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Abstract. Intensity-based image registration requires resampling im-
ages on a common grid to evaluate the similarity function. The uncer-
tainty of interpolation varies across the image, depending on the loca-
tion of resampled points relative to the base grid. We propose to perform
Bayesian inference with Gaussian processes, where the covariance matrix
of the Gaussian process posterior distribution estimates the uncertainty
in interpolation. The Gaussian process replaces a single image with a
distribution over images that we integrate into a generative model for
registration. Marginalization over resampled images leads to a new sim-
ilarity measure that includes the uncertainty of the interpolation. We
demonstrate that our approach increases the registration accuracy and
propose an efficient approximation scheme that enables seamless inte-
gration with existing registration methods.

1 Introduction

Registration is a fundamental tool in medical imaging for image alignment.
Intensity-based registration commonly finds the transformation between images
by an iterative procedure that resamples images on a common grid to evaluate
their similarity. An inherent problem is the variation of the interpolation un-
certainty across the image. Fig. 1 illustrates two images and an overlay of the
corresponding grids. Intensity values on the moving grid (blue) are used to in-
terpolate values on the fixed grid (red) to enable the comparison of both images.
We point out two locations on the fixed grid that have very different distances to
neighboring points on the moving grid. This difference causes variations in the
interpolation uncertainty. Both locations contribute equally to the calculation
of the similarity measure, although the interpolation from observations that are
far away may not be very trustworthy.

To address this problem, we formulate the interpolation as Bayesian regres-
sion. The intensity values on the transformed grid serve as observations and the
prediction yields samples on the fixed grid. We employ a Gaussian process (GP)
prior over images and assume Gaussian noise on the observations. The inferred
predictive distribution is Gaussian with mean and covariance functions serving
as an interpolator and a confidence estimate. Depending on the design of the
covariance matrix of the GP prior and the magnitude of the presumed noise in
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Fig. 1. Fixed (red) and moving (blue) images and the overlay of both grids after
transformation (middle). The interpolation uncertainty varies across the resampled
image due to different distances to neighboring points on the moving grid. Arrows
point to two exemplary locations on the fixed grid where neighbors from the moving
grid are close and far, respectively (right).

the images, we can account for smoothing and noise reduction in the predic-
tion. This makes Gaussian processes a versatile framework for modeling image
processing steps in registration.

The application of Gaussian processes introduces a new paradigm for the use
of image interpolation in registration. Instead of only comparing the resampled
intensity values, the similarity measure now takes into account the quality of
the interpolation, which can vary dramatically across the image. To enable this
change, we present a generative model for image registration with Gaussian pro-
cesses. The inferred similarity measure emphasizes locations where samples are
close to the original grid and deprecates locations that are equidistant from grid
points. This is especially beneficial for anisotropically sampled data, frequently
acquired in the clinical practice.

Related Work The most common methods for interpolation are nearest neigh-
bor, linear, cubic, and spline interpolation. The application of cubic B-splines
for interpolation was proposed in [5]. Several excellent surveys of image interpo-
lation exist [7, 14]. Image interpolation in the context of registration is discussed
in [4]. Further studies have been conducted to investigate the generation of inter-
polation artifacts and their influence on image registration, see for instance [1]
and references therein. Gaussian processes have been applied in several fields
of machine learning [11], e.g ., image denoising [8], interpolation [13] and seg-
mentation [15]. Gaussian processes were also used to model flow fields [6] and
deformation fields in hybrid registration [9]. Gaussian processes have not yet
been used for image resampling in registration.

2 Method

Given two images I and J defined on discrete grids ΩI and ΩJ , we calculate
the transformation T that aligns the two images. We transform the grid ΩJ of
the moving image J , yielding the transformed grid T (ΩJ) = {T (x),x ∈ ΩJ}.
Except for axis-aligned transformations, we have to resample the transformed
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Fig. 2. Comparison of interpolation functions in spatial (blue) and frequency (red)
domains. The optimal frequency response would correspond to a box function.

image from the grid T (ΩJ) to the grid of the fixed image ΩI to compare the two
images. For the resampling, a continuous version of the discrete input image is
constructed with interpolation [10]. Fig 2 characterizes common image interpo-
lation methods by showing their responses in spatial and frequency domains.

