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Abstract: Registration performance can significantly deteriorate when image regions do not comply
with model assumptions. Robust estimation improves registration accuracy by reducing or ignoring
the contribution of voxels with large intensity differences, but existing approaches are limited to mono-
modal registration. In this work, we propose a robust and inverse-consistent technique for cross-
modal, affine image registration. The algorithm is derived from a contextual framework of image regis-
tration. The key idea is to use a modality invariant representation of images based on local entropy
estimation, and to incorporate a heteroskedastic noise model. This noise model allows us to draw the
analogy to iteratively reweighted least squares estimation and to leverage existing weighting functions
to account for differences in local information content in multimodal registration. Furthermore, we use
the nonparametric windows density estimator to reliably calculate entropy of small image patches.
Finally, we derive the Gauss–Newton update and show that it is equivalent to the efficient second-
order minimization for the fully symmetric registration approach. We illustrate excellent performance
of the proposed methods on datasets containing outliers for alignment of brain tumor, full head, and
histology images. Hum Brain Mapp 36:1365–1380, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Tremendous progress in image registration has led to a
vast number of new algorithms over the last decades. One
of the important aspects for translating these algorithms
from research to clinical practice is their robustness. Clini-
cal images tend to frequently violate model assumptions
that were incorporated in the derivation of the algorithm.
Typical sources for such inconsistencies are imaging arti-
facts, noise, anatomical changes, and partial image infor-
mation. Registration methods based on concepts from
robust estimation have been proposed to address such
issues by identifying outliers in the images and restricting
their influence on the cost function [Reuter et al., 2010].
These techniques are targeted at minimizing weighted
intensity differences and, therefore, cannot account for
more complex intensity relationships, prevalent in multi-
modal images. However, multimodal registration could
largely benefit from robust approaches because inconsis-
tencies arise from the very nature of multimodal acquisi-
tions: the depiction of complementary information.
Structural information that is only available in selected
image modalities thus adds to the inconsistencies already
observed in monomodal registration and therefore high-
lights the need for robust multimodal registration.

Furthermore, several applications require the calculation
of inverse-consistent (i.e., unbiased) transformations that
are independent of the order of the two passed images.
Usually, an asymmetric registration approach is taken,
where only one of the images is transformed during regis-
tration and consequently only this image is resampled
onto the grid of the fixed image. Even in global (rigid/
affine) registration, this asymmetry in the resampling pro-
cess introduces artifacts to only one of the images and has
been shown to bias follow-up analyses [Fox et al., 2011;
Reuter and Fischl, 2011; Thompson and Holland, 2011;
Yushkevich et al., 2010]. Inverse-consistent approaches
avoid this processing bias and have been a focus of
research in registration [Avants et al., 2008; Christensen
and Johnson, 2001; Reuter et al., 2010; Smith et al., 2002;
Vercauteren et al., 2009]. A fully symmetric registration
setup where both images are mapped into the mid-space
avoids such problems and produces inverse-consistent
results. However, existing symmetric approaches describe
monomodal registration settings and focus mainly on non-
linear transformation models. The reliable and unbiased
inclusion of multimodal image stacks into modern image
processing pipelines therefore requires an inverse-
consistent multimodal registration.

In this article, we address these requirements and intro-
duce a robust, inverse-consistent, multimodal registration
algorithm. The method is designed to produce a highly
accurate affine alignment of images in the presence of
potentially severe local outliers. We derive the new regis-
tration algorithm via a probabilistic framework that incor-
porates layers of latent random variables. The layers
provide a structural representation of images, transform-

ing the initial multimodal setup into a monomodal regis-
tration problem via localized entropy estimation
[Wachinger and Navab, 2012a]. We incorporate a hetero-
skedastic Gaussian noise model for the similarity term that
operates on the latent layers, allowing for spatially varying
noise. This construction permits using techniques from
robust estimation to model local noise variation via an
iteratively reweighted least squares estimation. Moreover,
we derive the Gauss–Newton method with symmetric
transformation updates in the Lie group and show that
this approach corresponds to an efficient second-order
minimization (ESM) achieving a vastly improved conver-
gence rate and frequency, as it uses gradient information
from both images.

Applications

The first target application is the registration of multi-
modal, intrasubject, full head images with the objective to
accurately align brain structures. As these images are col-
lected very close in time (often within the same scan ses-
sion), we expect only minimal changes in the brain
between these multimodal image pairs, but potentially
large differences in surrounding regions, for example, in
soft tissue, different jaw, tongue, neck and eye placement,
or different cropping planes due to subject motion. Apply-
ing deformable registration here is not meaningful as brain
displacements are only rigid (or at most affine, depending
on the acquisition). Nonlinear registration bears the risk of
propagating unwanted deformations into the brain by reg-
ularization constrains. In full head registration, however,
standard global alignment can fail because of the non-
matching structures and may terminate in local minima. A
robust approach helps to overcome this problem by identi-
fying nonmatching structures as outliers and by iteratively
reducing their influence on the registration.

An alternative approach to this problem would be to
align skull-stripped images and thus remove most of the
local differences outside the brain. Unfortunately, brain
extraction tools (BET) often work only on a single modal-
ity. Even when they can be applied to both images inde-
pendently, they will lead to varying brain masks, as
different parts of dura or skull may be included or
removed by the algorithm. A robust registration (RR)
approach is capable of identifying these regions and can
produce highly accurate alignments of the brain independ-
ent of skull stripping errors. Common cross-modal regis-
tration procedures are often severely influenced by strong
boundary edges and thus may drive the registration
toward a good alignment of the boundary, sacrificing
accuracy in the interior. Consequently, the proposed RR
method can assist in pre-registering full head images for
the simultaneous extraction of the brain in both modalities
or to accurately align independently extracted brain
images.

A second motivating application for our method is the
alignment of brain tumor images. Tumors have a different
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appearance depending on the acquisition parameters and
the usage of contrast agent (e.g., Gadolinium in MR angi-
ography). The largely varying appearance can deteriorate
the performance of common multimodal registration algo-
rithms. Approaches based on robust statistics are useful in
this context; they automatically discount those regions and
recover the correct alignment based on the remainder of
the image. Additionally, accurate alignment of full head
images can also be beneficial for tumor images as the
automatic brain extraction is very challenging in these
cases. Common BETs use prior knowledge about intensity
distributions to extract the brain. As the intensity values
vary significantly in tumor regions, such methods fail fre-
quently in the presence of pathology.

