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Efficient Descriptor-Based Segmentation of
Parotid Glands With Nonlocal Means

Christian Wachinger*, Matthew Brennan, Greg C. Sharp, and Polina Golland

Abstract—Objective: We introduce descriptor-based seg-
mentation that extends existing patch-based methods by
combining intensities, features, and location information.
Since it is unclear which image features are best suited
for patch selection, we perform a broad empirical study
on a multitude of different features. Methods: We extend
nonlocal means segmentation by including image features
and location information. We search larger windows with
an efficient nearest neighbor search based on kd-trees.
We compare a large number of image features. Results:
The best results were obtained for entropy image features,
which have not yet been used for patch-based segmenta-
tion. We further show that searching larger image regions
with an approximate nearest neighbor search and location
information yields a significant improvement over the
bounded nearest neighbor search traditionally employed in
patch-based segmentation methods. Conclusion: Features
and location information significantly increase the segmen-
tation accuracy. The best features highlight boundaries in
the image. Significance: Our detailed analysis of several
aspects of nonlocal means-based segmentation yields
new insights about patch and neighborhood sizes together
with the inclusion of location information. The presented
approach advances the state-of-the-art in the segmentation
of parotid glands for radiation therapy planning.

Index Terms—Features,
patches, segmentation.

location, parotid glands,

|. INTRODUCTION

HE automatic segmentation of parotid glands in head and
neck CT images supports intensity-modulated radiation
therapy planning. Atlas-based segmentation methods often use
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deformable image registration to associate each voxel in a test
image with a set of voxels in training images, and apply a label
propagation scheme to segment the test image [1]-[5]. Instead
of registering whole images, patch-based segmentation com-
pares patches of intensity values to establish correspondences
between test and training voxels of similar local image content
[6]-[9]. However, intensity values are just one possible descrip-
tion of image content. We present a natural generalization of
patch-based segmentation to descriptor-based segmentation by
including image features and location information as well as
patches of intensity values in descriptor vectors representing
local image content. Our results show that the additional dis-
criminative information in the descriptor improves segmentation
accuracy.

Our method is based on the nonlocal means (NLM) frame-
work introduced in [10], which produces state-of-the-art results
for patch-based segmentation [6], [7]. The principal idea behind
NLM is to compare patches across the entire image domain and
to base the comparison solely on patch intensity values with-
out taking their locations in the image domain into account. In
the actual implementation of NLM for image denoising [10],
the search window is reduced from the entire image domain
to neighborhoods of 21 x 21 pixels to address computational
concerns. Similarly, [6] and [7] restrict the search window to
range from 9 x 9 x 9 to 15 x 15 x 15 voxels to improve com-
putational efficiency, assuming an initial affine alignment of
the images. In our study, we employ an efficient approximate
nearest neighbor (ANN) search allowing us to work with larger
search windows that contain the entire parotid gland, which bet-
ter reflects the original idea of NLM to consider the entire im-
age domain. Counterintuitively, our experimental results show
that larger search windows lead to less accurate segmentation
results. This suggests that the spatial information implicitly in-
corporated by restricting the search to small windows not only
improves computational efficiency but also has a direct influ-
ence on segmentation accuracy. However, spatially biasing the
result by restricting search windows has two disadvantages: (1)
it imposes a hard spatial cutoff and therefore a discontinuous
rather than a soft bias; and (2) it does not provide spatial context
within the search window. Contrary to the idea behind NLM, we
explicitly incorporate location information in the comparison of
patches, introducing a soft bias toward spatially closer patches.
With the explicit inclusion of location information, we extend
the search window from small neighborhoods to regions con-
taining the entire target structure. The computational concerns
accompanying these large search regions are addressed with
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an ANN search. We find that this approach yields a significant
improvement in segmentation accuracy over an exact nearest
neighbor search within a restricted search window.

