, we opt to marginalize out the graph

structure T . This simplifies the relationship between R and the observed data.

The only term which is affected by the marginalization is the conditional distribution

of the clinical template F̄ij , which now depends on the values of Ri and Rj . Specifically,

we have

P (F̄ij |Fij , Ri, Rj ; η, ǫ) =























(1 − ǫ)FT

ij F̄ij
(

ǫ
2

)1−FT

ij F̄ij , Ri = Rj = 0,

ǫFT

ij F̄ij
(

1−ǫ
2

)1−FT

ij F̄ij , Ri = Rj = 1,

ǫ
FT

ij F̄ij

1

(

1−ǫ1
2

)1−FT

ij F̄ij , Ri 6= Rj ,

(4.10)

for the functional model and

P (F̄ij |Fij , Ri, Rj , Aij ; η, ǫ) =







































(1 − ǫ)FT

ij F̄ij
(

ǫ
2

)1−FT

ij F̄ij , Aij = 1, Ri = Rj = 0,

ǫFT

ij F̄ij
(

1−ǫ
2

)1−FT

ij F̄ij , Aij = 1, Ri = Rj = 1,

ǫ
FT

ij F̄ij

1

(

1−ǫ1
2

)1−FT

ij F̄ij , Aij = 1, Ri 6= Rj ,

∏1
k=−1

(

πf
)F̄ijk , Aij = 0.

(4.11)

for the joint model, where ǫ1 = ηǫ + (1 − η)(1 − ǫ). It is easy to see that ǫ1 reflects the

coupling between the graph prior η and latent noise variable ǫ when the region labels differ.

We employ a maximum likelihood (ML) framework to fit the model to the data. Unlike

our previous formulation in Chapter 3, the region variable R induces a complex coupling

between pairwise connections forcing us to adopt a variational approximation [57] for the

posterior probability distribution when deriving the EM algorithm for parameter estimation.
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4.2.1 Functional Model

Let Y = {B, B̄} and Θ = {π, η, ǫ, µ, σ2} denote the observed fMRI measurements and the

set of model parameters, respectively. Our variational posterior assumes the following form:

Q(R, F, F̄ ) = Qr(R) · Qc(F, F̄ ) = Qr(R)
∏

<i,j>

Qc
ij(Fij , F̄ij), (4.12)

where Qr(·) is a distribution over the length-N binary vector R and Qc
ij(·) is an 9-state

multinomial distribution corresponding to all configurations of latent functional connectiv-

ity. This factorization yields a tractable inference algorithm while preserving the depen-

dency between Fij , and F̄ij given the region indicator vector R.

We use a variational EM formulation [23] to obtain the posterior distribution Q(·) and

model parameters Θ which minimize the variational free energy

FE = −EQ

[

log P (R, F, F̄ , Y ; Θ)
]

−H(Q), (4.13)

where the joint log-likelihood of all hidden and observed variables is obtained by combining

the prior and likelihood distributions from Section 4.1.1 with Eq. (4.10):

log P (R,F, F̄ , Y ; Θ) = log(πr)
N
∑

i=1

Ri + log(1 − πr)
N
∑

i=1

(1 − Ri) +
∑

〈i,j〉

1
∑

k=−1

Fijk log
(

πf
k

)

+
∑

〈i,j〉

(1 − Ri)(1 − Rj)
(

FT
ij F̄ij log(1 − ǫ) + (1 − FT

ij F̄ij) log
( ǫ

2

))

+
∑

〈i,j〉

(RiRj)

(

FT
ij F̄ij log(ǫ) + (1 − FT

ij F̄ij) log

(

1 − ǫ

2

))

+
∑

〈i,j〉

(Ri(1 − Rj) + (1 − Ri)Rj)

(

FT
ij F̄ij log(ǫ1) + (1 − FT

ij F̄ij) log

(

1 − ǫ1
2

))

+
∑

〈i,j〉

1
∑

k=−1

[

Fijk

L
∑

l=1

logN
(

Bl
ij ; µk, σ

2
k

)

+ F̄ijk

M
∑

m=1

logN
(

B̄m
ij ; µk, σ

2
k

)

]

. (4.14)

E-Step: For a fixed setting of model parameters Θ̂, the free energy in Eq. (4.13) can be

expanded as follows:

FE = −
∑

R

Qr(R)
∑

F,F̄

log P (R, F, F̄ , Y ; Θ̂) +
∑

R

Qr(R) log Qr(R) −H(Qc)
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=
∑

R

Qr(R)
[

−EQc

[

log P (R, F, F̄ , Y ; Θ̂)
]

+ log Qr(R)
]

−H(Qc). (4.15)

We define the (normalized) probability distribution P̃ (R; Θ) as

P̃ (R; Θ̂) ∝ exp
{

EQ̂c

[

log P (R, F, F̄ , Y ; Θ̂)
]}

. (4.16)

By substituting Eq. (4.16) into Eq. (4.15), it is trivial to show that

FE = KL
(

Qr(R)||P̃ (R; Θ̂)
)

+ const., (4.17)

where KL(p||q) is the the Kullback-Leibler (KL) divergence from the distribution p(·) to

the distribution q(·), and the additional constants do not depend on R.

Using a similar expansion, we can also show that

FE = KL
(

Qc(F, F̄ )||P̃ (F, F̄ ; Θ̂)
)

+ const., (4.18)

where P̃ (F, F̄ ; Θ̂) ∝ exp
{

EQ̂r

[

log P (R, F, F̄ , Y ; Θ̂)
]}

Since the KL divergence is non-negative, Eqs. (4.17-4.18) give us the following fixed-

point equations for the variational posterior Q̂(·):

Q̂c(F, F̄ ) = P̃ (F, F̄ ; Θ̂) ∝ exp
{

EQ̂r

[

log P (R, F, F̄ , Y ; Θ̂)
]}

, (4.19)

Q̂r(R) = P̃ (R; Θ̂) ∝ exp
{

EQ̂c

[

log P (R, F, F̄ , Y ; Θ̂)
]}

. (4.20)

We alternatively update Q̂r(R) and Q̂c(F, F̄ ), according to the above expressions, until

convergence. Specifically, we employ Gibbs sampling to obtain samples S = {Rs} from

Q̂r(R). Based on the joint log-likelihood in Eq. (4.14), the right-hand side of Eq. (4.19) can

be expressed in terms of

q̂00
ij , EQ̂r [(1 − Ri)(1 − Rj)], (4.21)

q̂11
ij , EQ̂r [RiRj ], (4.22)

q̂10
ij , EQ̂r [Ri(1 − Rj) + (1 − Ri)Rj ]. (4.23)

We approximate these quantities using averages of Ri and RiRj over the elements of S.

To update Q̂c(·), we evaluate the right-hand side of Eq. (4.19) for each configuration

Fij = k, F̄ij = k′ (k, k′ ∈ {−1, 0, 1}) and normalize over all nine combinations of k, k′ to
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obtain a valid probability distribution.

According to the joint log-likelihood in Eq. (4.14), the right-hand side of Eq. (4.20) is

given in terms of EQ̂c [F
T
ij F̄ij ]. Since Fij and F̄ij are indicator variables, this quantity can

be evaluated as

p̂ij , EQ̂c [F
T
ij F̄ij ] =

1
∑

k=−1

Q̂c
ij(Fij = k, F̄ij = k). (4.24)

Similar to Section 3.2 the model parameter estimates Θ̂ rely on marginal probabilities

of Q̂c(F, F̄ ). We compute these quantities after convergence of the variational posterior

distribution Q̂(·):

ŝijk = P̂ (Fij = k|Y ; Θ) =
∑

F̄ij

Q̂c
ij(Fijk = 1, F̄ij), (4.25)

ûijk = P̂ (F̄ij = k|Y ; Θ) =
∑

Fij

Q̂c
ij(Fij , F̄ijk = 1). (4.26)

M-Step: We fix the posterior probability estimates Q̂(R, F, F̄ ) and update the model

parameter estimates Θ̂ by differentiating Eq. (4.13) with respect to each element of Θ and

setting the gradient equal to zero.

The update for πr involves averaging the proportion of diseased regions across Gibbs

samples:

π̂r =
1

NS

N
∑

i=1

S
∑

s=1

Rs
i . (4.27)

The multinomial prior reduces to an average over the marginal posterior distribution:

π̂f
k =

1

C

∑

〈i,j〉

ŝijk, (4.28)

where C is the total number of pairwise connections. The fMRI likelihood parameter

estimates are computed as weighted statistics of the data:

µk =











P

〈i,j〉[ŝijk

P

l Bl
ij+ûijk

P

m B̄m
ij ]

P

〈i,j〉[L·ŝijk+M ·ûijk]
, k = ±1,

0, k = 0,
(4.29)

σ2
k =

∑

〈i,j〉

[

ŝijk
∑

l(B
l
ij − µ̂k)

2 + ûijk
∑

m(B̄m
ij − µ̂k)

2
]

∑

〈i,j〉 [L · ŝijk + M · ûijk]
, (4.30)
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where we have fixed µ0 = 0 for the component that represents zero functional synchrony to

center the parameter estimates and regularize the model.

The parameters η and ǫ are tied through Eq. (4.4). We use Newton’s method to jointly

update η and ǫ. The only term of the free energy objective that depends on either η or ǫ is

EQ̂

[

log P (F̄ |F, R; Θ̂)
]

=
∑

〈i,j〉

[

q̂00
ij

(

p̂ij log(1 − ǫ) + (1 − p̂ij) log
( ǫ

2

))

+ q̂11
ij

(

p̂ij log(ǫ) + (1 − p̂ij) log

(

1 − ǫ

2

))

+ q̂10
ij

(

p̂ij log(ǫ1) + (1 − p̂ij) log

(

1 − ǫ1
2

))]

,

(4.31)

where we have substituted the definitions from Eqs. (4.21-4.24) into the expression. The

Newton’s method update for η, ǫ is based on the following iteration:





ǫ̂n+1

η̂n+1



 =





ǫ̂n

η̂n



−





∂2FE
∂ǫ2

∂2FE
∂ǫ∂η

∂2FE
∂ǫ∂η

∂2FE
∂η2





−1 



∂FE
∂ǫ

∂FE
∂η





∣

∣

∣

∣

∣

∣

(ǫ,η)=(ǫ̂n,η̂n)

(4.32)

The first and second derivatives of Eq. (4.31) with respect to η, ǫ are

∂FE

∂ǫ
=

1

ǫ

∑

〈i,j〉

[

q̂11
ij · p̂ij + q̂00

ij (1 − p̂ij)
]

−
1

1 − ǫ

∑

〈i,j〉

[

q̂11
ij · p̂ij + q̂00

ij · (1 − p̂ij)
]

+
2η − 1

ǫ1

∑

〈i,j〉

q̂10
ij · p̂ij −

2η − 1

1 − ǫ1

∑

〈i,j〉

q̂10
ij (1 − p̂ij),

∂FE

∂η
=

2ǫ − 1

ǫ1

∑

〈i,j〉

q̂10
ij · p̂ij −

2ǫ − 1

1 − ǫ1

∑

〈i,j〈

q̂10
ij (1 − p̂ij),

∂2FE

∂ǫ2
= −

1

ǫ2

∑

〈i,j〉

[

q̂11
ij · p̂ij + q̂00

ij (1 − p̂ij)
]

−
1

(1 − ǫ)2

∑

〈i,j〉

[

q̂11
ij · p̂ij + q̂00

ij (1 − p̂ij)
]

−

(

2η − 1

ǫ1

)2
∑

〈i,j〉

q̂10
ij · p̂ij −

(

2η − 1

1 − ǫ1

)2
∑

〈i,j〉

q̂10
ij (1 − p̂ij),

∂2FE

∂η2
= −

(

2ǫ − 1

ǫ1

)2
∑

〈i,j〉

q̂10
ij · p̂ij −

(

2ǫ − 1

1 − ǫ1

)2
∑

〈i,j〉

q̂10
ij (1 − p̂ij),

∂2FE

∂η∂ǫ
=

1

ǫ21

∑

〈i,j〉

q̂10
ij · p̂ij −

1

(1 − ǫ1)2

∑

〈i,j〉

q̂10
ij (1 − p̂ij).
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4.2.2 Joint Model

The variational EM algorithm can be easily extended to incorporate anatomical connectiv-

ity. Below, we let Y = {B, B̄, D, D̄} denote the observed fMRI and DWI measurements,

respectively, and we let Θ = {π, η, ǫ, µ, σ2, ρ, χ, ξ2} be the set of model parameters. Since

Aij is binary and Fij and F̄ij are tri-state, the variational posterior is

Q(R, A, F, F̄ ) = Qr(R) · Qc(A, F, F̄ ) = Qr(R)
∏

<i,j>

Qc
ij(Aij , Fij , F̄ij), (4.33)

where Qr(·) is a distribution over the length-N binary vector R and Qc
ij(·) is an 18-state

multinomial distribution corresponding to all configurations of latent anatomical and func-

tional connectivity.