A final application is the mapping of histology images
to optical coherence tomography (OCT) [Huang et al.,
1991; Yaqoob et al., 2005] or to high-resolution MR images.
Accurate registration with histology is necessary to vali-
date the appearance of structures in OCT or MR based on
their true appearance on the histological slices. Further-
more, accurate correspondence will be invaluable to guide
development and validation of new algorithms for auto-
matic detection of areal and laminar boundaries in the
human brain, or of the extent of infiltrating tumors. His-
tology registration can be extremely challenging due to
tears and deformations that occur during slicing, mount-
ing, and staining. These artifacts are not present in the
previously acquired OCT or MR images and give rise to
complex registration problems that can be alleviated when
using our proposed robust cross-modal algorithm.

Related Work

Stewart [1999] presents a general summary of robust
parameter estimation in computer vision. Most RR techni-
ques focus on monomodal registration. Nestares and
Heeger [2000] propose a method based on M-estimators
for the RR of images. Periaswamy and Farid [2006] intro-
duce a method based on a local neighborhood and use the
expectation-maximization algorithm to handle partial data.
Reuter et al. [2010] introduce a robust, inverse-consistent
registration approach, where both images are transformed
into a mid space. Similar to [Nestares and Heeger, 2000]
robust statistics are used to obtain accurate registration in
the presence of temporal differences. This approach was
shown to lead to superior results for alignment of mono-
modal images acquired in the same session, as well as
across time in longitudinal studies [Reuter et al., 2012].

In addition to related methods for monomodal registra-
tion, a few studies have reported results for robust multi-
modal registration. Itti et al. [1997] extract the brain
surface and subsequently perform an iterative anisotropic
chamfer matching. A hybrid registration approach, based
on the extraction of the brain surface and intensity infor-
mation is proposed in [Greve and Fischl, 2009]. Wong and
Orchard [2009] use the residual of the local phase coher-

ence representation for registration. This is similar to local
phase mutual information (MI) [Mellor and Brady, 2005],
where MI is calculated between local phase estimates
from the image intensities for multimodal registration.

Here, we transform the multimodal registration problem
to a monomodal one. Several structural representations
have been proposed in the literature for this purpose.
Andronache et al. [2008] recolor images, depending on the
variance in the images. Other algorithms extract edges
and ridges from the images [Maintz et al., 1996] or corre-
late image gradient directions [Haber and Modersitzki,
2007]. Wachinger and Navab [2012a] study the theoretical
properties of structural representations and propose two
approaches: an entropy representation, and Laplacian
images with spectral decomposition for dimensionality
reduction. Entropy images can be easily and quickly cal-
culated via a dense grid of patches. While they bear simi-
larities to gradient images, they better represent complex
configurations such as triple junctions [Wachinger and
Navab, 2012a]. Shechtman and Irani [2007] use a concept
similar to the Laplacian images; however, they construct
the self-similarity descriptor based only on local informa-
tion. Heinrich et al. [2012] also use local self-similarity
measures for multimodal registration, but without dimen-
sionality reduction. With the length of the information
vector corresponding to the size of the neighborhood, this
approach is limited to small neighborhoods due to mem-
ory and computational complexity constrains.

In this study, we focus on affine and rigid transforma-
tion models with low degrees of freedom. Many applica-
tions require a highly accurate global registration, for
example, to align different image modalities within subject
in close temporal proximity. Nonlinear registrations across
subjects, or across time, are usually performed within-
modality using a high-resolution image or full images
stacks. Furthermore, nonlinear registrations rely on an
accurate global alignment as a preprocessing step. There
are a number of freely available registration software
packages. The widely used registration tool FLIRT [Jenkin-
son et al., 2002], part of the FSL package [Smith et al.,
2004], implements several intensity based cost functions
such as sum of squared differences, correlation ratio, and
MI. It also contains sophisticated optimization schemes to
prevent the algorithms from being trapped in local min-
ima. The freely available SPM software package [Ash-
burner and Friston, 1999] contains a registration tool
based on [Collignon et al., 1995]. In our study, we com-
pare against these two programs to evaluate the proposed
registration method.

Outline

Robust Multimodal Registration section introduces our
robust, inverse-consistent, multimodal registration method
using a probabilistic framework of image registration. In
Optimization section, we derive the steepest descent and
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Gauss–Newton optimization steps, with the latter one cor-
responding to the ESM for the proposed symmetric regis-
tration setup. The calculation of entropy images with the
nonparametric (NP) windows estimator is described in
Entropy Images with NP Windows section. Finally, we
present experiments on several datasets in Experiments
section.

ROBUST MULTIMODAL REGISTRATION

In this section, we detail our robust multimodal registra-
tion approach. First, we describe the parameterization of
the transformations for the symmetric setup in Symmetric
Transformation Parameterization section. Subsequently,
we present a probabilistic model for robust multimodal
registration based on entropy images in Probabilistic
Model for RR section. Heteroskedastic Noise section intro-
duces the spatially varying noise model that allows us to
draw the analogy of the derived log-likelihood function to
iteratively reweighed least squares estimation in Relation-
ship to Iteratively Reweighted Least Squares section. This
connection permits to leverage existing robust estimators
for the purpose of RR in Robust Estimators section.

Symmetric Transformation Parameterization

For RR, we are interested in transforming both images
into an unbiased common space. This is achieved by a
symmetric registration approach, mapping both images
into the mid space [Avants et al., 2008]. The result is an
inverse-consistent registration [Christensen and Johnson,
2001; Zeng and Chen, 2008]. This implies that the exact
inverse transformation will be obtained by swapping the
fixed and moving image. The common setup is to have
one moving image Im and one fixed image If together with
a transformation T that operates on the moving image,
ImðTðxÞÞ � IfðxÞ, for all spatial locations on the image grid
x 2 X. For the symmetric approach, we want to transform
both images half way and, therefore, need to calculate the
half transformation “1

2 T”. As the space of most linear and
nonlinear transformations is not a vector space, we use a
parameterization of transformations that has a Lie group
structure. This construction ensures that we stay within
the transformation space after the parameter update and
facilitates calculations, such as computing the inverse
transformation, as required for the symmetric approach.