In addition to location information, we incorporate image
features into the descriptor. A large number of image features
have been proposed in the computer vision literature and a
priori it is unclear which of these features best complement
patch intensity values for segmenting medical images. In
this study, we empirically evaluate the performance of fifteen
features. Some of these features were initially proposed for
two-dimensional (2-D) images—we discuss and evaluate 3-D
extensions of these features. We investigate the parameters
involved in descriptor-based segmentation, e.g., patch sizes,
feature and location weights, the composition of the descriptor,
and the number of nearest neighbors. This comprehensive
analysis leads to new insights into the behavior of NLM seg-
mentation methods in general. Notably, we find that decoupling
the size of the intensity patch and the size of the label patch
in the multipoint (MP) label propagation method improves
segmentation accuracy. We also introduce multiscale patches
that combine the intensity information from multiple scales
and therefore provide additional context.

We evaluate our descriptor-based framework by applying it to
the segmentation of parotid glands of patients undergoing radi-
ation therapy. In intensity-modulated radiation therapy, experts
delineate the most critical structures, also known as organs at
risk, and use the generated segmentations to reduce the irradi-
ation of healthy tissue and potential side effects. The parotid
glands are critical salivary glands. Irradiation of the parotid
glands in patients with head and neck cancer leads to xeros-
tomia, a condition that interferes with mastication, deglutition,
and speech in patients. The automatic segmentation of parotid
glands is particularly challenging due to the low soft tissue con-
trast in CT images and the high anatomical variability of the
glands among patients.

A. Related Work

Atlas-based segmentation of parotid glands with deformable
registration has been previously investigated [11], [12]. In [13],
an active shape model of parotid glands was constructed with the
atlas images. The refinement of head and neck segmentations
based on patch classification with features was proposed in [14].
The approach in [15] applied label fusion to initialize a segmen-
tation pipeline that employs statistical appearance models and
geodesic active contours.

Patch-based segmentation approaches as described within the
NLM framework were proposed in [6] and[7]. Recently, the
PatchMatch algorithm [16] was applied for NLM-based seg-
mentation [17]. In contrast to our work, features and explicit
location information were not included. For the segmentation
of the hippocampus, the application of ball trees in combina-
tion with location was proposed [18]. In previous work, we
used a patch-based method to segment the parotid glands us-
ing the NLM framework and a random forest classifier [8], [9].
We refined the initial segmentations based on image contours
with Gaussian process regression. Sparse coding is a related

extension of patch-based segmentation that was combined with
the Haar-wavelet, histogram of oriented gradients (HoG), and
local binary patterns (LBP) image features [19]. In [20], three
specific features (intensity, gradient, context) were evaluated
for the segmentation of cardiac MRI. To summarize, our ap-
proach is different from existing work as it combines intensity,
patches, and location; compares a much larger number of dif-
ferent features; and contrasts bounded search techniques with
the explicit integration of location information. A preliminary
version of this work was presented at a workshop [21] and has
been substantially extended.

[I. METHOD

A. Review of NLM Segmentation

Given an atlas A= (Z,S) that contains images Z =
{I,...,I,} and their corresponding segmentations S =
{S1,...,5,} over acommon image domain €2, our objective is
to compute the segmentation S of a new image /. Patch-based
methods are based on the rationale that locations with similar
image content should have similar segmentations, where local
image content is represented by the intensity values in a patch
centered at each voxel. For a patch P(x) from the test image I at
alocation x € € and the collection of all patches in the training
images P, we seek the closest patch Py,s(x) in the training set

Pys(x) = arg min ||P(x) — P||s. (1)
Pep

Associated with the image patch Py,s(x) is the segmentation
patch Sy, which is used to infer the segmentation S(x) in
the test image around location x. Beyond the nearest neigh-
bor Pyas(x) = Pl (x), we can identify a set of k-nearest
neighbor patches from the atlas Pl (x),..., Pk (x). Two
methods of label propagation are commonly used: (1) point-
wise (PW) estimation that only considers the center location of
the patch Sx[x]; and (2) MP estimation [7] that considers the
entire segmentation patch Sx. The label map L is computed
under the two approaches as

k i
LPW(X) — 27—1 w(P( ) Patas( )) Sx[ }
Zz 1 w( ( ) allas( ))

Syens St w(P(y), Pigo(y)) - Si[x]
Syen. ok w(P(y), Pl (y))

where N is the patch neighborhood around x and Sy [x] is the
label on the location x of the segmentation patch Sy centered at
y. The weight w between patches is defined as