E-Step: For a fixed setting of model parameters Θ̂, we alternatively update Q̂r(R) and

Q̂c(A, F, F̄ ) according to the following expressions:

Q̂r(R) ∝ exp
{

EQ̂c

[

log P (R, A, F, F̄ , Y ; Θ)
]

}

, (4.34)

Q̂c(A, F, F̄ ) ∝ exp
{

EQ̂r

[

log P (R, A, F, F̄ , Y ; Θ)
]

}

. (4.35)

Once again, we use Gibbs sampling to obtain samples S = {Rs} from Eq. (4.34) and then

evaluate Q̂c(A, F, F̄ ) using averages of Ri and RiRj over the elements of S. We update Q̂c(·)

by evaluating the right-hand side of Eq. (4.35) for all 18 configurations of {Aij , Fij , F̄ij} and

normalizing. Q̂r(R) is given in terms of EQ̂c [Aij · FT
ij F̄ij ] and EQ̂c [Aij(1 − FT

ij F̄ij)], which

are evaluated similar to Eq. (4.24).

M-Step: As in the preceding section, we define the marginal posterior probability for

latent anatomical connectivity

âij =
∑

Fij ,F̄ij

Qij
V (Aij = 1, Fij , F̄ij).

Additionally, we let L0
ij be the number of control subjects for whom Dl

ij = 0 and M0
ij be

the number of schizophrenia patients for whom D̄m
ij = 0.

The updates for π̂r and the fMRI likelihood parameters remain unchanged. The prior

estimate for π̂a is an intuitive average of marginal probabilities:
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π̂a =
1

C

∑

〈i,j〉

âij , (4.36)

where C is the total number of pairwise connections.

The prior πf interacts with A, F and F̄ due to Eqs. (4.3) and (4.8). Minimizing the

free energy with respect to πf
k results in the following update equation:

π̂f
k =

∑

〈i,j〉

[

ŝijk +
∑

Fij
Q̂c

ij(Aij = 0, Fij , F̄ij = k)
]

C +
∑

〈i,j〉

∑

Fij
Q̂c

ij(Aij = 0, Fij , F̄ij = k)
. (4.37)

The probability ρ̂1 is the empirical likelihood of not finding a white matter tract between

two regions given an underlying anatomical connection

ρ̂1 =

∑

〈i,j〉 âij(L
0
ij + M0

ij)
∑

〈i,j〉 âij(L + M)
. (4.38)

The Gaussian likelihood parameters for the DWI measurements are given by the weighted

empirical mean and empirical variance over all nonzero values

χ̂1 =

∑

〈i,j〉 âij

(

∑

l:Dl
ij>0 Dl

ij +
∑

m:D̄m
ij >0 D̄m

ij

)

∑

〈i,j〉 âij(L − L0
ij + M − M0

ij)
, (4.39)

ξ̂2
1 =

∑

〈i,j〉 âij

(

∑

l:Dl
ij>0(D

l
ij − χ̂1)

2 +
∑

m:D̄m
ij >0(D̄

m
ij − χ̂1)

2
)

∑

〈i,j〉 âij(L − L0
ij + M − M0

ij)
. (4.40)

Once again, the parameter updates for {ρ0, χ0, ξ
2
0} are trivially obtained from these expres-

sions by replacing âij with (1 − âij).

Similar to the previous algorithm, we update η̂ and ǫ̂ using a Newton’s method itera-

tion. We omit the expressions for the first and second derivatives, as they do not provide

additional insight into the algorithm.

4.2.3 Implementation Details

In this section we describe the optimization choices in our implementation of the variational

EM algorithm.

Initialization

Like many hill-climbing methods, the quality of our results depends on proper initializa-

tion. For the variational algorithm, it suffices to initialize the model parameters Θ =
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{π, η, ǫ, µ, σ2, ρ, χ, ξ2} and the marginal posterior statistics for R, EQ̂r [Ri] and EQ̂r [RiRj ].

The algorithm proceeds by computing the joint posterior distribution Q̂c(·) in the E-step

and alternatively updates Q̂r(R) and Q̂c(·) until convergence. We then estimate the model

parameters in the M-step and iterate.

We initialize the prior parameters πa, πf , the probability of not detecting white matter

fibers ρ, and the Gaussian variances σ2, ξ2 using statistics of the data. We also set the

initial value of the latent noise parameter ǫ = 0.01, which encourages consistency between

the region labels and the observed connectivity data. Perturbations in these values do not

seem to impact our final solution. We uniformly sample the initial values for the Bernoulli

region prior πr and for the graph parameter η from the interval [0.2, 0.5]. Larger values of

πr and η encourage the algorithm to select more foci during the first iteration.

The initial values of the Gaussian means {µ, χ} largely determine the initial latent

connectivity assignments; hence, they have the biggest influence on the final solution. Em-

pirically, our model prefers sparse solutions for the region label vector R. If the initial

connectivity data is too similar between the populations, then the algorithm will converge

to a sub-optimal solution (with respect to the free energy) in which none of the regions are

diseased. Therefore, we initialize {µ, χ} to exaggerate the relevant functional connectivity

differences. In particular, we uniformly sample each of these values from a specific interval

such that: (1) the initial distribution of latent functional connectivity is roughly uniform,

and (2) the initial graph of latent anatomical connectivity is fairly dense. These choices

improve our chances of finding the global optimum. We emphasize that our initialization

is still fairly näıve and that we do not place strong a priori assumptions on the model.

Rather, we inject just enough flexibility to allow the algorithm to efficiently traverse the

parameter space.

Finally, we initialize the posterior statistics by computing the mean fMRI correlation

across subjects and clustering these values for each connection. We select regions with the

highest number of connections with different cluster assignments between the two popula-

tions as the set of disease foci. We uniformly sample EQ̂r [Ri] ∈ [0.8, 1] for each selected

focus region and EQ̂r [Ri] ∈ [0, 0.2] for non-foci. The pairwise statistics are computed as

EQ̂r [RiRj ] = EQ̂r [Ri] · EQ̂r [Rj ].

Empirically, we find that the final region posterior distribution is fairly stable within

the above parameter ranges. We run the algorithm five times for the functional model and

ten times for the joint model to sample the solution space; we then select the solution with

the lowest free energy.
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Gibbs Sampling

In the E-step, we Gibbs sample the region indicator vector R from the posterior distribu-

tion Q̂r(R). Specifically, for each region i, we sample the value Ri ∈ {0, 1} while fixing

the other region assignments. The regions are updated in random order. To speed up

computation, we run Gibbs sampling simultaneously on four processors and combine the

resulting samples. In each case, the first 500 iterations are used for burn-in; we collect 50

samples spaced 100 iterations apart. Here, one iteration refers to updating all elements of

the vector R.

Convergence and Runtime

Convergence of our algorithms was based on a relative change in free energy of less than

10−4 between consecutive iterations. On average, both algorithms converge in less than 10

iterations (E-step/M-step updates). The algorithms are slow due to the Gibbs sampling

procedure. The approximate runtime is 30 minutes for a single initialization using the func-

tional model and 15 minutes for a single initialization using the joint model. However, this

can be greatly improved using more parallel computation. All simulations were performed

using MATLAB on a modern quad processor workstation.

4.3 Model Evaluation

4.3.1 Identifying Disease Foci

The marginal posterior distribution Q̂r(R) informs us about the disease foci. Let q̂i denote

the marginal probability that region i is diseased. We estimate this quantity by averaging

across Gibbs samples S:

q̂i , Q̂r(Ri = 1) =
1

S

S
∑

s=1

Rs
i . (4.41)

The joint distributions in our method are non-Gaussian due to multiplicative interactions

between latent variables and the effects of unknown nonrandom parameters. Therefore,

we evaluate the significance of our model through non-parametric permutation tests. To

construct the null distribution for q̂i, we randomly permute the subject diagnoses (NC vs.

SZ) 1,000 times. For each permutation, we fit the model and compute the statistic in

Eq. (4.41). The significance of each region is equal to the proportion of permutations that

yield a larger value of q̂i than is obtained under the true labeling.
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4.3.2 Graph of Abnormal Connectivity

The graph of connectivity differences T in Section 4.1 provides insight into the behavior of

individual connections. Although we marginalize this random variable prior to inference,

we can retroactively estimate T based on the maximum a posteriori (MAP) estimate of

each Ri and the ML parameter estimates.

Given R, our models decouple by pairwise connection, so we can independently assign

each Tij . Recall that Tij = 0 indicates a healthy edge and Tij = 1 denotes a diseased con-

nection. Based on our construction in Section 4.1, many of the values Tij are deterministic.

For example, Eq. (4.2) of the functional model implies that Tij = 0 if Ri = Rj = 0 and

Tij = 1 if Ri = Rj = 1. For connections 〈i, j〉 such that Ri 6= Rj , we select the value

Tij ∈ {0, 1} which optimizes:

T̂ij = arg max
Tij

EQ̂c

[

log P (Tij |Fij , F̄ij , R̂; Θ̂)
]

= arg max
Tij

EQ̂c

[

log P (Tij , Fij , F̄ij |R̂; Θ̂)
]

Eq. (4.2) further specifies that if the region labels differ, the prior on Tij is Bernoulli

with parameter η. Additionally, if Tij = 0 (the edge 〈i, j〉 is healthy), then the functional

connectivity is the same in both populations with probability 1 − ǫ, and it differs with

probability ǫ. Likewise, if Tij = 1, then the functional connectivity differs between the

populations with probability 1− ǫ and is the same with probability ǫ. After some algebraic

manipulations we arrive at the decision rule for the functional model

log(η̂)+ p̂ij log(ǫ̂)+(1− p̂ij) log

(

1 − ǫ̂

2

)

Tij=0

≷
Tij=1

log(1− η̂)+ p̂ij log(1− ǫ̂)+(1− p̂ij) log

(

ǫ̂

2

)

, (4.42)

where p̂ij is defined in Eq. (4.24) and η̂, ǫ̂ are estimated via Eq. (4.32).