2.1 Image Interpolation with Gaussian Process Regression

In this section, we formulate image interpolation as Gaussian process regres-
sion to obtain the interpolator and uncertainty estimates. A Gaussian process
is a stochastic process consisting of an infinite collection of random variables,
where any finite subset has a multivariate Gaussian distribution [11]. A Gaus-
sian process GP(m(x), k(x,x′)), is entirely characterized by the mean m(x) and
covariance k(x,x′) functions. The mean and covariance functions specify a dis-
tribution over functions, corresponding to a distribution over images in our case.
We make the common assumption of a zero mean function [11].

Given moving image J on the transformed gridX = T (ΩJ), we predict the re-
sampled image J∗ on the fixed image grid X∗ = ΩI . We employ a Gaussian pro-
cess prior on the resampled image, J∗ ∼ GP(0, k). Considering Gaussian noise
ε ∼ N (0, σJ), the observations are distributed according to p(J |J∗, X,X∗) =
N (0|k(X,X) + σ2

JI), where I is the identity matrix. Under these assumptions,
the posterior distribution for predicting the transformed image is

p(J∗ | J ;X∗, X) = N (µJ , ΣJ), (1)

with mean and covariance

µJ = k(X∗, X) · [k(X,X) + σ2
JI]
−1 · J, (2)

ΣJ = k(X∗, X∗)− k(X∗, X) · [k(X,X) + σ2
JI]
−1 · k(X,X∗). (3)

The covariance or kernel function k characterizes the properties of images.
It captures the relation between the random variables, which correspond to the
voxels in the image. We work with the squared exponential covariance function
with length-scale l, k(x,x′) = exp

(
−‖x− x′‖2/(2 · l2)

)
. The equivalent kernel

characterizes the behavior of GP interpolation and is shown in Fig. 2 for the
squared exponential function. Theoretical connections to sinc interpolation exist
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for specific settings of the kernel [12]. The squared exponential kernel corresponds
to a Bayesian linear regression model with an infinite number of Gaussian-shaped
basis functions [11].

2.2 Generative Model for Gaussian Process Registration

I

T
J

J⇤

�J

�I
l

We derive the registration method with uncertainty esti-
mates by integrating the Gaussian process in a new genera-
tive model for registration (see graphical model on the right).
We treat input images I and J as observed random variables
affected by image noise εI ∼ N (0, σ2

I ) and εJ ∼ N (0, σ2
J),

respectively. The resampled image J∗ is a latent random vari-
able. The amount of smoothing in the image J∗ is controlled
by the length-scale l of the kernel. Following the graphical model, the joint dis-
tribution of images I, J, J∗ factorizes

p(I, J, J∗;T, σJ , σI , l) = p(J∗|J ;T, σJ , l) · p(I|J∗;σI). (4)

The probability p(J∗|J ;T, σJ , l) is the predictive distribution of the Gaussian
process. From the previous section on Gaussian process interpolation we have
p(J∗|J ;T, σJ , l) ∼ N (µJ , ΣJ). The likelihood p(I|J∗;σI) accounts for noise in
the fixed image I with respect to the prediction J∗. Under the assumption of i.i.d.
Gaussian noise, this leads to the multivariate Gaussian distribution p(I|J∗;σI) ∼
N (J∗, σ2

II). For calculating the optimal transformation T̂ , we perform maximum
likelihood estimation on the joint distribution of images I and J

T̂ = arg max
T

p(I, J ;T, σJ , σI , l). (5)

For Bayesian inference, we marginalize over the latent random variable J∗

p(I, J ;T, σI , σJ , l) =

∫
p(I, J, J∗;T, σI , σJ , l) dJ∗ (6)

=

∫
p(J∗|J ;T, σJ , l) · p(I|J∗;σI) dJ∗ (7)