L P’I%)
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@

IMP(x) = 3)

w(P, P') = exp (— 4)
where o? is the variance of the intensity values estimated from
the entire training set. We also consider an unweighted version of
the label propagation with w o 1. To obtain the segmentation S
of the test image I, each voxel is assigned to the parotid glands
or the background, depending on which of the labels receive the
most votes.
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Fig. 1. Overview of the descriptor-based segmentation algorithm: (1) descriptors consisting of patch intensity values, features, and location

information are extracted from the training and test images; labels are extracted from the training images; (2) a k-nearest neighbor (k-NN) search
is performed over the descriptors from the training images for each descriptor from the test image; and (3) the labels of the nearest neighbors are
used in label propagation to segment the test image. We compare the performance of a variety of features in (1), of bounded and approximate %-NN
searches in (2), and of PW and multipoint label propagation methods in (3).

B. Descriptor-Based Segmentation

We extend patch-based segmentation to descriptor-based seg-
mentation by including image features and location information
as descriptors of image content. Image features capture addi-
tional information about contours, gradients, and texture in the
image. The specific features used in this work are described in
Section III. We also include location information in the descrip-
tor by adding the xyz-coordinates of the center voxel in the
patch, where we assume a rough spatial alignment of the im-
ages. Outside of the head, the spatial normalization may be more
challenging so that distances to anatomical landmarks may be
suitable alternative for the location information. Location infor-
mation imposes a soft spatial constraint on the nearest neighbor
search. This bias is especially important when working with
large search windows, as described in Section II-C. The de-
scriptor vector D(x) is the concatenation of a patch P(x), an
image feature F'(x), and location information L(x)

P(x)
F(x)

1
or P
1/2
or IFT
41/2
FrTeGonTT (%)

D(x) = )

where f and ¢ are positive weights and each subvector is nor-
malized by dividing by the square root of the number of en-
tries | - |'/? and the corresponding standard deviation (STD) o.
These standard deviations are estimated for each subvector from
the training set. The normalization ensures that the expected
contributions of each descriptor type to the squared distances
|D — D'||3 is independent of descriptor-specific magnitudes
and depends only on the weights f and ¢. The patch weight in
(4) becomes a descriptor weight

D—D'|3
b D) ©

201+ f +0)

where the denominator 2(1 4 f + ¢) normalizes the expected
value of the exponent to —1. This can be seen by noting that if P
and P’ are assumed to be independent then the expected value
of |P — P'||} is 20%; combining this with symmetric results
for F' and L gives that the expected value is —1. We use this

w(D, D) = exp (

updated definition of the weight for the label propagation in (2)
and (3) when working with patch descriptors.

Fig. 1 presents an overview of the descriptor-based segmen-
tation algorithm. In the first step, the patch intensity values
P(x), image features F'(x), and location information L(x) are
extracted and combined to form the descriptor D(x) for each
voxel x in both the training and test images. The segmentation
patches Sy are extracted from the training images. In the second
step, a search is performed over all training image descriptors to
find k nearest neighbors to descriptors in the test image. In the
third step, one of the label propagation methods in (2) and (3)
is used to segment the test image using the label information of
the k nearest neighbors.

C. Nearest Neighbor Search

We evaluate two approaches to performing the k-nearest
neighbor search in (1): A bounded and an approximate k-nearest
neighbor search. The bounded nearest neighbor (BNN) method
searches over all locations y within a cubic search window of
side length r centered at x (||y — x||; < §). This replicates the
search method used in [6] and [7], where the search is restricted
to boxes of sizes between 9 x 9 x 9 and 15 x 15 x 15 voxels
to reduce computation time. To achieve a similar behavior, we
restrict the search window to 11 x 11 x 11 by setting » = 11.