The joint decision rule is similarly derived by incorporating the anatomical constraints

in Eq. (4.7) and Eq. (4.8).

4.3.3 Varying the Region Prior π
r

Although our framework enables us to estimate all unknown parameters, we further explore

the solution space by specifying the expected number of diseased regions via the prior πr. In

particular, the evolution of disease foci across a range of prior πr (in this work πr ∈ [0, 0.5])

illustrates the stability of our model in explaining the data. Moreover, tuning πr is an

intuitive way to inject clinical knowledge into our framework and may be useful in certain

applications. Fixing πr does not affect the update equations in Section 4.2.
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Table 4.2: Likelihood parameterizations used to generate synthetic data.

µ−1 µ0 µ1 σ2
−1 σ2

0 σ2
1

Good Data -0.35 0 0.35 0.05 0.05 0.05
Noisy Data -0.18 0 0.36 0.050 0.058 0.072

ρ0 ρ1 χ0 χ1 ξ2
0 ξ2

1

Good Data 0.7 0.10 0.45 0.35 0.005 0.005
Noisy Data 0.67 0.10 0.41 0.34 0.005 0.0026

4.4 Experimental Results - Synthetic Data

We first evaluate the robustness and sensitivity of our algorithms using synthetic data. Our

primary focus is the effect of the parameters η and ǫ on identifying the disease foci. We

expect the performance to improve with increasing η and worsen with increasing ǫ. This is

because higher values of η raise the number of functional connectivity differences associated

with each disease foci. Consequently, the algorithms can better detect these regions. In

contrast, larger values of ǫ increase the number of functional differences involving healthy

regions, which negatively impacts the final solution.

We sweep the parameter values across the ranges η ∈ [0.1, 0.5] and ǫ ∈ [0, 0.05]; for each

(η, ǫ) pair, we generate the latent connectivity templates and observed data according to

Figs. 4-1(b) and 4-2(b). We fit the data using the algorithms presented in Section 4.2 and

compute the false-negative (Type I) and false-positive (Type II) errors based on the MAP

estimate R̂i ∈ {0, 1} for each region i.

We mimic the organization of our clinical dataset by specifying a template with 78

regions (39 per hemisphere) and with two disease foci in each hemisphere. Throughout this

section, we fix the functional prior πf to the value inferred from the clinical experiments. We

also sample the latent anatomical connectivity A such that the intra- and inter-hemisphere

statistics match those of our clinical data.

We consider two likelihood parameterizations for {µ, σs, ρ, χ, ξ2}, as shown in Table 4.2.

The Good Data parameterization assumes a clear separation between the data distributions

for different latent connectivity values. In this case, we can accurately infer the connec-

tivity templates {A, F, F̄}, which are then used for the region assignments R. The Noisy

Data parameterization uses the ML parameter estimates Θ̂ from the clinical experiments to

generate the observed synthetic measurements. In this case, there is a significant overlap

in the data distributions; hence, we observe the effects of noise on the latent connectivity

and region assignments.
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(c) Noisy Data, Missed Disease Foci
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(d) Noisy Data, False Positive Region Assignments

Figure 4-3: Average number of mis-labeled region assignments when sampling from the
functional model. The solid lines correspond to fitting the functional model, and the dashed
lines represent the joint model results. The error bars denote one standard deviation. Type
I error corresponds to the number of disease foci that were missed by our algorithm. Type
II error denotes the number of healthy regions that were incorrectly identified as diseased.

4.4.1 Sampling from the Functional Model

Given the region labels R, we sample the graph structure T , the latent functional templates

F, F̄ and the observed fMRI correlations {B, B̄} according to Eqs. (4.2-4.5). In order to fit

the joint model, we independently generate the latent anatomical connectivity A and the

observed DWI measures {D, D̄} via Eq. (4.6) and Eq. (4.9), respectively. We re-sample the

latent connectivity templates and observed data 10 times to collect error statistics.
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Fig. 4-3 depicts the error in determining the region labels across 10 samples of the latent

connectivity templates and corresponding observed data. Unsurprisingly, the functional

model achieves uniformly lower Type I and Type II error. This is because the functional

model exploits all pairwise connectivity information when determining the region labels,

whereas the joint model must rely on a random subset of connections, specified by A.

Nonetheless, the detection accuracy of the joint model improves significantly for larger

values of η. The parameter η controls the density of non-zero edges in the variable T .

Hence, as η increases, we are more likely to observe functional connectivity differences

along the randomly generated anatomical template A.

The parameter ǫ influences the rate of false-positive assignments, particularly for the

joint model. Intuitively, higher values of ǫ produce a greater number of (spurious) functional

connectivity differences involving healthy regions. Therefore, the algorithm is more likely

to incorrectly label one of these regions as diseased.

Despite the large variability in Type II error in Fig. 4-3(b,d), on average less than two

out of 74 healthy regions are labeled as disease foci. This behavior suggests an implicit

regularization in our framework. Specifically, labeling a region as diseased benefits the free

energy optimization by permitting the associated functional connections to differ between

groups. However, connections to all other foci are automatically diseased, which may in-

crease the free energy. Our algorithm balances these competing influences by identifying a

sparse set of disease foci.

Finally, we observe that the error rates are similar for both the Good Data and the

Noisy Data likelihood parameterizations. This indicates that errors in region assignments

are primarily due to functional differences that are inconsistent with the underlying disease

foci rather than to noisy data observations.

4.4.2 Sampling from the Joint Model

We now evaluate the model in a situation when the functional effects of a disease are

restricted to direct anatomical pathways. Given the region labels R, we generate the control

template F , the latent anatomical connectivity A and the graph structure T according to

Fig. 4-2(b). However, we modify the construction of the clinical template F̄ . Since the

joint model does not impose any correspondence between the values Fij and F̄ij in the

absence of an anatomical connection, the latent templates differ dramatically when Aij = 0.

The functional model assumes all connections are equally important. Consequently, it

cannot detect the true disease foci amid the overwhelming number of unrelated connectivity
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(c) Noisy Data, Missed Disease Foci
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(d) Noisy Data, False Positive Region Assignments

Figure 4-4: Average number of mis-labeled region assignments when sampling from the joint
model. The solid lines are obtained when fitting the functional model, and the dashed lines
correspond to the joint model results. The error bars denote one standard deviation. Type
I error corresponds to the number of disease foci that were missed by our algorithm. Type
II error denotes the number of healthy regions that were incorrectly identified as diseased.

differences. For this reason, we sample F̄ using Eq. (4.4), repeated below for convenience:

P (F̄ij |Fij , Tij ; ǫ) =

[

(1 − ǫ)FT

ij F̄ij

( ǫ

2

)1−FT

ij F̄ij

](1−Tij)
[

ǫFT

ij F̄ij

(

1 − ǫ

2

)1−FT

ij F̄ij

]Tij

. (4.43)

Since Tij = 0 if Aij = 0, we omit the multinomial prior when there is no underlying

anatomical connection. Instead, we encourage the latent functional connectivity templates

to be the same in the control and clinical populations. Although not fully consistent with the
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joint model, Eq. (4.43) allows us to fit the functional model with some degree of accuracy.

The observed data {B, B̄, D, D̄} is generated according to Eq. (4.5) and Eq. (4.9). We

repeat the experiment 10 times to collect error statistics.

Fig. 4-4 illustrates the error in region assignments across 10 instantiations of the la-

tent connectivity templates and observed data measures. Despite modifying the sampling

procedure to accommodate the functional model, it exhibits significantly worse detection

accuracy than the joint model for nearly all (η, ǫ) values. The performance reduction can

be attributed to the anatomical constraint, which reduces the effective number of connec-

tions, and subsequently the number functional differences, associated with each region by

40-60%. Since the functional model treats all connections equally, the reduced number of

functional differences is insufficient to pinpoint the disease foci. In contrast, the joint model

adjusts the number of connectivity differences associated with a given region by the number

of anatomical connections. Hence, the algorithm can isolate the diseased regions based on

fewer differences. Despite the reduced detection performance, the functional model demon-

strates lower Type II error. This suggests that it produces sparser estimates of the disease

foci than the joint model.

We also observe similarities between our synthetic results in Figs. 4-3 and 4-4. As

expected, the detection accuracy improves with increasing η, as it results in a greater number

of functional differences associated with each diseased region. In addition, the Type II error

variance is high, but on average, relatively few healthy regions are mis-labeled. Finally, the

error rates are similar for both likelihood parameterizations. Once again, this suggests that

noise in the latent structure has a greater impact than observation noise.

In summary, each model can robustly identify diseased regions if the data is sampled

accordingly. In Fig. 4-3, the joint model exhibits slightly worse detection accuracy than the

functional model; however, Fig. 4-4 reports a considerable drop in performance of the func-

tional model when applied to the joint data. Both models exhibit an intrinsic regularization

and infer sparse sets of foci with few false positive assignments.

4.5 Experimental Results - Clinical Data

Once again, we demonstrate our model on the clinical study of schizophrenia (see Sec-

tion 2.7). We compute the DWI connectivity Dl
ij between regions i and j in subject l by

averaging FA along all fibers that connect regions i and j. If no tracts are found, Dl
ij is

set to zero. We extract the fMRI connectivity Bl
ij as the Pearson correlation coefficient

between the mean time courses of regions i and j in subject l.
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Table 4.3: Parameters of the functional model in Fig. 4-1(b) and the joint model in Fig. 4-
2(b) estimated from the clinical data.

πr πf
−1 πf

0 πf
1 η ǫ µ−1 µ0 µ1

Functional 0.039 0.33 0.46 0.21 0.16 0.030 -0.18 0 0.36
Joint 0.040 0.36 0.45 0.19 0.17 0.025 -0.18 0 0.36

σ2
−1 σ2

0 σ2
1 πa ρ0 ρ1 χ0 χ1 ξ2

0 ξ2
1

Functional 0.050 0.059 0.073 — — — — — — —
Joint 0.050 0.058 0.073 0.34 0.67 0.10 0.41 0.34 0.0050 0.0026

Figure 4-5: Significant regions based on permutation tests (qi > 0.5, uncorrected p < 0.021)
identified by the functional model. The colorbar corresponds to the negative log p-value.
We present the lateral and medial viewpoints for each hemisphere. The highlighted regions
are the posterior cingulate (L PCC & R PCC) and the transverse temporal gyrus (L TTG).
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Figure 4-6: Significant regions based on permutation tests (qi > 0.5, uncorrected p < 0.044)
identified by the joint model. The colorbar corresponds to the negative log p-value. We
present the lateral and medial viewpoints for each hemisphere. The highlighted regions are
the posterior cingulate (R PCC) and the superior temporal gyrus (L STG & R STG).

4.5.1 Significant Regions

Fig. 4-5 and Fig. 4-6 illustrate the detected disease foci (q̂i > 0.5) for the functional and

joint models, respectively. We color each region according to − log(p-value) such that

red corresponds to low significance and yellow indicates high significance. Each method

identified three disease foci, all of which are significant. The functional model implicated

the left posterior cingulate (q̂i = 1, p < 0.008), the right posterior cingulate (q̂i = 1, p <

0.017) and the left transverse temporal gyrus (Heschl’s gyrus) (q̂i = 1, p < 0.021). The

joint mode implicates a different subset of regions, namely, the right posterior cingulate

(q̂i = 1, p < 0.004), the right superior temporal gyrus (q̂i = 1, p < 0.014), and the left

superior temporal gyrus (q̂i = 1, p < 0.044).
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(a) Functional Model (b) Joint Model

Figure 4-7: Estimated graph of functional connectivity differences. The red nodes indicate
the disease foci. Blue lines indicate reduced functional connectivity and yellow lines indicate
increased functional connectivity in the schizophrenia population.