More precisely, consider transformation T that is part of
the Lie group G with the related Lie algebra g. Each ele-
ment in the Lie algebra t 2 g can be expressed as a linear
combination t5

Pn
i51pi � bi, with the standard basis of the

Lie algebra b1; . . . ; bn and transformation parameters p5½p1

; . . . ;pn� [Zefran et al., 1998]. The exponential map

exp : g ! G

t 7! exp ðtÞ5exp
Xn

i51

pi � bi

 !
5T

assigns to an element of the Lie algebra t that is dependent
on the transformation parameters p the corresponding
transformation T. For notational convenience, we define
the transformation operator TpðxÞ that maps the location x
with the Lie algebra parameters p. This is a shorthand for
creating a member of the Lie algebra with the basis ele-
ments bi, applying the exponential map to obtain a trans-
formation matrix, and using this matrix to map x.

In the space of the Lie algebra it is straightforward to
calculate the mid space transformation with the half
parameters p

2 and the inverse transformation with the neg-
ative parameters 2p. The concatenation of two transforms
leads to the original transform

Tp=2 � T2p=2

� �21
5exp

Xn

i51

pi

2
bi

 !
� exp

Xn

i51

2
pi

2
bi

 !21

5exp
Xn

i51

pibi

 !
5Tp:

Lie group parameterizations have been applied to rigid,
affine, projective, and nonlinear registration [Arsigny
et al., 2009; Benhimane and Malis, 2004; Vercauteren et al.,
2009; Wachinger and Navab, 2009; Wachinger and Navab,
2013]. In this study, we work with rigid and affine trans-
formations. While a standard parameterization for the
rigid case exists [Zefran et al., 1998], different parameter-
izations were proposed for affine transformations [Arsigny
et al., 2009; Kaji et al., 2013; Kaji and Ochiai, 2014]. For the
parameterization in [Arsigny et al., 2009], no closed form
of the exponential map exists. The parameterization in
[Kaji et al., 2013; Kaji and Ochiai, 2014] describes the trans-
formation matrix as a product of two matrix exponentials,
which complicates the computation of the half transform.
A viable alternative in practice is to directly update the
parameters of the transformation matrix, as gradient
descent optimizations are unlikely to produce negative
determinants when started from identity. The half trans-
form in this case can be directly computed via the matrix
square root. Note, that the matrix square root is equivalent
to exp ðlog Tð Þ= 2Þ but computationally more efficient. It
can be computed via a Schur decomposition and then
applying a recurrence of Parlett for computing the root of
the triangular matrix.

Probabilistic Model for RR

Probabilistic modeling presents a mathematical frame-
work to derive algorithms for image registration in which
assumptions about the characteristics of the noise and sig-
nal are made explicit. In this work, we leverage techniques
for robust estimation that require comparable intensity val-
ues, as in the monomodal registration setup. For this pur-
pose, we use a probabilistic framework [Wachinger and
Navab, 2012b] that introduced layers of latent random var-
iables, called description layers. Figure 1 shows a
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schematic illustration of the framework in 2D. The
description layer Dm depends on Im and Df depends on If.
In our study, we use the description layers to store a
structural representation of images.

This framework emphasizes the importance of the
local context. It replaces the common assumption of
independently distributed coordinate samples with the
Markov property. The Markov property allows for split-
ting up a joint distribution into singleton terms, where
each term is conditioned on a neighborhood that con-
tains all the relevant information. In our case, each loca-
tion x in the description layer is dependent on a local
neighborhood or patch NðxÞ in the image, as shown in
Figure 1. The joint distribution for the contextual frame-
work factorizes as

p Im; If;Dm;Df;pð Þ5
Y
x2X

p Dm xð ÞjIm N xð Þð Þð Þ � p Df xð ÞjIf N xð Þð Þð Þ

� p Dm xð ÞjDf xð Þ;pð Þ;
(1)

with the coupling terms pðDmðxÞjImðN ðxÞÞÞ and pðDfðxÞjIfðN ðxÞÞÞ
that ensure that the description layers represent the
original image information, and the similarity term
pðDmðxÞjDfðxÞ;pÞ that compares both description layers.
Commonly used description layers result from image filter-
ing, image gradients, or dense feature descriptors. As we are
interested in a modality-invariant description, we use a
structural representation with entropy images, justified by
applying the asymptotic equipartition property on the cou-
pling terms [Wachinger and Navab, 2012b]. Under the
assumption that the information content across modalities is
similar, entropy images reduce the multimodal setup to a

monomodal registration problem. This is essential for the
further derivation of the RR approach, which assumes a
monomodal registration setup. Entropy Images with NP
Windows section details the calculation of entropy
images.

Based on the distribution in Eq. (1), we formulate regis-
tration as maximum likelihood estimation [Viola and
Wells, 1997; Roche et al., 2000]. For the contextual frame-
work, the optimization is performed over the description
layers and transformation parameters

p̂; D̂m; D̂f

h i
5 arg max

p;Dm;Df

pðIm; If;Dm;Df; pÞ:

In this work, we do not allow for a dynamic adaptation
of the description layers during the registration process by
specifically choosing to work with entropy images. The
coupling terms, therefore, only motivate the construction
of the description layers but do not influence the optimi-
zation, yielding the maximization problem

p̂5arg max
p

pðIm; If;Dm;Df; pÞ

5arg max
p

pðDmjDf;pÞ:

Heteroskedastic Noise

After introducing the layout of the probabilistic frame-
work, the similarity term pðDmjDf;pÞ needs to be speci-
fied. This requires the introduction of the underlying
imaging model. First, we map both of the description
layers into the mid space to obtain an inverse-consistent
transformation. Second, we assume heteroskedastic Gaus-
sian noise to account for outliers and perform robust esti-
mation. Third, instead of intensity mapping, we operate
on the modality-invariant description layers. This set of
assumptions yields the imaging model

Dm Tp=2ðxÞ
� �

5Df T2p=2ðxÞ
� �

1EðxÞ (2)

with a spatially varying Gaussian noise EðxÞ � N ð0;r2ðxÞÞ
and variance r2ðxÞ. Note that this model differs from
alternative probabilistic approaches [Viola and Wells,
1997; Roche et al., 2000] that consider homoskedastic
image noise, EðxÞ5E; 8x 2 X. To facilitate notation, we
define D"mðxÞ5DmðTp=2ðxÞÞ for the movable image
mapped forward and D#f ðxÞ5DfðT2p=2ðxÞÞ for the fixed
image mapped backward. We continue referring to
images and description layers as fixed and moving to
differentiate between them, although both of them are
moving.