A disadvantage of BNN is the hard spatial cutoff it imposes
during search. Increasing the size of the search window rectifies
the problem at additional cost of computational complexity. As
a compromise, we consider an unbounded ANN search. We use
the randomized kd-tree algorithm implemented in FLANN [22].
The kd-tree algorithm is frequently used for ANN. While the
method’s performance generally decreases on high-dimensional
data, it has been shown that kd-trees perform well on high-
dimensional data from image patches, likely due to strong corre-
lations in images [22]. The randomized kd-tree algorithm splits
data along a dimension randomly chosen among the dimensions
of highest variance, rather than that of highest variance as in the
classic kd-tree algorithm. Searching over multiple randomized
kd-trees improves the performance of the algorithm. The ran-
domized kd-tree algorithm commonly provides more than 95%
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Feature images computed from the intensity image shown in (a) with the corresponding manual segmentation (b). Mean, median, Gaussian,

variance, and STD images are computed using 5 x 5 x 3 windows. Entropy is computed over 5 x 5 x 5 patches. Two different filter orientations are
shown for Sobel and Haar; one orientation is shown for the Gabor wavelet. Two of the eight bins of HoG are shown along with the sum of all eight
bins. Feature images for Laplacian filter, GradM features, mPb, and LBP are also shown.

of the correct neighbors and is two or more orders of magnitude
faster than the exact search [22].

lll. IMAGE FEATURES

In this section, we describe a large variety of features that
we evaluate as candidates for the descriptor-based segmenta-
tion. Next to basic features, we include advanced features that
are popular in computer vision. The features are illustrated in
Fig. 2. For most of the image features considered, we first pro-
cess the entire image to produce a feature image and then extract
a patch from the feature image. For example, in filtering the fea-
ture F'(x) is the patch of the filtered image around x. The size
of the patches for which F(x) is extracted varies according to
the feature and is specified later in this section. The features
F(x) are combined with the intensity patches P(x). We evalu-
ate our method on intensity patch sizes ranging from 3 x 3 x 1
to 9 x 9 x 5 voxels, which includes patch sizes that have been

previously proposed for patch-based segmentation [3], [4], [6]—
[9].Small patch sizes yield localized features, which is desirable
to support segmentation. But at the same time, small patches
only provide few samples for the reliable estimation in the pres-
ence of noise. Consequently, the selection of the patch size is a
tradeoff and it is a priori not clear, which patch sizes are best
suited for which feature. We state the used patch ranges in the
following sections; the best patch sizes are listed in the sec-
tion about optimal parameter settings.Next to isotropic patches,
we particularly consider for larger patch sizes also anisotropic
patches to account for the anisotropy of the voxels of head and
neck CT scans.

1) Multiscale Patches: Patch-based approaches contain lim-
ited spatial context information, leading to undesirable pair-
ings in the nearest neighbor search. Extracting intensity values
from larger patches increases the context considered but leads to
higher memory consumption and computation times. Increasing
the patch size also leads to a sharp decrease in the influence of
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voxels close to the center voxel on the distances || D — D’ || rel-
ative to that of peripheral voxels. For example, usinga5 x 5 x 5
patch instead of a 3 x 3 x 3 patch results in more than a four-
fold increase in the number of voxels, causing the added 98
outer voxels to dominate the distances || D — D'[|? in compari-
son to the original 27 inner voxels. Another natural approach to
expanding the limited spatial context is to employ a multiscale
approach, creating a Gaussian pyramid and downsampling the
images and segmentations. However, downsampling the seg-
mentations is nontrivial along the boundary of the organ where
downsampled voxels correspond to both organ and background
in the original resolution of the image.

We introduce multiscale patches that com-
bine high resolution at their center and low :‘:‘:
resolution in the surrounding area (see figure
on the right for a 2-D illustration). In addition
to the standard intensity patch P(x) in the center, we consider
a3 x 3 x 3 grid of blocks of the same size as P(x) centered
at x. The multiscale patch consists of P(x) and a summary
statistic for each of the 27 blocks, which we take to be the mean
intensity value. The multi-scale patch spatially covers a volume
27 times as large as the intensity patch while increasing the
length of the descriptor D(x) by only 27 entries. Going back to
our 2-D example, the intensity patch P is a 3 x 3 patch and the
feature I contains nine mean values, each computed in a block
of size 3 x 3. Since the resolution considered by the multiscale
patch decreases significantly outside of P(x), peripheral voxels
in this region do not dominate the distances ||D — D’||3. This
design is motivated by the human visual system, where spatial
acuity peaks at the central fovea and diminishes with distance.
In this study, we consider only two scales; however, this feature
has a natural extension to additional scale levels. We compute
multiscale patch features using intensity patch sizes from 3 x
3x1t09x9 x5.