Both models identify significant foci in the default network and in the temporal lobes

of the brain. All regions are among the 8 expert selected brain structures in Chapter 3.

Interestingly, we observe symmetry in region assignments across the hemispheres, as evident

for the posterior cingulate (PCC) and the superior temporal gyri (STG). This phenomenon

may arise from the well-documented symmetry found in resting-state fMRI correlations [90].

We analyze the differences between Fig. 4-5 and Fig. 4-6 in Section 4.6.

Table 4.3 reports the parameters inferred by our algorithms. We notice that the fMRI

likelihood parameters are almost identical for both algorithms. This suggests that the dif-

ference between the regions in Fig. 4-5 and Fig. 4-6 is driven by the hierarchical structure

from connections to region assignments rather than by the inference of latent functional

connectivity from the data. Additionally, we observe consistency in parameter estimates

across random subject re-labelings in the permutation procedure (not shown). This im-

plies that the main effects of permuting the subject diagnoses are reflected in the latent

assignments rather than in the data likelihood.

4.5.2 Differences in Functional Connectivity

Fig. 4-7 displays the estimated graph of anomalous functional connectivity for each model.

The functional model identifies abnormal connections distributed throughout the brain.
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For the joint model, abnormalities that originate in the posterior cingulate project to the

midbrain and frontal lobe, whereas abnormalities stemming from the right and left superior

temporal gyri tend to span their respective hemispheres. This difference in organization

is explained by the constraint in Fig. 4-2(a) that functional connectivity differences occur

along anatomical pathways.

Both models detect an overall reduction in functional connectivity for schizophrenia

patients. Of notable exception are connections to the frontal lobe. This phenomenon

has been reported in prior studies of schizophrenia [37] and is believed to interfere with

perception by misdirecting attentional resources.

4.5.3 Effect of Region Prior

Fig. 4-8 and Fig. 4-9 illustrate the results of varying the prior πr of the region indicator

vector R for the functional and joint models, respectively. We color each of the selected

regions according to the smallest value of πr such that the marginal posterior of the region

i being a focus is greater than 0.2 (i.e, q̂i > 0.2). The yellow regions are always identified

as foci, whereas the orange and red regions are only selected for larger prior values.

We observe that the functional model identifies a stable set of disease foci with an addi-

tional region for large values of πr. In contrast, the sets of affected regions in the joint model

form a nested substructure as πr increases. It suggests an initial set of disease foci, identical

to the significant regions in Fig. 4-6. For increasing πr, the algorithm progressively includes

regions that exhibit some functional abnormalities but are not as strongly implicated by the

data. This extended set of regions is a superset of those identified by the functional model.

We elaborate on the differences between Fig. 4-8 and Fig. 4-9 in the following section.

4.6 Discussion

We present a unified approach to infer regions associated with a disorder based on population

differences in connectivity. Our first model operates on the complete graph of pairwise

functional connections. Our second model incorporates anatomical constraints into this

basic framework. We derive a variational EM algorithm for maximum likelihood estimation

of the model parameters. The algorithm simultaneously infers the posterior distribution

over the region labels and the set of abnormal functional connections.

Fig. 4-5 and Fig. 4-6 presents the diseased regions implicated by each model. The

main difference between the two results is that the functional model labels the transverse

temporal gyrus as a disease focus, whereas the joint model pinpoints the superior temporal

gyrus as relevant for schizophrenia. This discrepancy is partially explained by the size
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Figure 4-8: Evolution of the disease foci when varying the region prior πr for the functional
model. The colorbar corresponds to the smallest value of πr such that qi > 0.2. The high-
lighted regions correspond to the posterior cingulate (L PCC & R PCC) and the transverse
temporal gyrus (L TTG & R TTG).

difference between these regions. As seen in Fig. 4-10, we identify significantly more white

matter tracts involving the (large) STG than for the TTG. Hence, we are more likely to

detect functional abnormalities associated with the STG that occur along direct anatomical

pathways. This is reflected in Fig. 4-7(a). The majority of abnormal functional connections

emanating from the TTG are inter-hemispheric, and hence, do not coincide with latent

anatomical connections. Fig. 4-10 suggests that the quality of the joint model is largely

dependent on the detection power of tractography. This underscores the need for advanced

tractography algorithms that reliably identify long-range connections.

The TTG, also known as Heschl Gyrus, plays crucial role in auditory perception and

language processing. Its volume reductions, especially on the left, have been long asso-
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Figure 4-9: Evolution of the disease foci when varying the region prior πr for the joint
model. The colorbar corresponds to the smallest value of πr such that qi > 0.2. The
highlighted regions correspond to the posterior cingulate (L PCC & R PCC), the superior
temporal gyrus (L STG & R STG), the postcentral gyrus (R PC), the frontal pole (L FP),
the caudal middle frontal gyrus (R CMF), the transverse temporal gyrus (L TTG), the pars
orbitalis (L pOrb), the entorhinal cortex (R Ent) and the lateral occipital cortex (R LOcc).

ciated with hallmark schizophrenia symptoms, such as auditory hallucinations, delusions

and thought disorder [81]. Heschl’s gyrus has also been linked to disease progression [59],

suggesting its crucial role in schizophrenia pathophysiology.

The STG connects with heteromodal neocortical regions and temporolimbic areas. Elec-

trophysiology and PET/fMRI studies in humans emphasized the STG’s role in the inter-

pretation, production and self-monitoring of language. There is also evidence for structural

and functional abnormalities of the STG in schizophrenia, which may be associated with

formal thought disorder and auditory hallucinations [64,78].

The PCC is one of the key structures in the default mode network. Recent functional
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(a) Superior Temporal Gyri (b) Transverse Temporal Gyri

Figure 4-10: Latent anatomical connections estimated by the joint model.

schizophrenia studies [38] reported altered temporal frequency and spatial location of the

default mode network. This suggests that the default network may be under- or overmodu-

lated by key regions, including the anterior and the posterior cingulate cortex. Our results

confirm this hypothesis, further illustrating how such modulation can affect functional con-

nectivity (decreased connectivity between PCC and posterior parietal and temporal regions

and increased connectivity between PCC and occipital and frontal lobes in Fig. 4-7). Re-

duced connectivity in the posterior cingulate has been shown to correlate with both positive

and negative symptoms of schizophrenia [9].

The role of anatomy is also evident in the graphs of aberrant functional connectivity

depicted in Fig. 4-7. The functional results are distributed across the brain with little high-

level organization. In contrast, the connections identified by the joint model are largely

separated by hemisphere and seem consistent with estimated white matter tracts. Despite

their differences, both models detect a similar global pattern, which may reveal under-

lying neurological changes induced by schizophrenia. Specifically, we observe increased

functional connectivity to the frontal lobe and reduced functional connectivity between the

parietal/posterior cingulate region and the temporal lobe in the clinical population.

Increased connectivity between the default network and the medial frontal lobe, both at

rest and during task, has been reported in schizophrenia [37,104]. It is believed to interfere

with perception of the external world by misdirecting attentional resources. Interestingly,
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decreased connectivity within the default network has been described as well [9, 103]. The

later study reported decreased functional connectivity between the posterior cingulate gyrus

and the hippocampus, which is consistent with our findings. The relationship between dis-

ruptions in functional connectivity and the integrity of the fornix has also been suggested.

Along with prior findings, our results suggest an inverse relationship between connectiv-

ity in the temporal and frontal parts of the default network. Such “anticorrelations” have

been previously described between the default and task-related networks. Two connections

along white matter tracts in Fig. 4-7(b) have been implicated in schizophrenia [73]: the

connection between the left and the right STG, provided by corpus callosum, and the con-

nection between posterior and anterior CG, provided by cingulum bundle. These two white

matter tracts suggest a direct, causative relationship between anatomical and functional

connectivity disruptions in schizophrenia.

Tuning the region prior parameter πr enables us to explore the solution space. Once

again, we observe differences between the two models. The functional results are consistent

across a large range of prior values. In contrast, the joint model localizes nested subsets

of disease foci as πr increases. This suggests that the anatomical constraint increases the

sensitivity of the joint model. Specifically, the effective number of connections to each region

is reduced to the number of direct anatomical pathways. Hence, the joint model selects

diseased regions based on fewer functional connectivity differences. Since many regions are

weakly implicated by the data (i.e., associated with a few abnormal connections), biasing

the algorithm through the region prior πr causes them to be selected as foci.

The question remains: which model should we use? Presently, there is no standard

technique to integrate anatomical and functional connectivity in order to pinpoint region

impairments. Therefore, we argue that this is a largely a philosophical issue based on a set

of assumptions one makes about the brain. This work presents two different viewpoints.

Clearly, if we assume that impairments of a neurological disorder equally affect functional

synchrony between any two brain regions, then Fig. 4-3 suggests that we should fit the

functional model. Similarly, if we assume that the most salient effects of a disorder occur

along direct anatomical connections, then Fig. 4-4 encourages us to choose the joint model.

If we are unsure, then our synthetic results suggest that, on average, we are better off using

the joint model. This is because the joint model achieves higher detection accuracy on

data sampled from the functional model than vice versa. In the absence of latent anatom-

ical connectivity, the joint model compares aggregate statistics of the templates F and F̄ .

Therefore, data sampled according to the functional model in Fig. 4-1(b) is fairly consis-

tent with the assumptions of the joint model. In contrast, the functional model cannot
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accurately be fit to data sampled from the joint model in Fig. 4-2(b). A future extension

of this work may consider all two-stage anatomical pathways as being relevant for disease

localization. This can be achieved by incorporating the pairwise terms AikAkj into the

distribution for the functional template F̄ of the clinical population in Eq. (4.8).

Encouragingly, both models in our current formulations localize similar disease foci. In

fact, the joint model recovers both posterior cingulate regions as well as the left transverse

temporal gyrus when we vary the region prior parameter πr. The increased sensitivity

of the joint model may prove beneficial, as it identifies a larger set of candidate regions

(Fig. 4-9). The effects of a complex disorder like schizophrenia are often subtle. Hence,

the functional model, which only identifies the strongest connectivity differences, may not

locate all relevant disease foci.

Our results may also be influenced by our selection of regions. If the regions are too

small, then the variability in DWI tractography across subjects makes it difficult to infer

the template anatomical connectivity and group-level parameters [48]. However, larger

regions smooth out important functional connectivity information. In this work, we rely

on Brodmann regions identified by Freesurfer [29]. Brodmann areas provide anatomically

meaningful correspondences across subjects that roughly correspond to functional divisions

within the brain. Moreover, these regions are large enough to ensure stable tractography

results. We emphasize that our framework applies readily to any set of ROIs that are

defined consistently across subjects.

Finally, it is worth noting that our current framework may not apply to all degenerative

conditions. Specifically, if the abnormal connectivity does not localize to a sparse subset of

regions (i.e., aging and Alzheimer’s), then region-based models are not appropriate. Rather,

one should use our connection-based model in Chapter 3 for these applications. In future,

we can design statistical tests and rely on clinical knowledge to determine the correct model.