In the derivation of the similarity measure, we relax the
commonly made assumption of independent and identi-
cally distributed samples to allow independent and not
identically distributed samples. We define the log-
likelihood function for heteroskedastic Gaussian noise

Figure 1.

Contextual model for image registration illustrated in 2D. Image

layers Im and If consist of observed random variables. Descrip-

tion layers Dm and Df are latent. Each descriptor variable at

location x depends on a local image neighborhood NðxÞ, which

is of size 4 in the illustration. A one-to-one relationship exists

between the description layers. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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log pðDmjDf;p; EÞ5log
Y
x2X

pðDmðxÞjDfðxÞ;p; EðxÞÞ

5
X
x2X

log
1ffiffiffiffiffiffi

2p
p

rðxÞ
exp 2

½D"mðxÞ2D#f ðxÞ�
2

2rðxÞ2

 ! !

5
X
x2X

2logðrðxÞÞ2 ½D
"
mðxÞ2D#f ðxÞ�

2

2rðxÞ2
1const;

(3)

where const does not depend on the variables of interest.
The influence of each sample in the summation is depend-
ent on rðxÞ. In fact, rðxÞ22 can be seen as a local weight
that determines the influence of the local error. Note that,
for a constant variance across the image rðxÞ5r; 8x 2 X,
this reduces to the commonly applied sum of squared dif-
ferences. The optimization problem changes from estimat-
ing just the transformation parameters to additionally
estimating the variance at each location

p̂; r̂½ �5arg max
p;r

log pðDmjDf;p;rÞ;

with the vector of variances r25½r2ðx1Þ . . . r2ðx˚X˚Þ�. The
joint estimation of transformation parameters and variance
can cause a complex optimization problem. We use an
iterative optimization procedure that alternates between
optimizing the transformation parameters and variances,
as summarized in the following Algorithm 1:

Alternating Optimization:

p̂ð0Þ50;

for k 5 1 to maxIteration do

ðIÞ r̂ðkÞ5arg maxrlog pðDmjDf; p̂
ðk21Þ;rÞ

ðIIÞ p̂ðkÞ5arg maxplog pðDmjDf; p; r̂
ðkÞÞ

end for

Initially, the transformation parameters are set to zero,
corresponding to the identity transformation.1 In step (I),
the optimal variances r̂ðkÞ are calculated for the transfor-
mation of the last iteration p̂ðk21Þ. In step (II), the optimal
transformation p̂ðkÞ is calculated for fixed variances r̂ðkÞ.
An important consequence of the decoupled optimization
is that the log-likelihood term in Eq. (3) only depends on
the second term when maximizing with respect to the
transformation parameters in step (II) of Algorithm 1.

To solve step (I), we draw the relationship to iteratively
reweighted least squares estimation for which a large
number of robust estimators have been proposed. This
allows us to estimate local variances even though we only
have a two intensity values at each location x.

Relationship to Iteratively Reweighted Least

Squares

In iteratively reweighted least squares estimation
[Holland and Welsch, 1977; Street et al., 1988], the least
squares estimator is replaced by the more general class of
M-estimators. This yields a cost function

EðpÞ5
X

x

qðrðxÞÞ;

where q is a symmetric, positive-definite function with a
unique minimum at zero and rðxÞ5D"mðxÞ2D#f ðxÞ. In the
following, we concentrate on q being differentiable, in
which case the M-estimator is said to be of w-type (as
w5q0). Calculating the derivative yields

oEðpÞ
opi

5
X

x

q0ðrðxÞÞ orðxÞ
opi

:

Defining a weight function wðzÞ : 5
q0ðzÞ

z , we obtain

oEðpÞ
opi

5
X

x

wðrðxÞÞ rðxÞ orðxÞ
opi

: (4)

To relate this to our optimization problem, we calculate
the gradient of the negative log-likelihood function of
Eq. (3)

2
olog pðDmjDf; p; EÞ

opi
5
X

x

1

r2ðxÞ rðxÞ orðxÞ
opi

; (5)

under the assumption that r2ðxÞ does not depend on the
transformation parameter p, as it is the case for the alter-
nating optimization. Comparing Eqs. (4) and (5), we see
that they can be brought into correspondence by identify-
ing wðxÞ5 1

r2ðxÞ. This shows that the application of
gradient-based optimization for the proposed log-
likelihood function is equivalent to the gradient-based
optimization of the M-estimator function q. As the weights
are inversely related to the variances, we have r2ðxÞ5 1

wðxÞ
5

rðxÞ
q0ðrðxÞÞ for different M-estimators q.

Robust Estimators

Having this important connection established, we can
now leverage M-estimators q, for the robust description of
the local variances. Here, we specifically model the varian-
ces via Tukey’s biweight function, as it completely sup-
presses the effect of outliers:

r2ðxÞ5
ð12

rðxÞ2
c2 Þ22; if jrðxÞj � c;

1; otherwise;

8<
:

Figure 2 illustrates Tukey’s biweight function as well as
the quadratic function with the corresponding weights.
The weight function w rð Þ5 q’ðrÞ=r for the quadratic

1An alternative would be to initialize the transformation based on
raw image moments, as described in (Reuter et al., 2010).
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function q rð Þ5 r2=2 is the constant function w rð Þ51

and for Tukey’s biweight function is w rð Þ5 1
r2ðrÞ5 12 r2

c2

� �2

for jrj � c and zero otherwise. Tukey’s biweight (red curve)
limits the influence of large residuals (r > c), for which the
weights (red dashed curve) are zero (and the variance infin-
ity). The regular least squares approach (blue curves) results
in a constant weight function and variance, independent of
the local residuals, and thus considers the contribution of
all voxels equally. Using Tukey’s estimator requires the sat-
uration parameter c to be set. A fixed value of c54:685 is
recommended for unit Gaussian noise by [Holland and
Welsch, 1977; Nestares and Heeger, 2000]. However, it may
be more appropriate to specify the value depending on the
characteristics of the input images. A method to automatically
estimate the saturation parameter for each image pair in a
preprocessing step on low-resolution images has been recom-
mended in [Reuter et al., 2010]. The procedure allows for
more outliers in the skull, jaw and neck regions, where more
variation is to be expected. We use this method to estimate
the saturation parameter for entropy images automatically.