2) Filter-Based Features: A variety of image features can be
obtained by filtering. We consider mean, median, Gaussian, vari-
ance, STD, Sobel [23], gradient magnitude (GradM), Laplacian
and Gabor wavelet [24], [25] filter features. We extract features
from neighborhoods of size 1 x 1 x 1,3 x 3 x3and5 x5 x5
from each of the filtered images.

The mean, median, Gaussian, variance and STD filtered im-
ages are computed using masks of size 5 X 5 x 3and9 x 9 x 5.
Of the feasible mask sizes, 5 x 5 x 3 best captures image char-
acteristics around the parotid glands as shown in Fig. 2. A mask
size of 9 x 9 x 5 is also tested for comparison. The covariance
matrix of the Gaussian filters applied is set to be a diagonal ma-
trix with diagonal entries m = ?,zllm -[5 5 3] This choice of
covariance matrix ensures that the full width at half maximum
is equal to half of the mask size. Variance and STD images are
computed using a uniform weighting over the mask.

Sobel image features are computed using two methods: (1)
standard 2-D Sobel kernel in the two planar orientations along
each axial direction to produce six feature images; and (2) 3-D
Sobel kernel along each axial direction to produce three fea-
ture images. GradM features are computed as the magnitude of
the vector at each voxel consisting of three or six Sobel val-
ues, respectively. Laplacian features are computed by applying
a 3-D Laplacian filter of size 3 x 3 x 3. Gabor wavelet fea-

tures are computed with 11 x 11 x 11 filters with bandwidth
4,1 = 0and A = 2.5 in 16 directions (0, ¢) = (in/4, jn/4) for
1,7 =0,1,2,3, yielding 16 feature images. These parameters
setting were manually varied and determined to be reasonable
given the image domain. As shown in Fig. 2, filtering with these
parameters captures effectively image characteristics around the
parotid glands and in the remainder of the image domain.

3) Entropy Image: Entropy images have been first developed
for multimodal image registration [26]. The information content
of a patch is measured with the Shannon entropy, which is com-
puted and stored at the center voxel of the patch. Repeating this
calculation for all voxels in the image yields the entropy image,
which represents the structural information in the image. En-
tropy image features measure statistical dispersion in a similar
way to variance filters and bear similarities to GradM features.
However, unlike variance filters and many gradient features, the
entropy image is independent of the magnitude of intensity val-
ues and intensity differences. The entropy image also faithfully
captures the information in complex setups such as triple junc-
tions. We compute the entropy of patches of size 5 x 5 x 5 and
9 x 9 x 5 voxels and while using 64 bins for density estimation.
We extract patches of size 1, 3, and 5 from the entropy image
as features.

4) Histogram of Oriented Gradients: To compute HoG fea-
tures, we construct 3-D image gradients in each patch of the
image [27]. These gradients are used to produce a histogram
over gradient orientations, where the contribution of each gradi-
ent to the histogram is equal to its magnitude. Gradients created
from image noise therefore have a lower impact than strong gra-
dients at image boundaries. The histograms produced have eight
bins corresponding to the eight octants that the 3-D vector can
lie in. For applications in computer vision, gradient strengths are
locally normalized to account for changes in illumination [27].
Since we work with CT scans, where intensities are measured
in Hounsfield units, we do not apply such a normalization. We
evaluate the neighborhood size for histogram of gradients com-
putation from 3 x 3 X 3t09 x 9 x 5.

5) Multiscale Probability of Boundary: We compute the mPb
as defined in [28]. In the first step, we estimate image and tex-
ture gradients per slice with the oriented gradient signal. This
method calculates the y? distance between the histograms of
two half-discs at each location for various orientations and at
multiple scales. Textons are computed to quantify the texture by
convolving the image with 17 Gaussian derivative and center-
surround filters and by subsequently clustering with k-means
into 64 classes [29]. Image and texture gradients of multi-
ple scales are added to yield the mPb. Features are extracted
inlx1x1,3x3x3,and5 x5 x 5 neighborhood from the
mPb image.