Nonetheless, the generative models presented in this chapter provide a starting point

for relating connections and regions. However, there is plenty of room for improvement.

For example, our joint model considers only direct anatomical connections and places a

binary constraint on the graph of functional aberrations; our functional model ignores all

anatomical information. In reality, the interaction between anatomy and function is likely

a hybrid of these competing viewpoints. Additionally, we assume a single set of disease foci

that share mutually abnormal connectivity. However, neurological disorders can arise from

several impairments in the brain that do not directly interact.

Similar to our joint model in Chapter 3, these choices are intentional. Despite ad-

vancements in the field, the effects of schizophrenia (and other clinical disorders) on brain
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connectivity is neither well understood nor well characterized. Therefore, we formulate a

simple relationship between region assignments and latent connectivity. Furthermore, given

the potentially large amounts of inter-subject variability and external noise, we formulate

a small set of model parameters to avoid over-fitting. Once again, these limitations provide

ample opportunities for future work.



Chapter 5

Extension to Multi-class Networks

Chapter 4 describes a generative framework that integrates population differences in func-

tional connectivity to isolate foci of a neurological disorder. The model assumes a single

collection of foci and only specifies the interaction between healthy and diseased nodes.

This binary partition of regions cannot account for multiple sub-networks that together are

responsible for the abnormal connectivity patterns in the brain.

In this chapter we extend the formulation to account for several disease clusters. Here,

each cluster is responsible for an independent network of functional differences. This is

accomplished via a straightforward modification to the probabilistic model in Chapter 4.

The result is analogous to a clustering problem where each region i is assigned a multi-class

label that designates it either as healthy or as belonging to a particular disease cluster h.

We rely on a similar variational EM algorithm to fit the model to the observed data. Our

algorithm jointly infers the disease clusters and the induced connectivity differences.

In this exploratory chapter, we focus on the complete graph of pairwise functional

differences and do not incorporate anatomy. We presents results on both synthetic and

real-world data.

The remainder of this chapter is organized as follows. We modify the latent variables

for the functional model in Section 5.1 and derive the corresponding variational algorithm

in Section 5.2. We discuss the non-trivial implementation details in Section 5.3. Section 5.4

and Section 5.5 report experimental results based on synthetic and clinical data, respectively.

Finally, Section 5.6 discusses the results and the relevance of our model.

5.1 Generative Model

We assume that the effects of a disorder can be localized to a small subset of brain regions.

These regions are partitioned into H groups, which we call disease clusters; each cluster

is responsible for a sub-network of abnormal neural activity. Fig. 5-1 presents the latent

network structure in the brain and the corresponding graphical model. The nodes in Fig. 5-

1(a) correspond to regions in the brain, and the edges denote pairwise functional connections

103
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(a) Network Model of Brain Connectivity (b) Graphical Model

Figure 5-1: (a) Latent organization of the disorder. The nodes correspond to regions in the
brain, and the lines denote pairwise functional connections. Only a subset of edges is shown;
the model is defined on the full graph of pairwise connections. The green nodes and edges
correspond to the healthy regions and connections, respectively. The red, yellow and purple
nodes represent three clusters of disease foci, and the colored edges specify pathways of
abnormal functional connectivity. The solid lines are deterministic given the region labels;
the dashed lines are probabilistic. (b) The corresponding graphical model. R specifies
disease cluster labels. Fij denotes the latent functional connectivity between regions i and
j. Bl

ij is the observed fMRI measurements in the lth subject. Variables associated with the
clinical population are identified by an overbar.

between them. The green nodes/edges are healthy. The yellow, red and purple nodes/edges

represent three disease clusters and the associated abnormal functional pathways.

Based on the region assignments, we construct binary graphs {T h}H
h=1 of aberrant func-

tional connectivity using four simple rules: (1) a connection between regions i and j in

disease cluster h is always abnormal (T h
ij = 1, solid yellow/red/purple lines in Fig. 5-1(a)),

(2) a connection between region i in disease cluster h and region j in disease cluster h′ 6= h

is never abnormal (T h
ij = 0), (3) a connection between two healthy regions is never abnor-

mal, and (4) a connection between a healthy region i and a region j in disease cluster h

is abnormal with probability η (dashed lines). These are similar to the rules proposed in

Section 4.1, except that we now specify the interaction between nodes in different clusters.

Once again, the latent functional connectivity variables Fij and F̄ij model neural syn-

chrony between the regions. Ideally, Fij 6= F̄ij for connections altered by any disease cluster,
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and Fij = F̄ij otherwise. However, due to noise and inter-subject variability, we assume the

templates can differ from the graphs {T h} with probability ǫ. The fMRI correlations Bl
ij

are noisy observations of the latent network.

Region Labels Given N brain regions, the random variable Ri is a multi-class label for

the state of region i (i = 1, . . . , N). Ri is generated from the multinomial prior πr. For

convenience, we model Ri as a length-(H + 1) indicator vector such exactly that one of its

elements [Ri0 Ri1 . . . RiH ] equals to one:

P (Ri; π
r) =

H
∏

h=0

(πr
h)Rih . (5.1)

The state Ri = 0 (Ri0 = 1) corresponds to region i being healthy.

Graphs of Abnormal Connectivity The graph T h captures the abnormal functional

connectivity associated with disease cluster h. Formally, we have

P (T h
ij |Ri, Rj ; η) =







































δ(T h
ij), Ri 6= h, Rj 6= h,

δ(T h
ij), (Ri = h, Rj = h′) or (Ri = h′, Rj = h),

1 − δ(T h
ij), Ri = Rj = h,

ηT h
ij (1 − η)1−T h

ij , (Ri = h, Rj = 0) or (Ri = 0, Rj = h),

(5.2)

where each edge T h
ij is generated independently given the region labels R. The first and

second conditions in Eq. (5.2) impose a strict separation between graphs {T h}. Namely,

the abnormal connections associated with different disease clusters do not overlap. This

avoids an identifiability problem in which we cannot determine the cluster responsible for

a particular functional difference.

Latent Functional Connectivity The latent functional connectivity Fij of the control

population is unchanged from Eq. (4.3).

The latent functional connectivity F̄ij of the clinical population is based on Fij and the

graphs {T h}. Let T denote the aggregate graph structure, which we construct as the union

T =
∑H

h=1 T h. Specifically, the aggregate edge 〈i, j〉 is abnormal (Tij = 1) if and only if

there exists h ∈ 1, . . . , H such that the individual graph edge T h
ij is abnormal, i.e., T h

ij = 1.

Given T , the conditional distribution of the clinical template F̄ij is identical to Eq. (4.4).
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We repeat the expression below for convenience:

P (F̄ij |Fij , Tij ; ǫ) =

[

(1 − ǫ)FT

ij F̄ij

( ǫ

2

)1−FT

ij F̄ij

]1−Tij
[

ǫFT

ij F̄ij

(

1 − ǫ

2

)1−FT

ij F̄ij

]Tij

. (5.3)

The observed fMRI correlations are noisy measurements of latent functional connectiv-

ity. The likelihood distributions are the same as in Section 4.1.

5.2 Variational Inference

Our primary quantity of interest is the posterior probability of the region labels R. Hence,

we marginalize out the graphs {T h} to simplify the relationship between R and the observed

data. This implies the following conditional distribution of the clinical template F̄ij :

P (F̄ij |Fij , Ri, Rj ; η, ǫ) =



































(1 − ǫ)FT

ij F̄ij
(

ǫ
2

)1−FT

ij F̄ij
, Ri = Rj = 0,

(1 − ǫ)FT

ij F̄ij
(

ǫ
2

)1−FT

ij F̄ij
, Ri 6= Rj , Ri 6= 0, Rj 6= 0,

ǫFT

ij F̄ij
(

1−ǫ
2

)1−FT

ij F̄ij
, Ri = Rj 6= 0,

ǫ
FT

ij F̄ij

1

(

1−ǫ1
2

)1−FT

ij F̄ij
, (Ri = 0, Rj 6= 0) or (Ri 6= 0, Rj = 0),

(5.4)

where ǫ1 = ηǫ+(1−η)(1− ǫ) as in Section 4.2. Regardless of the number of clusters H, the

conditions in Eq. (5.4) depend on simple relationships between the regions. Namely, is either

region healthy? If not, do they belong to the same or to different disease clusters? These

relationships are derived by aggregating the conditional distributions of {T h} in Eq. (5.2).

Let Y = {B, B̄} and Θ = {π, η, ǫ, µ, σ2} denote the observed fMRI measurements and

the set of model parameters, respectively. We employ a maximum likelihood (ML) frame-

work to fit the model to the data. Once again, the coupling induced by R forces us to adopt

a variational approximation [57] for the posterior probability distribution of the latent vari-

ables given the observed data:

Q(R, F, F̄ ) = Qr(R) · Qc(F, F̄ ) = Qr(R)
∏

<i,j>

Qc
ij(Fij , F̄ij), (5.5)

where Qr(·) is a joint distribution over the N length-(H + 1) multinomial vectors {Ri} and

Qc
ij(·) is an 9-state multinomial distribution corresponding to all configurations of latent

functional connectivity. Again, this factorization yields a tractable inference algorithm while

preserving the dependency between Fij , and F̄ij given the region indicator vector R.

Similar to Section 4.2, we employ a variational EM formulation [23] to obtain the pos-
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terior distribution Q(·) and model parameters Θ that minimize the variational free energy

FE = −EQ

[

log P (R, F, F̄ , Y ; Θ)
]

−H(Q), (5.6)

where the joint log-likelihood of all hidden and observed variables is given by:

log P (R, F, F̄ , Y ; Θ) =

N
∑

i=1

H
∑

h=0

Rih log(πr
s) +

∑

〈i,j〉

1
∑

k=−1

Fijk log
(

πf
k

)

+
∑

〈i,j〉

(Ri0Rj0)
(

FT
ij F̄ij log(1 − ǫ) + (1 − FT

ij F̄ij) log
( ǫ

2

))

+
∑

〈i,j〉

(

(1 − Ri0)(1 − Rj0) −
H
∑

h=1

RihRjs

)

(

FT
ij F̄ij log(1 − ǫ) + (1 − FT

ij F̄ij) log
( ǫ

2

))

+
∑

〈i,j〉

(

H
∑

h=1

RihRjh

)

(

FT
ij F̄ij log(ǫ) + (1 − FT

ij F̄ij) log

(

1 − ǫ

2

))

+
∑

〈i,j〉

(Ri0(1 − Rj0) + (1 − Ri0)Rj0)

(

FT
ij F̄ij log(ǫ1) + (1 − FT

ij F̄ij) log

(

1 − ǫ1
2

))

+
∑

〈i,j〉

1
∑

k=−1

[

Fijk

L
∑

l=1

logN
(

Bl
ij ; µk, σ

2
k

)

+ F̄ijk

M
∑

m=1

logN
(

B̄m
ij ; µk, σ

2
k

)

]

. (5.7)

The product terms involving R are based on the conditions in Eq. (5.4).