OPTIMIZATION

In this section, we present more details on the optimization
with respect to the transformation parameters (step (II) in
Algorithm 1) and derive the Gauss–Newton method. More-
over, we show that Gauss–Newton corresponds to the ESM
for the special case of a fully symmetric setup. For the
alternating optimization, only the second term of the log-

likelihood function in Eq. (3) is a function of the transforma-
tion. We rewrite the resulting cost function in vector notation

CðpÞ5 1

2
rðpÞ>W>WrðpÞ5 1

2
kWrðpÞk2; (6)

with the diagonal weight matrix Wxx5 1
rðxÞ of size RjXj3jXj.

As before, the weights do not depend on the transforma-
tion parameters p.

Steepest descent:
For steepest descent, we obtain the update rule

h5a � JC p p1h

where a is the learning rate . Note that the additive
update in Lie algebra is equivalent to a compositional
update in the Lie group Tp 8 expð

P
hi � biÞ. The Jacobian

JCðpÞ contains the partial derivatives of all n parameters,
that is, JCðpÞ5½

oCðpÞ
op1

; . . . ; oCðpÞ
opn
� with

oCðpÞ
opi

5W2rðpÞ orðpÞ
opi

:

Gauss–Newton and Efficient Second-Order
Minimization:

For least squares optimization problems, as in Eq. (6),
Gauss–Newton methods can be applied. From the Taylor
series, we obtain the following approximation of the resid-
ual for small updates khk

rðp1hÞ � rðpÞ1JrðpÞ � h

with the Jacobian JrðpÞ5
orðpÞ
op1

; . . . ; orðpÞ
opn

h i
. The linear approx-

imation yields

Cðp1hÞ5 1

2
kWrðp1hÞk25

1

2
rðp1hÞ>W>Wrðp1hÞ

� 1

2
rðpÞ>W2rðpÞ1h>JrðpÞ

>W2rðpÞ1 1

2
h>JrðpÞ

>W2JrðpÞh

5CðpÞ1h>JrðpÞ
>W2rðpÞ1 1

2
h>JrðpÞ

>W2JrðpÞh

We obtain the optimal update by differentiating with
respect to h and setting the gradient to zero, leading to
the linear system of equations

JrðpÞ
>W2JrðpÞ

� �
h52JrðpÞ

>W2rðpÞ:

The update is as before p p1h. We take a closer look
at the Jacobian to see an interesting consequence of the
fully symmetric setup

JrðpÞ5
o D"m2D#f

� �
op

5
o Dm Tp=2

� �
2Df T2p=2

� �� �
op

5
1

2
ðrDmÞ

"
1ðrDfÞ

#
� � oTp

op
:

As the first image is mapped exactly in the inverse
direction of the second, the derivatives of the

Figure 2.

Illustration of Tukey’s biweight function for c52 in red and the

quadratic function r2

2
in blue. We also show the corresponding

weight function
q0ðrÞ

r
as dashed line. The weights are constant for

the quadratic function. For Tukey’s biweight, the weights are

zero for jrj. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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transformations only differ by a minus sign. Thus, the
transformation derivative oTp

op can be factored out. The
resulting formula for the Jacobian is equivalent to the Jaco-
bian of the ESM [Benhimane and Malis, 2004; Vercauteren
et al., 2007; Wachinger and Navab, 2009, 2013]. For the
fully symmetric registration setup, Gauss–Newton and
ESM are therefore equivalent. A similar relationship for
another symmetric formulation was independently discov-
ered by [Lorenzi et al., 2013] in an analysis of the log-
Demons algorithm.

In a general setup, ESM was shown to require signifi-
cantly fewer steps in the optimization than Gauss–New-
ton [Benhimane and Malis, 2004; Wachinger and Navab,
2013] and to have a cubic convergence rate [Malis,
2008]. The update procedure of ESM is closely related to
Gauss–Newton: it uses the addition of the image gra-
dients of both images, instead of just one of the images.
We use the Gauss–Newton optimization in our experi-
ments and are benefiting from the attractive convergence
properties of ESM because of the symmetric setup. To
simplify implementation, we explicitly state the deriva-
tive at a point p5 x; y; z; 1ð Þ for the rigid case [Wachinger
and Navab, 2013]

oTp

op

� �
p

5

0 z 2y 1 0 0

2z 0 x 0 1 0

y 2x 0 0 0 1

0
BB@

1
CCA;

and for the affine case [Ashburner, 2000; Reuter et al.,
2010]

oTp

op

� �
p

5

x y z 1 0 0 0 0 0 0 0 0

0 0 0 0 x y z 1 0 0 0 0

0 0 0 0 0 0 0 0 x y z 1

0
BB@

1
CCA:

Additional Algorithmic Details

We use a multiresolution approach to estimate large dis-
placements between the images [Roche et al., 1999]. The
Gaussian pyramid is constructed by halving each dimen-
sion on each level until the image size is approximately
163. This procedure results in five resolution levels for typ-
ical image sizes (2563). The iterations at each level are ter-
minated if the transformation update is below a specified
threshold (0.01 mm) or a maximum number of iterations
(5) is reached. The registration of the subsequent resolu-
tion level is initialized with the result of the previous one.

In our experiences with entropy images, different
smoothness or signal-to-noise ratio can lead to entropy
images that vary in overall scale. To account for this varia-
tion, we add a global intensity scaling of entropy images.
As we are interested in a fully symmetric registration
setup, we apply the intensity scaling to both images. The
equation for the imaging model (2), changes to

e
s
2 �Dm Tp=2ðxÞ

� �
5e2s

2 �Df T2p=2ðxÞ
� �

1EðxÞ;

where s is the scaling parameter.2 We choose an expo-
nential intensity scaling, in contrast to square root multi-
plication of s in [Reuter et al., 2010], because it is
symmetric (with respect to the parameter update) and
improves the stability of the model.