6) Local Binary Patterns: LBP [30] measure the co-
occurrence relations between a voxel and its neighbors, en-
coding these relations into a binary word and quantifying the
texture in a local region. LBP is primarily used for 2-D images.
We work with a 2-D implementation applied on all xy, xz, and
yz planar slices' in the volume. The concurrence statistics for

Thttp://www.mathworks.com/matlabcentral/fileexchange/36484-local-
binary-patterns
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Fig. 4. Comparison of segmentation results for left parotid gland in a
patient with dental artifacts and corresponding Dice scores. We eval-
uated (a) MP with location (MP+Loc), (b) PW with location (PW+Loc),
(d) MP, and (e) PW. The expert segmentation is shown in (c). The CT
slice in (f) illustrates the strong impact of the dental artifact.

these three planes are concatenated. Features are extracted from
I x1x1,3x3x3,and5 x5 x 5 patches of the feature im-
age computed using 3 x 3 and 5 x 5 LBP masks.

7) Haar-Like Features: Haar-like features [31] are computed
by considering adjacent rectangular regions at a specific loca-
tion in a detection window, summing the pixel intensities in
each region and evaluating the difference between these sums.
The key advantage of Haar-like features over most other fea-
tures is their low computation time. Integral images enable rapid
feature calculation at many scales. Haar-like features bear a cer-
tain similarity to Haar basis functions but also consider patterns
that are more complex than Haar filters. Haar-like features are
computed using 106 2-D integral kernels approximating hori-
zontal and vertical derivatives, second-order partial derivatives,
and Gaussian second-order partial derivatives. Since 106 fil-
tered images are created in this step, we extract voxels rather

* Kk

, and *** indicate statistical significance

than patches from each of the filtered images to be part of the
descriptor.

[V. EXPERIMENTS

We evaluate each of the methods described in Section II and
each of the features introduced in Section III on a dataset of 18
CT scans of patients with head and neck cancer. Each image
was labeled by a trained anatomist for treatment planning. The
images contain between 80 and 200 axial slices with a slice
thickness of 2.5 mm. We resampled all 18 images to the same
in-plane resolution, since we compare voxels and they should
represent the same physical space. The in-plane resolution se-
lected was the most commonly encountered in-plane spacing,
which was 0.976 mm. In case of substantial variations in image
resolution, which was not the case on our image corpus, more
attention has to be paid to the re-sampling, where particularly
up-sampling is not advised. All images have the left parotid la-
beled. The right parotid gland was consumed by a tumor in one
patient. Three of the 18 patients have dental artifacts that modify
the image intensity values in regions around the parotid glands.
We segment the left and right parotid glands in each image in
a leave-one-out procedure, using the remaining 17 subjects as
training images. To limit the number of patches, we only con-
sider every other patch in the training set in a way similar to [7].
We measure segmentation quality by calculating the Dice vol-
ume overlap score [32] and modified Hausdorff distance [33]
between the automatic and manual segmentations. We identify
a bounding box around the parotid glands by template matching
the mandible bone, which is adjacent to the parotid glands. This
bounding box acts as the common image domain (2 used by the
segmentation method as described in Section II-A.

Below is an outline of our experiments in the following
sections.

IV-A. Comparison of PW and multipoint methods in combi-
nation with location information.

IV-B. Comparison of bounded and ANN search in combina-
tion with entropy features.
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IV-C. Evaluation of descriptor composition (intensity, loca-
tion, and feature) for varying patch and multipoint sizes.

IV-D. Comparison of 15 features in combination with intensi-
ties and location.

IV-E. Evaluation of optimal feature parameters.

IV-E.  Evaluation of the multiscale patch.

In the experiments, we use the following settings if not speci-
fied otherwise: 9 x 9 x 5 patches and £ = 10 nearest neighbors.
To perform the ANN search, we employ the kd-tree algorithm
with 8 trees and 64 checks, specifying that at most 64 leaves
can be visited in a single search. We threshold the image at
—100 and 150 Hounsfield units, which roughly corresponds to
the range of intensity values in the parotid glands, to lessen
the effects of dental artifacts and image noise on the computed
distances between descriptors. Images are thresholded before
feature extraction.