E-Step: For a fixed setting of model parameters Θ̂, we showed in Section 4.2 that the

variational posterior Q̂(·) that minimizes Eq. 5.6 satisfies the following fixed point equations:

Q̂c(F, F̄ ) = P̃ (F, F̄ ; Θ̂) ∝ exp
{

EQ̂r

[

log P (R, F, F̄ , Y ; Θ̂)
]}

, (5.8)

Q̂r(R) = P̃ (R; Θ̂) ∝ exp
{

EQ̂c

[

log P (R, F, F̄ , Y ; Θ̂)
]}

. (5.9)

In the E-step, we alternatively update Q̂r(R) and Q̂c(F, F̄ ) until convergence. To update

Q̂c(·), we evaluate the right-hand side of Eq. (5.8) for each of the nine configurations Fij = k,

F̄ij = k′ (k, k′ ∈ {−1, 0, 1}) and normalize to obtain a valid probability distribution. Once

again, the right-hand side of Eq. (5.9) can be expressed in terms of EQ̂c [F
T
ij F̄ij ]. Since Fij

and F̄ij are indicator variables, this quantity can be evaluated as

p̂ij , EQ̂c [F
T
ij F̄ij ] =

1
∑

k=−1

Q̂c
ij(Fij = k, F̄ij = k). (5.10)
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Eq. (5.10) represents the posterior probability that the latent connectivity of edge 〈i, j〉 is

the same for both populations.

We use Gibbs sampling to obtain samples S = {Rs} from Q̂r(R). Based on the joint

log-likelihood in Eq. (5.7), the right-hand side of Eq. (5.8) is given in terms of

q̂0
i , EQ̂r [Ri0], (5.11)

q̂00
ij , EQ̂r [Ri0Rj0], (5.12)

q̂i=j , EQ̂r

[

H
∑

h=1

RihRjh

]

. (5.13)

Eqs. (5.11-5.13) represent the posterior probabilities that (1) an individual region is healthy,

(2) a pair of regions is healthy, and (3) two regions belong to the same disease cluster. We

approximate these quantities using averages over the elements of S.

As in Section 4.2, the model parameter estimates Θ̂ in the M-Step rely on marginal

probabilities of Q̂c(F, F̄ ). We compute these quantities after convergence of the variational

posterior distribution:

ŝijk = P̂ (Fij = k|Y ; Θ) =
∑

F̄ij

Q̂c
ij(Fijk = 1, F̄ij), (5.14)

ûijk = P̂ (F̄ij = k|Y ; Θ) =
∑

Fij

Q̂c
ij(Fij , F̄ijk = 1). (5.15)

M-Step: We fix the posterior probability estimates Q̂(R, F, F̄ ) and update the model

parameter estimates Θ̂ by differentiating Eq. (5.6) with respect to each element of Θ and

setting the gradient equal to zero. Many of these expressions are identical to Section 4.2;

however, we repeat them below for completeness.

The update for πr involves averaging the proportion of diseased regions across Gibbs

samples:

π̂r
h =

1

NS

N
∑

i=1

S
∑

s=1

Rs
ih. (5.16)

The multinomial prior πf reduces to an average over the marginal posterior distribution:

π̂f
k =

1

C

∑

〈i,j〉

ŝijk, (5.17)

where C is the total number of pairwise connections. The fMRI likelihood parameter
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estimates are computed as weighted statistics of the data:

µk =











P

〈i,j〉[ŝijk

P

l Bl
ij+ûijk

P

m B̄m
ij ]

P

〈i,j〉[L·ŝijk+M ·ûijk]
, k = ±1,

0, k = 0,
(5.18)

σ2
k =

∑

〈i,j〉

[

ŝijk
∑

l(B
l
ij − µ̂k)

2 + ûijk
∑

m(B̄m
ij − µ̂k)

2
]

∑

〈i,j〉 [L · ŝijk + M · ûijk]
, (5.19)

where we have fixed µ0 = 0 for the component that represents zero functional synchrony to

center the parameter estimates and regularize the model.

We use Newton’s method to jointly update η̂ and ǫ̂. We omit the details, which are very

similar to the derivation in Section 4.2.

Identifying Disease Clusters The marginal posterior probability Q̂r(Ri = h) expresses

the likelihood that region i is healthy (h = 0) or that it belongs to disease cluster h. We

estimate this quantity by averaging across Gibbs samples S:

q̂ih , Q̂r(Ri = h) =
1

S

S
∑

s=1

Rs
ih. (5.20)

5.3 Implementation Details

The variational EM implementation is similar to that of the functional model in Chapter 4.

The main differences arise from the multi-class region assignments. We describe the related

optimization choices in this section.

Initialization of Marginal Statistics Along with the model parameters Θ = {π, η, ǫ, µ, σ2},

it suffices to initialize the marginal posterior statistics q̂0
i , q̂00

ij , q̂i=j described in Eqs. (5.11-

5.13). This is done by computing the mean fMRI correlation across subjects and clustering

these values (via the K-Means algorithm) to estimate the latent functional connectivity in

each population. We then select a subset of regions with the greatest number of connectivity

differences as diseased. The remaining regions are healthy.

We group the selected regions into disease clusters using Normalized Cut Spectral Clus-

tering [82]. Entries Wij of the affinity matrix are related to the difference in functional

connectivity along the corresponding edge 〈i, j〉. This is because our formulation specifies

a disease cluster to be regions that are abnormally connected to each other but normally

connected to nodes in other clusters.
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Table 5.1: Likelihood parameterizations used to generate synthetic data.

µ−1 µ0 µ1 σ2
−1 σ2

0 σ2
1

Good Data -0.35 0 0.35 0.05 0.05 0.05
Noisy Data -0.18 0 0.36 0.050 0.058 0.073

As described in Section 4.2.3, the algorithm proceeds by computing the joint posterior

distribution Q̂c(·) in the E-step and alternatively updates Q̂r(R) and Q̂c(·) until conver-

gence. The algorithm then estimate the model parameters in the M-step and iterate. We

initialize the algorithm ten times to sample the solution space and select the solution with

the lowest free energy.

Cluster Alignment Like most clustering algorithms, the cluster indices h = 1, . . . , H

are arbitrarily assigned. Empirically, the Gibbs samples S concentrate around modes in

Q̂r(R) that have the same region grouping but with permuted cluster indices. Since these

permutations are qualitatively identical, we align the Gibbs samples to maximize the number

of consistently labeled regions. This results in a peakier distribution Q̂r(R) and reduces the

number of samples needed for stable posterior estimation. We emphasize that permuting

the cluster indices does not affect Eqs. (5.11-5.13), which depends only on the relative

grouping between regions. Hence, our estimates of latent functional connectivity and the

non-random model parameters are unchanged.

5.4 Results: Synthetic Data

We first evaluate our algorithms on synthetic data sampled from the model. We mimic the

organization of our clinical dataset by specifying a latent template with 78 regions; there

are two regions in each disease cluster, and the remaining are healthy. We fix η, ǫ, πf to the

values inferred from the clinical experiments.

We consider two likelihood parameterizations for {µ, σ2} as shown in Table 5.1; these

are the same as in Section 4.4. The Good Data parameterization assumes a clear separation

between the Gaussian distributions for different values of latent functional connectivity. In

this case, we can accurately infer the templates {F, F̄}, which are subsequently used to

cluster regions. The Noisy Data parameterization uses the ML estimates from the clinical

dataset, which results in a significant overlap in the data distributions.

Given the region labels R, we sample the graph structures {T h}, the latent functional

templates F, F̄ and the observed data {B, B̄} according to Fig. 5-1(b). We fit the model

using the variational EM algorithm presented in Section 5.2 and extract three error metrics:
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Figure 5-2: Region assignment errors for the synthetic experiment. The median error is
zero in all cases. The box and error bars denote the 75th and 90th percentiles, respectively.
The statistics are computed over 10 re-samplings of the latent templates and observed data.

the number of diseased regions that are incorrectly labeled as healthy (miss), the number

of healthy regions that are labeled as diseased (false-positive), and the number of regions

that are assigned to the wrong disease cluster (wrong cluster). We re-sample the latent

template and observed data 10 times to collect statistics.

Fig. 5-2 illustrates the error in region assignments when varying the number of disease

clusters (H = 2, 3, 4, 5). Unlike the results (functional model) in Fig. 4-3, the errors are

significantly higher for the noisy parameterization. Intuitively, the algorithm relies more

heavily on the latent connectivity assignments to cluster the diseased regions. Poor inference

of latent connectivity from the fMRI data produces incorrect region labels.

Similarly, the error in Fig. 5-2(b) increases with the number of disease clusters H.

Since connections across disease clusters should be normal, higher values of H increase the

number of healthy connections that must be observed to correctly partition the diseased

regions. Moreover, the complexity of the problem increases with H. It is reasonable that

incorrect latent connectivity assignments (based on noisy data) have a greater impact if

they do not conform with the rules introduced in Section 5.1.

Finally, the maximum error in Fig. 5-2 is less than two for any error type. This suggest

that our algorithm can accurately infer the ground truth region assignments given (noisy)

observations whose statistics match our clinical dataset.
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Table 5.2: Parameters of the multi-class model in Fig. 5-1(b) estimated from the clinical
data. We vary the number of disease clusters H.

πf
−1 πf

0 πf
1 η ǫ µ−1 µ0 µ1 σ2

−1 σ2
0 σ2

1

H = 2 0.33 0.46 0.21 0.15 0.026 -0.18 0 0.36 0.050 0.058 0.073
H = 3 0.33 0.46 0.21 0.15 0.024 -0.18 0 0.36 0.050 0.058 0.073
H = 4 0.33 0.46 0.21 0.15 0.022 -0.18 0 0.36 0.050 0.058 0.073
H = 5 0.33 0.46 0.21 0.15 0.017 -0.18 0 0.36 0.050 0.058 0.073

5.5 Results: Clinical Data

Once again, we demonstrate our model on the clinical study of schizophrenia (see Sec-

tion 2.7). The fMRI connectivity Bl
ij is computed as the Pearson correlation coefficient

between the mean time courses of regions i and j in subject l.

Table 5.2 reports the parameter values estimated by our algorithm when varying the

number of disease clusters. Encouragingly, the results are extremely stable across different

values of H. Only the latent noise parameter ǫ changes between trials; its value decreases

as H increases. This is because our model can explain more of the functional differences

between the populations with a larger number of disease clusters. Consistency in the other

parameter values suggests that the model infers similar latent connectivity patterns for each

value of H.

Fig. 5-3 depicts the maximum a posteriori disease cluster assignments in the brain for

H = 2, 3, 4, 5. In all cases q̂ih > 0.8. Fig. 5-4 presents the estimated graphs of abnormal

connectivity for each cluster; they are computed using a similar procedure as in Section 4.3.2.

As seen, the results exhibit a nesting property. Specifically, as the number of disease

clusters increases, the model progressively adds subsets of regions while largely preserving

the old clustering organization. The only exception are regions the left transverse temporal

and superior temporal gyri. We also observe symmetry in region assignments across the

hemispheres, as evident for the posterior cingulate (PCC) and the paracentral gyri (pC).

Once again, this may be attributed to the well-documented symmetry found in resting-state

fMRI correlations [90]. We elaborate on the model results in the following section.