ENTROPY IMAGES WITH NP WINDOWS

We use entropy images with the NP windows estimator
to obtain a structural representation of the images. Consid-
ering an image I and a local neighborhood NðxÞ, the corre-
sponding description layer is calculated as

DðxÞ5HðIjN ðxÞÞ;

with the Shannon entropy HðYÞ52
P

y2YpðyÞlog pðyÞ and
IjN ðxÞ the restriction of the image to the neighborhood
NðxÞ. The calculation of the local entropy for all locations
in the image leads to entropy images. Compared to MI,
entropy images have advantages for the registration of
images affected by bias fields [Wachinger and Navab,
2012a]. An essential step for the entropy calculation is the
estimation of the intensity distribution pIjN ðxÞ within patches
IjN ðxÞ. Conversely, the patch size has to be large enough to
provide enough samples for reliable density estimation.
Conversely, a large patch size leads to smoothing in the
images. As we are interested in a highly accurate multimo-
dal registration, we want to reduce the patch size as much
as possible to allow for accurate localization and sharp
structures.

One approach is to upsample the original image and
to utilize the interpolated values for the density estima-
tion. A recently proposed method of NP windows
[Dowson et al., 2008] considers the asymptotic case by
letting the number of interpolated samples go to infinity.
The method involves constructing a continuous space
representation of the discrete space signal using a suita-
ble interpolation method. NP windows require only a
small number of observed signal samples to estimate the
density function and are completely data driven. Origi-
nally, Dowson et al. [2008] only presented closed form
solutions for certain 1D and 2D density estimation cases.
Recently, Joshi et al. [2011] introduced a simplified ver-
sion of NP windows estimation. Importantly they also
include closed form solutions for 3D images. The density
is estimated per cube in the volume, where each cube is
divided in five tetrahedra. Finding the density estimate
over the cube then reduces to finding densities for each
of the tetrahedra. We use the NP windows density

2We consider separate noise for fixed and moving image, which are
subject to the intensity scaling. Since linear combination of mutually
independent normal random variables is again normal distributed,
we summarize it into a global noise term.
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estimation for entropy images, leading to highly localized
entropy images. Figure 3 shows entropy images for den-
sity estimation based on histograms and NP windows
for different patch sizes. The entropy estimation with NP
windows leads to a clear improvement, especially for
small patch sizes.

EXPERIMENTS

We evaluate the robust, multimodal registration in the
following experiments. For quantifying the registration
results, we calculate the root mean squared (RMS) error
between two transformations [Jenkinson, 1999]. This error
describes the average voxel displacements in millimeter
inside a ball with radius r located at the center of the
image. Given two affine transformations in 3D, ðA1; t1Þ
and ðA2; t2Þ, with the 333 transformation matrices Ai and
the 331 translation vectors ti, the RMS error is

ERMS5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5
r2tr½ðA22A1Þ>ðA22A1Þ�2ðt22t1Þ>ðt22t1Þ

r
:

We calculate the RMS error on transformations in RAS
(right, anterior, superior) coordinates, where the origin
lies approximately in the center of the image. We set
r5100mm, to define a sphere that is large enough to
include the full brain. For example, an ERMS error of
0.1 mm corresponds to 1/10 of a voxel displacement (for
1mm isotropic images), which can easily be picked up in
visual inspection.

Brain Registration with Ground Truth

In the first experiment, we work with simulated T1 and
T2 images from the BrainWeb dataset [Cocosco et al.,
1997], which are perfectly aligned. Always knowing the
ground truth transformations allows us to establish results
on the accuracy of different registration procedures. The
image resolution is 25632563181 with 1mm isotropic spac-
ing. We automatically skull-strip the T1 image with the
BET [Smith, 2002], modify the brain mask (asymmetric and
localized dilation), and apply it to the T2 image to induce
variations in brain extraction between both modalities. We
apply random transformations to the skull-stripped images
with translations of 30 mm and rotations around an arbi-
trary axis of 25�. Different registration approaches are com-
pared to determine how well they recover the correct
registration: the statistical analysis of the RMS registration
error for 100 repetitions is shown in Figure 4.

For the robust registration with NP windows (RR-NP),
the patch size is 33333 and for the robust registration
with histograms (RR) it is 53535. We manually set the
parameter in Tukey’s biweight function to simulate a
robust approach with many outliers (c52) and a less
robust approach with few outliers (c510). We compare to
popular and freely available registration software using
MI: FLIRT in FSL and the coregistration tool in SPM. Our
results show the significant reduction in registration error
of our approach in contrast to these reference methods.

Figure 3.

Comparison of entropy images for patch sizes 3 3 3 3 3 to 7

3 7 3 7 created with density estimators based on histogram

(a–c) and nonparametric (NP) windows (d–f). Appearance of

entropy images is smoother for larger patch sizes. Note the

striking difference between the two estimation approaches for

patches of size 3 (a vs. d).

Figure 4.

Statistical analysis of RMS errors for the skull-strip T1-T2 regis-

tration study over 100 repetitions. Bars indicate mean error and

correspond to two standard deviations. *** indicates significance

level at 0:001. Robust registration with nonparametric windows

(RR-NP) yields a significant reduction in registration error with

respect to robust registration with histograms (RR), FLIRT, and

SPM. Furthermore, setting the parameter in Tukey’s biweight

function to c52, which allows for more outliers than c510,

yields to significantly better results. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Moreover, we observe a significant improvement for the
density estimation with NP windows in comparison to his-
tograms, highlighting the importance of the better localiza-
tion with NP windows and confirming the qualitative
results from Figure 3. Finally, the significant improvement
for c52 over c510 demonstrates the necessity for a robust
approach to limit the influence of outliers on the registra-
tion. The creation of the entropy images took about 9 s
with histograms and about 320 s with NP windows. The
remaining registration took about 39 s.