A. Evaluation of Location and Label Propagation
Methods

In this section, we evaluate the inclusion of location informa-
tion in the descriptor and compare PW and MP label propaga-
tion methods. We also compare the weighted and unweighted
variants of the MP method. Fig. 3 reports the segmentation re-
sults for these methods applied to the left parotid gland, results
for the right parotid are shown in the supplementary material.
We use paired t-tests to evaluate the statistical significance of
the differences between the results for each of the methods.
We observe a significant improvement using MP label prop-
agation over PW label propagation, which is consistent with
the results in [7]. We further observe a significant improvement
when including location information (Loc) in the descriptor with
both PW and MP label propagation methods. Fig. 3 shows that
there is no significant difference between the segmentation re-
sults obtained using the unweighted and weighted variants of
MP label propagation. We apply the unweighted MP variant in
the remainder of our experiments, since it involves a simpler
voting scheme.

As shown in Fig. 3, there are three outlier Dice scores in the
results of the PW and MP labeling for the left parotid. These
outliers correspond to patients with dental artifacts. Fig. 4 pro-
vides a visualization of qualitative segmentation results for one
of the subjects with dental artifacts together with the corre-
sponding Dice scores. The input CT slice demonstrates the
strong impact of the dental artifact on the image. Including
location information yields a clear improvement in the gen-
erated segmentation as illustrated by Fig. 4 and the Dice in-
crease by about 0.7. In this case, location information spa-
tially regulates the segmentation, discouraging the selection of
patches from distant locations in the training images, which
have a similar intensity profile but correspond to a different
anatomical structure. Furthermore, the MP method smoothes
the generated segmentation along the boundary of the parotid
gland and yields a single connected component. Based on
the results in this section, we apply the unweighted MP la-
bel propagation method with location information in all further
experiments.

B. Evaluation of Nearest Neighbor Methods

In this section, we compare the segmentation results obtained
by applying the bounded k-nearest neighbor search (BNN),
which restricts to a 11 x 11 x 11 search window, and the ap-
proximate k-nearest neighbor search with location informa-
tion (ANN+Loc). We also evaluate the inclusion of features
in the descriptor by adding entropy features, which we find in
Section IV-D are the optimal image features for this task, to the
comparison using the approximate search with location infor-
mation (ANN+Loc+Ent). Fig. 5 reports the segmentation results
for these three methods. As shown, there is an improvement in
both Dice scores and modified Hausdorff distances on applying
ANN with location over BNN. Paired ¢-tests show that there
is a significant improvement in Dice scores when using ANN
with location. Adding entropy image features to the descriptor
further improves the Dice scores and Hausdorff distances over
BNN. This suggests that entropy image features significantly
improve the quality of the generated segmentation along its
boundary. In both cases, the proposed methods yield significant
improvements over the traditional bounded search.

To further examine the improvement of ANN with location in-
formation over BNN, we compare the spatial distances between
the nearest neighbors selected by the two methods. About one
fourth of the nearest neighbors found using ANN with loca-
tion information are outside the 11 x 11 x 11 search window
of BNN. This implies that BNN excludes a substantial frac-
tion of the nearest neighbors found using ANN with location.
Since ANN with location significantly outperforms BNN, this
supports the argument made in Section I that the hard cutoff
imposed by the restricted search window in BNN leads to less
accurate segmentations than the soft bias imposed by location
information on using ANN. Note that the additional effect of
the location information in favoring more central patches within
the search window is not covered by this analysis.

C. Descriptor Composition

While Section I'V-A highlighted the importance of including
location information in the descriptor, it is unclear whether us-
ing only image features or image features in combination with
intensity patches leads to the best performance. In this section,
we evaluate these different compositions of the descriptor and
the influence of the size of the intensity patch and the size of the
MP neighborhood. We use entropy images as a representative
feature in this evaluation.