=

∫
N (J∗;µJ , ΣJ) · N (I; J∗, σ2

II) dJ∗ (8)

= N (I;µJ , ΣJ + σ2
II), (9)

where we applied the factorization from the graphical model and product prop-
erties of multivariate Gaussian distributions [11]. The log-likelihood function is

log p(I, J ;T, σI , σJ , l) = log
(

(2π)−
k
2 |Σ|− 1

2

)
− 1

2
(I − µJ)>Σ−1(I − µJ), (10)

with Σ = ΣJ + σ2
II. This is the new similarity measure that we use for regis-

tration, where the covariance matrix Σ contains the uncertainty estimates. The
presented approach models forward mapping in registration, where we obtain
backward mapping by setting X = ΩJ and X∗ = T−1(ΩI).
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2.3 Practical Considerations

The computational cost of O(|ΩJ |3) for the matrix inversion [k(X,X)+σ2
JI]
−1 is

challenging for large images. In order to reduce the computational cost, we split
the volume into blocks. We perform the prediction for each block separately,
where we identify the spatially closest observations. This comes at almost no
additional cost, because the distances need to be calculated for constructing the
kernel. Visual inspection has not shown boundary effects. With this approach,
we do not construct the full covariance matrix Σ anymore, so that we cannot
apply the similarity measure in Eq. (10). We consider only the diagonal entries
of the covariance matrix Σxx and neglect the first term in Eq. (10), yielding

log p(I, J ;T, σI , σJ , l) ≈ −
∑
x∈ΩI

(I(x)− µJ(x))2

2 ·Σxx
. (11)

We use this similarity measure in combination with block-wise estimation. For
constant variances Σxx, this corresponds to the common sum of squared differ-
ences (SSD).

To make the concept of uncertainty estimation in interpolation easy to in-
tegrate in existing applications, we propose an approximation for the variance
values Σxx without performing GP regression. In this case, we use classic inter-
polation methods to construct the resampled image. Considering the covariance
matrix in Eq. (3), we see that it only depends on the locations of the observa-
tions and predictions, but not on the observed values. We use the interpolation
weights, as defined in linear interpolation, to approximate the elementwise vari-
ance values Σxx. We consider the prediction for a point x∗ on the regular grid
with spacing s and let d = x∗ − x be the difference vector to the closest point
on the base grid x. We approximate the variance at location x∗ with

v(x∗) =

D∑
i=1

|di| · (si − |di|), (12)

where D is the dimensionality of the image. v(x∗) is the highest for locations that
are equidistant from the base grid nodes, and zero when x∗ lies on the base grid.
We illustrate the variances for the approximation and the Gaussian process in
1D and 2D in the supplementary material, which shows that the approximation
closely follows the true estimates from the Gaussian process.

There are two important parameters that affect the interpolation; the noise
variance σ2

J and the length-scale l of the kernel. If we set σ2
J = 0, the interpolator

passes exactly through the observations. For σ2
J > 0, the method accepts noise

in the observations so that the images can deviate from the observations. The
length-scale determines the region of influence of each observation. For shorter
length-scale, the prediction is only dependent on a few observations, causing
more sensitive results. For larger length-scale, we obtain smoother results. Noise
reduction and smoothing are common pre-processing steps for image registra-
tion and they can be naturally modeled within the proposed Gaussian process
framework. Finally, the interpolation on irregular grids does not pose problems
because the method depends on pairwise distances between points only.
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(a) 2D registration study BrainWeb
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(b) 2D registration study RIRE

Fig. 3. Bars indicate mean registration error; error bars show standard error. Nearest
neighbor (NN), Linear (Lin), Spline (Spl), Cubic (Cub), and Gaussian Process (GP)
interpolation is reported. The use of the variance approximation is indicated with ‘V’.