Tumor Registration

In the second experiment, we evaluate registration accu-
racy based on a pair of real brain tumor MR T1 (magnet-
ization-prepared rapid gradient-echo, MPRAGE, [Mugler
and Brookeman, 1990]) and MR T2 images, both acquired
within the same session. The image resolution is 0:9430:94
30:9 mm3 for T1 and isotropic 1 mm for T2. Figure 5
shows the pair of images that we use for the experiments
with the corresponding entropy images. Both the auto-
matic skull stripping tool in FreeSurfer and the BET
[Smith, 2002] frequently fail for tumor images because of
the different appearance of enhancing tumor compared to
regular brain tissue, violating intensity priors used by the

methods. To produce a useful result, we manually refined
the brain extraction obtained from FreeSurfer on the T1
image and propagate the brain mask to the T2 image by
registering the full head T1 and T2 images with FLIRT.

When performing robust multimodal registration on the
skull-stripped brain images, we expect the tumor regions
to be marked as outliers because of the different appear-
ance in both modalities. Figure 6 depicts the weights calcu-
lated with Tukey’s biweight function (Robust Estimators
section) at each spatial location after successful registration.
Smaller weights are shown in red and yellow. Note that
weights are inversely related to the variances. We observe
that tumor regions are marked as outliers (yellow), as
expected. Also note the decreased weight at the interface
between the brain and the skull, which is likely caused by
the inconsistent brain extraction (mask propagation) and dif-
ferential distortion between the two modalities. These non-
matching structures in tumor regions and artifacts from the
brain extraction, that can cause problems for nonrobust tech-
niques, are correctly identified automatically by our method
and their influence is limited during the registration.

In the case of clinical tumor images, we do not know the
ground truth alignment. To quantify the registration error,
landmarks were manually selected in both modalities, per-
mitting the computation of landmark distances after the
registration. Figure 7 shows the statistical analysis for 100
repetitions with the random displacement of the images
similar to the previous experiment. We compare RR-NP
with patch size 3 to FLIRT and SPM. The results indicate a
significantly lower registration error for the proposed RR
approach. The manual refinement of the brain extraction
and the manual selection of landmarks make the extension
of this study to many subjects complicated, but results on a
large cohort are presented in the next section.

Full Head Registration

In this experiment, we register T1 (Multi-Echo MPRAGE
[Kouwe et al., 2008]) and T2 full head images of 106

Figure 5.

Coronal view of full head MR MPRAGE (a) and T2 (b) tumor

images with corresponding entropy images (c,d).

Figure 6.

Coronal view of MR MPRAGE (a) and T2 (b) skull-stripped brain tumor images after registra-

tion. Estimated weights are overlaid as heat map. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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healthy subjects. These images have a 1 mm isotropic
resolution (256 3 256 3 176). Although each image pair
was acquired within the same session, we expect local dif-
ferences caused by jaw, tongue, and small head movements.
Such local displacements can deteriorate the registration
quality of full head scans. Figure 8 shows a registered pair
of T1 and T2 images with an overlay of the estimated
weights, together with a magnified view of the area around
the tongue. Due to the movement of the tongue between the
scans, the RR algorithm detects outliers in that region. Note
that also regions in the periphery of the brain show low
weights, which are caused by the different appearance of
dura mater and CSF in T1- and T2-weighted images. The
local information content is different in these regions, yield-
ing differences between the entropy images. The benefit of
the robust approach is to identify these contradictory
regions as outliers and reduce their influence on the
registration.

Again no ground truth alignment is available, but the
number of scans in this study is too large for the manual
identification of landmarks. Instead, we assume that the
registration of skull-stripped images is more accurate than
the registration of the full head images because most
structures that are susceptible to patient motion are
removed. As both scans were collected within the same
session, we do not expect any changes in the brain. Local

Figure 8.

Sagittal view of MR T1 (a) and T2 (b) full head images with an

overlay of the weights as a result of the robust registration.

Magnifications of the tongue area (c,d) that is susceptible to

motion. Areas with motion differences are assigned low weights

to limit their influence on the registration. Also regions in the

periphery of the brain are assigned low weights because of the

different appearance of CSF and dura mater and resulting dis-

similarities in the entropy images. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Figure 7.

Statistical analyses of RMS errors for tumor registration study

over 100 repetitions. Bars indicate mean error; error bars cor-

respond to two standard deviations. *** indicates significance

level at 0:001. Robust registration with NP windows (RR-NP)

yields a significant reduction in registration error. The range

of the y-axis is adjusted to highlight the differences of the meth-

ods. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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differences are mainly expected in the scalp, jaw, neck,
and eye regions. It is, therefore, reasonable to assume
higher registration accuracy when using the brain as a
stable region of interest (ROI). Given a reference transfor-
mation TRef, we compute the RMS error
EType5 ERMSðTRef; TFull

TypeÞ, where TFull
Type is the transforma-

tion computed on the full head scans with registration
method Type that we want to evaluate. Figure 9 shows the
difference in RMS error between the usage of FLIRT and
SPM compared to RR-NP, so EFLIRT2 ERR-NP and
ESPM2 ERR-NP, where positive differences indicate that a
better approximation of the reference transformation with
RR-NP. To avoid biasing results by selecting only one
registration to establish the reference transformation, we
report results for using all three registration methods to
compute TRef, shown on the x-axis of Figure 9. For each
subject, we randomly transform the full head images (up
to 15� and 20 mm) 10 times and perform the registration
with each method, yielding 3180 full head registrations.
The results show that RR-NP is significantly better in
recovering the reference transformation established on the
brain ROI independent of which reference method was
used.

Histology-OCT Registration

In this multimodal experiment, we register images from
OCT with histology slices. OCT is an optical microscopy
technique, analogue to ultrasound imaging, which pro-
vides a resolution close to 1 mm. This technique requires
neither staining nor dyes, as it relies on the intrinsic opti-
cal properties of the tissue. The block sample can be
imaged prior to any cutting, which greatly reduces the dis-
tortions contrary to the histological protocol. Details on the
technique and the acquisition of those images can be
found in Magnain et al. [2014]. Histology-OCT alignment
is of clinical importance to validate the appearance of
structures in OCT based on the true appearance on the
sliced tissue. The registration is challenging as histology
images show artifacts due to local deformations and tear-
ing of the tissues during slicing, which are not present in
the previously acquired OCT images. Figure 10 shows the
result of the registration between an OCT and histology
slice, as well as the estimated weights. The magnified
view illustrates the differences between both images and
shows that tears in the histology slices are correctly
marked as outliers. Figure 11 shows another set of histol-
ogy and OCT images with the corresponding entropy
images. The gyrus was cropped from larger OCT and his-
tology images independently, which introduces small dif-
ferences at the top boundary edge due to slightly different
cropping angles. The weight map shows that these differ-
ences together with internal cracks are marked as outliers
by the RR.