5.6 Discussion

We present an extension to the functional model in Chapter 4 that allows for multiple

clusters of diseased regions. We describe a variational EM algorithm to fit the revised

model to the observed fMRI correlations. Finally, we demonstrate preliminary results both

on synthetic and on clinical data.
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Figure 5-3: Disease clusters for H = 2, 3, 4, 5. Clusters are delineated by the yellow, dark
blue, light blue, red and pink regions, respectively. To facilitate comparison, we align the
clusters across values of H. The regions correspond to the posterior cingulate (L & R PCC),
the corpus callosum (R CC), the transverse temporal gyrus (L TTG), the paracentral gyrus
(L & R pC), the superior temporal gyrus (L & R STG), the caudal middle frontal gyrus
(R CMF) and the supramarginal gyrus (L SM).
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(a) H = 2 (b) H = 3

(c) H = 4 (d) H = 5

Figure 5-4: Estimated graph of functional connectivity differences. We use the color scheme
in Fig. 5-3 to identify disease clusters. For clarity of presentation, we only label new diseased
regions in each figure.



5.6. Discussion 115

Fig. 5-3 illustrates the regions implicated by our model when varying the number of

disease clusters H. These results correspond well to the disease foci presented in Section 4.5.

For example, the green cluster for H = 2 (top row of Fig. 5-3) is identical to the significant

regions identified by the functional model in Fig. 4-5. Although the transverse temporal

gyrus is not included in the disease clusters for H > 2 (bottom three rows), the right and

left posterior cingulate remain grouped together. In addition, the right and left superior

temporal gyri and the right caudal middle frontal gyrus are all identified by the joint model

in Fig. 4-9 when varying the region prior.

The nested structure observed in both Fig. 5-3 and Fig. 5-4 is a highly desirable trait.

It suggests that the model learns a stable set of functional differences. As we increase

the number of clusters, the model explains more of the overall pattern by adding diseased

regions. This is further evidenced by the consistent parameter estimates in Table 5.2.

Although not shown, we observe a fair amount of variability in the disease cluster

assignments based on initialization. Specifically, we recover several solutions that identify

the same subset of diseased regions, but with slightly different groupings into clusters. In

some cases, the Gibbs samples are drawn from 2-3 modes with different clusterings, so the

marginal posterior distributions are not as sharp. These solutions have nearly identical free

energy values. Hence, the alternate groupings may signify complex relationships between

the diseased region that cannot be explained by our model.

We emphasize that the results presented in this chapter are preliminary. Further analysis

must be done to fully characterize the behavior of the multi-class model. Such analysis may

explain the inconsistencies in the left-temporal lobe of the brain in Fig. 5-3 or the cluster

modes described above. However, the stability across clusters and the correspondence to

the results in Section 4.5 reveal this framework to be a promising direction for future work.
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Chapter 6

Conclusion

In this thesis we introduced a powerful generative framework to analyze brain connectivity

in clinical applications. Our models treat resting-state fMRI and DWI data as imperfect

observations of the brain. We abstract the “true” anatomy and function into a collection

of latent variables. Differences attributed to a neuropsychiatric disorder are captured by

these latent templates.

Chapter 3 introduces our basic assumptions. Here, we define the latent anatomical

and functional connectivity variables and present an intuitive data likelihood. Our initial

model identifies connections that are significantly affected by the disease. Recognizing that

distributed connectivity results are difficult to interpret, we focus on an alternative question

in Chapter 4: do certain regions act as centers of abnormal activity? In response, we add

region labels and describe how to construct the graph of functional connectivity differences.

Our results localize a stable subset of disease foci in schizophrenia. Finally, Chapter 5

expands our region-based model to incorporate multiple disease clusters. Our preliminary

results suggest a nested structure, which progressively includes regions as the number of

clusters increases.

We deliberately focus on a generative, rather than a discriminative, framework to analyze

the effects of a disorder. This reflects our belief that advancements in the understanding and

treatment of illnesses will depend on our ability to explain (and not merely identify) how

and why various phenomena arise. To this end, our models have allowed us to explore new

and exciting clinical questions for which no other unified method has been proposed. We

have identified abnormal connectivity patterns using whole-brain information with minimal

a priori knowledge. In fact, the only user-specified parameter in this entire thesis is the

number of disease clusters H in Chapter 5.

Despite the benefits and possibilities of generative methods, there is one major drawback:

the quality of any such model depends on how closely our assumptions reflect the true

underlying process. The simple interactions formulated in this thesis may not capture the

full complexity of the brain. These limitations suggest potential directions for future work.
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6.1 Future Directions

In this section we sketch out three avenues of research that promise to enhance our under-

standing of and ability to model the brain.

1. Incorporating Temporal Information: Traditional functional connectivity analy-

sis extracts patterns from the fMRI data based on the entire time course at each spatial

location. These techniques effectively assume temporal stationarity of resting-state

fMRI, i.e., there is a single connectivity network that persists across time. However,

recent work demonstrates that functional relationships are significantly affected by

cognitive processes, fatigue and conscious awareness [25, 27, 49]. This suggests that

modeling the time-varying nature of functional interactions is crucial to understanding

brain connectivity.

Multivariate auto-regressive (MAR) models are gaining popularity for resting-state

fMRI analysis [18, 45, 67]. Here, the observation of a network at a given time de-

pends on its past history. As such, the MAR framework offers a computationally

tractable method for incorporating temporal information. It has been used in clinical

applications [44] and in multi-modal analysis of fMRI and DWI data [21]. Therefore,

using a MAR model to account for the fMRI dynamics may strengthen our generative

approach in this thesis.

2. Sophisticated Modeling of Brain Interactions: The graphical models presented

in this thesis distill the complexities of the brain into a set of Gaussian and multinomial

distributions. Although this simplification allows us to infer aggregate properties of

the signals, we might be losing vital information. In the past there has been some effort

to characterize the relationship between fMRI time courses and neuronal activity [46].

Task-based fMRI experiments typically assume a linear system whereby each neuronal

impulse is filtered by the hemodynamic response function [35]. However, the problem

is more challenging for resting-state fMRI, which lacks a guiding protocol. Recently,

nonlinear relationships have been proposed [10, 68]. Incorporating these results into

the likelihood function for the observed variables is a difficult but worthwhile task.

Similarly, many studies have analyzed the relationship between anatomical and func-

tional connectivity [47,48,85]. Future iterations of our model should account for multi-

stage anatomical connections as well as excitatory versus inhibitory neural pathways.

3. Data-Driven Region Definitions: Our work depends on a set of pre-defined regions
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that are consistent across subjects. This thesis relies on the standard Freesurfer

parcellation into Brodmann areas [29]. Although roughly based on the underlying

cytoarchitecture of the brain, Brodmann areas do not always represent functionally

or anatomically coherent regions. Specifically, different areas within a single region

may exhibit distinct connectivity patterns. Therefore, we would like to develop a

method to automatically extract regions across subjects. Such a model will draw

inspiration from landmark-based and region growing approaches [69,88].

The proposed generative formulation is a powerful tool for brain connectivity analysis and

will provide a new direction in the field. In the immediate future, we seek to apply our

method to other clinical populations, such as epilepsy and Huntington’s Disease. We are

also interested in the effects of aging, which require a more gradual evolution of our latent

templates. As seen, our basic framework can be adapted to a wide variety of clinical

and neuroscientific problems. We are confident that it will further our understanding and

exploration of the brain.
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Appendix A

Robust Feature Selection via Random

Forests

This appendix details our work on robust feature selection, as applied to a population study

of resting-state functional connectivity. Our method identifies a sparse set of functional

correlations that captures much of the information about schizophrenia. Furthermore, by

incorporating minimal a priori knowledge, we can predict the clinical diagnosis of a test

subject with substantially higher accuracy. Encouragingly, many of the selected connections

are also found using our joint generative model in Chapter 3. These results further validate

our probabilistic framework. The work in this appendix was published in [96].

Traditional population analysis relies on univariate tests to identify significant differences

[40, 66, 100, 103], which ignores networks of abnormal connectivity within the brain. Due

to the limited number of subjects, univariate tests are often done once using the entire

dataset; stability of the method and of the results is rarely assessed. We address these

limitations through ensemble learning. The Random Forest is an ensemble of decision tree

classifiers that incorporates multiple levels of randomization [11]. Each tree is grown using

a random subset of the training data; each node is constructed by searching over a random

subset of features. The Random Forest derives a score for each feature, known as the

Gini Importance (GI), which summarizes its discriminative power and can be used as an

alternative to univariate statistics.

Our approach to feature selection confers several advantages. The randomization over

subjects is designed to improve generalization accuracy, especially given a small number

of training examples relative to the number of features. The randomization over features

increases the likelihood of identifying all functional connections useful for group discrimi-

nation (rather than an uncorrelated subset). Finally, due to the ensemble-based learning,

the Random Forest produces nonlinear decision boundaries. Hence, it can capture sig-

nificant patterns of functional connectivity across distributed networks in the brain. We

demonstrate that the significant functional connections based on univariate tests vary sub-
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stantially across different subsets of the data and have poor predictive power. In contrast,

GI is a stable metric that selects good features for classification.

A.1 Methods

We begin with an overview of the Random Forest algorithm and construction of the Gini

Importance measure. We then review the standard two-sample t-test used for comparison,

and conclude with a description of our empirical validation procedure. In this application,

we treat functional correlations between two brain regions as features.

A.1.1 Random Forest and Gini Importance

The Random Forest is an ensemble of decision-tree classifiers. At each decision node, the

algorithm selects a feature and threshold that maximize the separation between classes [86].

Mathematically, let ν represent a decision node of a single tree. We define nν to be the

total number of samples assigned to ν, such that n1
ν is the number of samples in the first

class and n2
ν is the number of samples belonging to the second class (nν = n1

ν + n2
ν). The

Gini Impurity G(ν) estimates the probability that two random observations, drawn from

the same class distribution as the initial nν samples, will have different labels:

G(ν) =
n1

ν

nν

(

1 −
n1

ν

nν

)

+
n2

ν

nν

(

1 −
n2

ν

nν

)

. (A.1)

Given a feature f and a threshold η, we construct the two child nodes ν1 and ν2 of ν by

partitioning the dataset along f according to η. As a result, nν1
(f, η) of the initial samples

are assigned to child node ν1, and the remaining nν2
(f, η) samples are assigned to child

node ν2. We can now compute the change in Gini Impurity between the node ν and its

children:

∆G(ν; f, η) = G(ν) −
nν1

(f, η)

nν

G(ν1) −
nν2

(f, η)

nν

G(ν2). (A.2)

During training, the Random Forest selects the feature f∗(ν) and the corresponding

threshold η∗(ν) that together maximize Equation (A.2) at node ν. This process is continued

recursively for all child nodes until each leaf of the tree defines a unique class. The final

classification is obtained by a majority vote among all the random trees.

The Gini Importance (GI) of a feature f is found by integrating the reduction in Gini

Impurity throughout the entire forest:

GI(f) =
∑

trees

∑

{ν:f=f∗(ν)}

∆G(ν; f, η∗(ν)). (A.3)
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Thus, GI can be viewed as the aggregate amount of separation between the two classes

gained by selecting a particular feature and corresponding threshold. We use this quanti-

tative measure to rank the features according to their predictive power.

A.1.2 Baseline Univariate Tests

Univariate tests are one of the standard tools used in the clinical analysis of functional

connectivity [40,66,100,103]. The two-sample t-test evaluates the null hypothesis that the

population means of a (normally distributed) feature are equal. Mathematically, let f̄C and

f̄S be the means of feature f for the control and schizophrenia populations, respectively,

and let σ̄2
C and σ̄2

S denote the corresponding empirical variances. The t-score for f is defined

tf =

∣

∣f̄C − f̄S

∣

∣

√

(NC−1)σ̄2

C
+(NS−1)σ̄2

S

NC+NS−2 ·
[

1
NC

+ 1
NS

]

, (A.4)

where NC and NS denote the number of subjects in each group. The significance, or p-

value, represents the probability of obtaining a statistic greater in magnitude than tf under

the null hypothesis.