3 Results

In our registration experiments, we focus on a rigid transformation model. This
choice allows us to better isolate the effects of image interpolation in registra-
tion, which is the contribution of this work. Moreover, rigid registration enables
exact computation of registration errors with respect to ground truth transfor-
mations on real data, which is challenging for transformation models with more
degrees of freedom. We perform the first set of registration experiments on the
publicly available BrainWeb [2] and RIRE [3] datasets. We set σ2

I = σ2
J = 0.1

in all experiments. First, we select axial slices and perform 2D registration. We
downsample the images in one direction by a factor of 5 to simulate anisotropic
data. Such anisotropy is commonly present in clinical practice. We transform the
grid and create the fixed image by downsampling the original image. For this 2D
registration experiment, we can calculate the GP interpolation (l = 2.5) without
splitting the image into blocks. Consequently, we use the similarity measure in
Eq. (10) with the full covariance matrix. For comparison, we perform nearest
neighbor, linear, cubic, and spline interpolation with SSD as a similarity mea-
sure. Moreover, we compute the approximated variance in Eq. (12) and use it in
the similarity measures in Eq. (11), indicated with ‘V’ in the plots. The mean
image µJ from the Gaussian process regression is replaced by the nearest neigh-
bor, linear, cubic, or spline interpolator in this case. Fig. 3 shows results over 50
runs from random initial transformations.

In a second experiment, we perform 3D experiments on the BrainWeb and
RIRE datasets. Again we downsample the images in one direction by a factor of 5,
to create anisotropic volumes. For the Gaussian process interpolation (l = 2.5),
we split the image into 8×8×8 cubes to limit the computational costs. Since we
do not construct the entire covariance matrix ΣJ in this case, we work with a
diagonal covariance matrix in the similarity measure in Eq. (10). The evaluation
of the baseline methods with SSD and the variance approximation is analogous
to the 2D experiment. Fig. 4 reports the mean RMS errors and standard errors.
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(a) 3D registration study BrainWeb
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(b) 3D registration study RIRE

Fig. 4. Bars indicate mean registration error; error bars show standard error. Nearest
neighbor (NN), Linear (Lin), Spline (Spl), Cubic (Cub), and Gaussian Process (GP)
interpolation is reported. The use of the variance approximation is indicated with ‘V’.
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The final datatset consists of two MR images
of the head that were acquired on two different
grids in the MR scanner with a resolution of 3 ×
3 × 3.6mm3. The primary slice direction is sagit-
tal for the first image and axial for the second
scan. We can access the transformation of each
image with respect to the scanner coordinate sys-
tem. Consequently, the ground truth transformation in our rigid registration
experiments that relates both volumes is available. The registration is repeated
50 times for each configuration. The mean RMS errors and standard errors are
plotted in the figure on the right. We compare to the nearest neighbor and lin-
ear interpolation. For the Gaussian process interpolation (l = 2.5), we divide the
image into 8× 8× 8 cubes to limit the computational costs. Again, we only use
the variance model and not the full covariance matrix ΣJ .

Our results show a large decrease in registration error for more complex in-
terpolation techniques than nearest neighbor interpolation. The decrease from
linear interpolation to cubic or spline interpolation is less pronounced. Spline
interpolation leads to the best registration results among the classical interpo-
lation schemes. In all experiments, using uncertainty estimates in the similarity
measure leads to more accurate registration results. The improvement is largest
for nearest neighbor interpolation, where the interpolation quality decreases the
most when moving further away from the grid points. This finding is interesting
for the registration of categorical or label data, where more complex interpolation
methods cannot be applied. For the other interpolation schemes, we also notice
a substantial improvement for the uncertainty estimate, especially for linear in-
terpolation. Registration with Gaussian processes achieved the best performance
in all experiments. This supports the use of the mean function as high quality
interpolator and the covariance matrix as uncertainty estimate for registration.
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4 Conclusion

We proposed to integrate interpolation uncertainty into registration. To this end,
we defined distributions over images based on Gaussian processes with the co-
variance of the posterior distribution serving as an uncertainty estimate. A novel
generative model for registration with Gaussian processes yielded a similarity
measure that incorporates interpolation uncertainty. Our results demonstrated
improvement for image resampling and the necessity of integrating interpolation
uncertainty in the similarity measure.
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dation, the National Alliance for Medical Image Computing (U54-EB005149),
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