To confirm the promising results from the qualitative
analysis, we identified 26 landmark correspondences in
four histology and corresponding OCT images. We use the
transformation from image registration to map the land-
marks from the OCT to the histology domain. The average
Euclidean distance between mapped OCT and histology
landmark pairs measures the registration error. Figure 12
shows the mean and standard error for the RR, for FSL,
and for an alternative 2D affine registration method that is
based on the SPM algorithm (also using MI and a Powell
minimizer). The original SPM registration method is avail-
able only for the full 3D case and does not model 2D
affine transformations. Because of the high image resolu-
tion in our experiment (140032500), we select a larger
patch size and the histogram-based density estimation for
constructing the entropy images in the RR method. The
results from the quantitative analysis confirm the
improved registration accuracy of the robust multimodal
registration.

Bias Field Robustness

Intensity bias fields in images can severely affect cost
functions in cross-modal registration, such as MI [Myro-
nenko and Song, 2010]. On the contrary, the presented
approach is very robust with respect to bias fields, as it is
based on local entropy estimation. To demonstrate

Figure 9.

Analysis of difference of RMS errors for the large control study

on 106 subjects with 10 repeats. The RMS error is computed

between full head registrations and the reference transforma-

tion, yielding EType5 ERMS TRef ; TFull
Type

� �
, where we use RR-NP,

FLIRT, and SPM as registration Type on the full head scans. Dif-

ferences of RMS errors EFLIRT2 ERR-NP and ESPM2 ERR-NP are

plotted to compare the methods, where positive values show

better performance of RR-NP. Bars indicate mean difference

error and correspond to standard error of difference. *, **, and

*** indicate significance levels from paired t-test at 0:05, 0:01;
and 0:001, respectively. To avoid biasing the results, we use each

method (RR-NP, FLIRT, and SPM) to establish the reference transfor-

mation on the skull-stripped images (x-axis). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 10.

OCT (first column) and histology (second column) slices together with an overlay of weights on

the histology slices (third column). The top row shows the entire slices while the bottom row

shows a magnifications around the large crack in the center of the images. Tears in the histology

image and alignment errors at the boundary (caused by nonlinear deformations) are marked as out-

liers. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 11.

OCT (a) and histology (b) slices with corresponding entropy images (c,d). Estimated weights are

shown on the OCT slice (e). Outliers are found in cracks of the histology slices and around the

boundary. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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robustness with respect to changes in the bias field, we
use five different cases from the BrainWeb dataset [Coco-
sco et al., 1997] and increase the size of this test set by

simulating brain tumors [Prastawa et al., 2009] (including
contrast enhancement, local distortion of healthy tissue,
infiltrating edema adjacent to tumors, destruction and
deformation of fiber tracts). For each of the five original
cases, tumor seed were placed at two different locations
and two different parameter settings were selected to vary
the characteristics of the tumor (conservative vs. aggres-
sive growth), yielding 20 tumor cases. Each simulation
produced aligned T1, T2, and T1 Gadolinium enhanced
(T1Gad) tumor images (1mm isotropic, 25632563181)
where we added noise and bias fields. We apply random
rigid transformations with translations of 30 mm and rota-
tions of 25� around an arbitrary axis with the center of
rotation corresponding to the image center, and measure
how accurately each test method can estimate the true
transformation. We perform the RR for patch sizes
between 33333 and 73737 and again compare to FLIRT
and SPM. Figure 13 shows the RMS registration errors for
the different cross-modal registration pairs. It can be seen
that bias field does not affect the RR approach. SPM per-
forms better than FLIRT, but in both methods registration
fails completely in a large number of cases. Without add-
ing a bias field, none of the methods produce any of these
severe registration failures (not shown). Bias field correc-
tion can, therefore, be expected to remove most of the
intensity bias and resulting registration problems, but this
additional processing step is not required for our robust
entropy-based cross-modal registration approach.

DISCUSSION AND CONCLUSION

We presented a novel registration approach for inverse-
consistent, multimodal registration that is robust with
respect to local differences and with respect to bias fields.
To achieve outlier robustness, we incorporated a hetero-
skedastic noise model and established the relationship to
iteratively reweighed least squares estimation. We derived
the Gauss–Newton optimization, which we showed to be
equivalent to the ESM in case of our robust and inverse-
consistent registration setup. To allow for better localiza-
tion of structures when constructing entropy images, we
used a NP density estimator and demonstrated its advan-
tages. We evaluated our method on different multimodal
datasets and demonstrated increased accuracy and robust-
ness. This work focuses on global registration and it
remains to investigate the performance and feasibility of
the proposed robust multimodal approach for nonlinear
registration. One concern is that locations with large differ-
ences may be marked as outliers and therefore produce no
force on the deformation field, although they could poten-
tially be correctly aligned in subsequent steps. Conversely,
deformation fields are never estimated only locally. Regu-
larizers and parametric models combine the forces from
several locations. This combination may still push the
deformation field in the correct direction, in spite of a
reduced weight at certain locations. Adjustments to the

Figure 12.

Registration error for histology-OCT alignment measured as land-

mark distance in microns. Results are shown for different registra-

tion methods. Bars indicate mean error; error bars correspond to

standard error. The range of the y-axis is selected to highlight the

differences of the methods. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 13.

Multimodal registration of 20 synthetic brain tumor images (T1,

T2, T1Gad) with bias field. Comparison of RMS errors for dif-

ferent registration methods. Bars indicate mean error; error

bars correspond to two standard deviations. White discs corre-

spond to the individual data points. The proposed methods (RR,

RR-NP) are robust to bias field due to the local entropy estima-

tion while the bias field has a strong influence on FLIRT and

SPM. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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robust estimation approach may be required, for instance,
the regularization of weights via local smoothing.

The presented registration method will be made freely
available within the FreeSurfer software package.
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