A.1.3 Validation

We use ten-fold cross-validation to quantify the performance of each method. The dataset

is randomly divided into 10 subsets, each with an equal number of controls and schizophre-

nia patients. We then compute the Gini Importance values and t-scores using 9 of these

subsets and reserve one for testing. This process is repeated for each of the 10 sub-groups.

Additionally, we repeat this re-sampling process 10 times to collect stable statistics.

Cross-validation allows us to evaluate several aspects of each feature selection methods.

For example, we assess the rate of decay of the GI values and t-scores. A rapid decay

is indicative of a sparse representation for the population differences. Additionally, we

investigate the variability of the scores and the stability of the feature rankings. Little or

no fluctuation in the scores and rank-order implies a robust representation across different

subsets of the data. Finally, we examine the prediction accuracy for various set sizes K.

During testing, we rank the functional correlations either by GI value or by t-score mag-

nitude. Our assumption is that the significant differences between the control and clinical

populations are contained in the first K features. We assess this hypothesis by training

both a Random Forest classifier and a Radial Basis Function Support Vector Machine

(RBF-SVM) [20] using just these K functional correlations, and evaluating the classifica-
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Figure A-1: Stability of the GI values and t-scores on a log scale. For visualization, the
values are normalized by the maximum GI and maximum t-score, respectively. Thick lines
represent mean values, and the error bars correspond to standard deviations over the 100
cross-validation runs.

tion accuracy on the held-out group. Utilizing multiple classifiers ensures a fair comparison

between GI and univariate tests.

A.2 Experimental Results

We demonstrate our model on the clinical study of schizophrenia (see Section 2.7). We ex-

tract the fMRI connectivity Bl
ij between regions i and j in subject l by computing Pearson

correlation coefficients of the time courses between every pair of voxels in the two regions,

applying the Fisher-r-to-z transform to each correlation (to enforce normality), and averag-

ing these values. Since our anatomical regions are large, the correlation between the mean

time courses of two regions shows poor correspondence with the distribution of voxel-wise

correlations between them. Therefore, we believe our measure is more appropriate for fMRI

correlations across subjects than the standard correlation of mean time courses.

To inject prior clinical knowledge, we pre-select 8 brain structures (corresponding to

16 regions) that are believed to play a role in schizophrenia: the superior temporal gyrus,

rostral middle frontal gyrus, hippocampus, amygdala, posterior cingulate, rostral anterior

cingulate, parahippocampal gyrus, and transverse temporal gyrus. We model only the 1096
(

16 × 76 −
(

16
2

))

unique pairwise connections between these ROIs and all other regions in

the brain.

Fig. A-1 depicts the stability of GI values and t-scores for each functional correlation
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across all 100 cross-validation runs. As seen, the t-scores exhibit far greater variability that

the Gini Importance values. Additionally, the variance in GI is concentrated among the top

features, whereas less-informative features are always assigned values near zero. Hence, al-

though the top functional correlations may be ranked differently during each cross-validation

run, the Random Forest isolates a consistent set of predictive features. In contrast, the t-

scores vary uniformly over all features, regardless of significance. Thus, the set of predictive

features can vary drastically over cross-validation runs.
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(b) Selected Features

Figure A-2: Proportion of the 100 cross-validation runs during which the feature is selected.
The solid lines denote performance based on GI values for various K. The dashed lines
represent the corresponding metric using t-scores.

Fig. A-2 shows the proportion of cross-validation runs during which a particular func-

tional correlation is ranked among the top K features, as measured by GI value or t-score.

We observe that the decay in the proportion of iterations based on GI is relatively sharp

from one to zero. Hence, if a feature is relevant for group discrimination, it tends to be

ranked among the top; otherwise, it is almost always ignored. In contrast, feature selection

based on t-scores is inconsistent and depends on the dataset. It is worth noting that none

of the functional correlations are ranked in the top 500 by t-score for all 100 cross-validation

iterations, even when we a priori specify the regions of interest.

Fig. A-3 compares the average Gini Importance and average t-scores of the top 20

functional correlations as specified by the average score and the frequency of selection

for each method, respectively. Notice that the highest average scores are well correlated

with the most often selected. However, features that are ranked highly by one method

are scored poorly by the other. This may be attributed to the variability of t-scores over
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Figure A-3: Relationship between the average GI and the average t-score for the top 20
functional correlations using each feature selection algorithm. The green boxes and blue
circles denote features that were most frequently included in the top 50 features for each
method.

Table A.1: Classification accuracy based on the entire dataset.

K GI, RF Classify GI, SVM Classify t-score, RF Classify t-score, SVM Classify

25 0.59 ± 0.047 0.60 ± 0.040 0.50 ± 0.10 0.51 ± 0.053
150 0.58 ± 0.026 0.56 ± 0.037 0.54 ± 0.059 0.53 ± 0.038
300 0.57 ± 0.043 0.55 ± 0.040 0.57 ± 0.073 0.55 ± 0.031

Table A.2: Classification accuracy based on the expert-selected regions.

K GI, RF Classify GI, SVM Classify t-score, RF Classify t-score, SVM Classify

10 0.75 ± 0.034 0.66 ± 0.033 0.53 ± 0.053 0.54 ± 0.058
50 0.66 ± 0.048 0.60 ± 0.043 0.57 ± 0.056 0.57 ± 0.050
100 0.63 ± 0.029 0.59 ± 0.032 0.57 ± 0.034 0.58 ± 0.058

the cross-validation iterations. It also suggests that the differences between a control and

schizophrenia population are captured in a complex pattern of functional connectivity, which

cannot be detected by univariate tests.

Tables A.1 and A.2 report the classification accuracy for each feature selection/classifier

pair based on the entire dataset and on the expert-selected ROIs, respectively. The three

values of K roughly correspond to thresholding the mean p-value of the Kth feature to 0.01,

0.05 and 0.10, For small values of the feature count K, the classification accuracy based

on univariate statistics is near chance. This indicates that functional connectivity selection
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based on large t-scores has no predictive power. In contrast, we achieve as high as 75%

prediction accuracy using GI values.

As K increases, all classifiers converge towards the base accuracy obtained by incor-

porating all of the features. However, the GI-based classifiers approach this baseline from

above, whereas the univariate classifiers approach from below. This behavior is reflected

in Tables A.1 and A.2. In particular, the classification accuracy decreases with K in the

first two columns (GI) and increases with K in the last two columns (univariate). It is

worth noting that while the classification accuracy improves with K for the univariate clas-

sifiers, the average p-value is rapidly decreasing. Therefore, one would never report these

connections as being significant.

The above results demonstrate that the Gini Importance is a more robust feature selec-

tion criterion for clinical data than the univariate t-test. Fig. A-4 and Table A.3 report the

features (connections) selected during at least half of the cross-validation iterations. For

GI, we depict results for K = 15, which yields the best classification accuracy. For t-score,

we used K = 150 for the full dataset and K = 50 for the selected features. This roughly

corresponds to p-values less than 0.05. We observe that many of the significant functional

correlations are consistent between Fig. A-4(a) and Fig. A-4(b). This confirms the clinical

hypotheses about brain regions that play a role in schizophrenia. In contrast, Fig. A-4(c-d)

scarcely exhibit any consistent connections.

As mentioned earlier , over half of the connections in Table A.3 correspond to the sig-

nificant differences reported in Table 3.3 and Table 3.4 from Chapter 3. We observe that

the joint model (blue/purple) has a much greater overlap with the GI-based features than

the functional model (green). The correspondence between our generative and discrimi-

native methods suggests that the anatomical information in DWI data somehow stabilizes

the estimates of latent functional connectivity. This, in turn, allows the joint model to

pinpoint discriminative connections. The GI method also detects similar connectivity pat-

terns in Fig. A-4(a-b) as in Fig. 3-9. Namely, schizophrenia patients exhibit increased

functional connectivity between the parietal/posterior cingulate region and the frontal lobe

and reduced functional connectivity between the parietal/posterior cingulate region and the

temporal lobe. These results confirm the hypotheses of widespread functional connectivity

changes in schizophrenia and of functional abnormalities involving the default network.
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(a) GI, Full Dataset (b) GI, Selected Features

(c) t-score, Full Dataset (d) t-score, Selected Features

Figure A-4: Connections selected during at least half of the cross-validation runs. Blue lines
indicate higher connectivity in the control group; yellow lines indicate higher connectivity
in the schizophrenia population.
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Table A.3: Connections selected during at least half of the cross-validation runs. For GI,
we used K = 15, which gives the best classification accuracy. For t-score, we used K = 150
for the full dataset and K = 50 for the selected features. This roughly corresponds to
p-values less than 0.05. The blue connections were identified by the joint generative model
in Chapter 3, and the green connection overlaps with the fMRI-only model.

Region 1 Region 2 Prop Sel

GI, Full Dataset

L Posterior Cingulate (L-PCC) L Amygdala (L-Amy) 1.00
R Paracentral Gyrus (R-pC) L Transverse Temporal (L-TTG) 1.00
R Posterior Cingulate (R-PCC) R Pars Triangularis (R-pTri) 0.89
L Transverse Temporal (L-TTG) L Paracentral Gyrus (L-pC) 0.84
R Posterior Cingulate (R-PCC) L Amygdala (L-Amy) 0.83
R Pars Triangularis (R-pTri) L Posterior Cingulate (L-PCC) 0.78
R Pars Opercularis (R-pOper) L Posterior Cingulate (L-PCC) 0.72
R Isthmus Cingulate (R-IC) R Posterior Cingulate (R-PCC) 0.59
R Rostral Middle Frontal (R-RMF) R Corpus Callosum (R-CC) 0.57

GI, Selected Dataset

L Posterior Cingulate (L-PCC) L Amygdala (L-Amy) 1.00
R Paracentral Gyrus (R-pC) L Transverse Temporal (L-TTG) 1.00
R Posterior Cingulate (R-PCC) R Pars Triangularis (R-pTri) 1.00
R Pars Triangularis (R-pTri) L Posterior Cingulate (L-PCC) 0.97
R Posterior Cingulate (R-PCC) L Amygdala (L-Amy) 0.96
L Transverse Temporal (L-TTG) L Paracentral Gyrus (L-pC) 0.95
R Pars Opercularis (R-pOper) L Posterior Cingulate (L-PCC) 0.93
R Rostral Middle Frontal (R-RMF) R Posterior Cingulate (R-PCC) 0.76
R Posterior Cingulate (R-PCC) R Pars Opercularis (R-pOper) 0.62
R Transverse Temporal (R-TTG) L Paracentral Gyrus (L-pC) 0.55
R Supramarginal Gyrus (R-SM) L Amygdala (L-Amy) 0.51
R Precentral Gyrus (R-preCG) L Transverse Temporal (L-TTG) 0.51

t-score, Full Dataset

R Superiorparietal Gyrus (R-SP) R Rostral Middle Frontal (R-RMF) 0.64
R Lateral Occipital Cortex (R-LOcc) R Caudate Nucleus (R-Caud) 0.55
L Lateral Occipital Cortex (R-LOcc) R Caudate Nucleus (R-Caud) 0.53

t-score, Selected Dataset

R Superiorparietal Gyrus (R-SP) R Rostral Middle Frontal (R-RMF) 0.50
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