Fig. 6 reports segmentation results for each of the three com-
positions of the descriptor that include location information: (1)
patch intensity values, location information, and entropy image
features; (2) patch intensity values and location information;
and (3) location information and entropy image features. We
plot the resulting mean Dice scores while varying (a) the size of
the intensity patch P(x); and (b) the size of the neighborhood
N5 used in MP label propagation as described in Section II-A.
In the first plot, the size of patch P(x) varies while the size
of Ny is held constant at 9 x 9 x 5, and in the second plot,
the size of Ny varies while the size of P(x) is held constant
at 9 x 9 x 5. The experiments depicted in Fig. 6 decouple the
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such that the descriptor contains: (1) patch intensity values, location in-
formation, and entropy image features; (2) patch intensity values and
location information; and (3) location information and entropy image fea-
tures. The first subfigure plots the mean Dice scores for each of these
three compositions against different sizes of the intensity patch P(x).
The second subfigure plots these Dice scores against different sizes of
the MP label propagation neighborhood N . The size that is not varied
is setto 9 x 9 x 5. Note that the intensity patch size has no influence on
the entropy features, yielding a constant curve with slight variations only
to the randomness of the ANN search.

sizes of the intensity patch P(x) and neighborhood Ny, which
are typically taken to be equal [7]. We observe that the best
results are achieved with smaller intensity patches of 5 x 5 x 3
to 7 x 7 x 3 voxels. In contrast, comparatively larger neighbor-
hoods of 11 x 11 x 7 and 13 x 13 x 7 voxels are required to
maximize segmentation accuracy. As discussed in Section III,
peripheral voxels tend to dominate the distances ||D — D'||
used by ANN as the patch size increases, potentially leading to
less desirable matches. This effect may explain the less accurate
segmentations observed at larger patch sizes. Selecting larger

MP neighborhood sizes transfers larger local patterns from the
training to the test image. The increased regularization imposed
by summing over larger neighborhoods A in (3) may be the
reason for the improved segmentation results—it causes the
generated segmentations to account for the presence of strong
spatial correlations in CT scans of the parotid glands.

Fig. 6 also implies that patch intensities with location gen-
erally improve over entropy image features with location while
the combination of all three consistently yields the best seg-
mentation results. The results for patch intensities and location
fall below that of entropy and location for patch sizes above
11 x 11 x 5. Because entropy image features are independent
of patch size, the mean Dice scores shown in the first sub-
plot in Fig. 6 are approximately constant, with slight variation
caused by the randomness of the ANN search. Furthermore, the
combination of patch intensity values, entropy features, and lo-
cation does not exhibit the previously described preference for
small patch and large neighborhood sizes. Instead, this combi-
nation achieves its best performance at medium neighborhood
and patch sizes of 9 x 9 x 5 voxels. Based on these results, we
use intensity patch and MP neighborhood sizes of 9 x 9 x 5
voxels when evaluating other image features below.

D. Comparison of Features

In this section, we present the results of an empirical study
that seeks optimal feature selection. As motivated in the previous
sections, we apply the unweighted MP method for label prop-
agation and use approximate neighbor search. Further, based
on the results of Section IV-C, we use features in combination
with intensity and location information. The presented results
in this section are therefore not for using the feature in isolation,
but always in combination with intensities and location. Fig. 7
compares the segmentation results for the left and right parotid
glands achieved using each of the features described in Section
III to compute the descriptor D(x). For both parotid glands, en-
tropy image features perform considerably better than any other
image features. The next three highest performing features are
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GradM, HoG, and STD for both the left and right parotid glands.
These features are followed by Sobel, multiscale probability of
boundary, and variance image features. The only feature that per-
forms slightly worse than including no additional image features
in the descriptor is the mean image. Details on the parameters
for each image feature are listed in the supplementary material.

A major difference between the results for the left and right
parotid glands is that LBP are one of the medium performing
features for the left parotid but one of the worst performing fea-
tures for the right parotid, dropping from 8th to 13th place in
relative feature rankings. Gabor wavelet image features exhibit
a similar decrease in relative feature rankings from the right to
left parotid glands, from 9th to 14th place. Other than these dif-
ferences, the relative order of the performances of each feature
is fairly consistent from the left to right parotid glands. The best
performing features measure contours in the image (entropy,
GradM, HoG, STD, Sobel, mPb, and variance). It seems reason-
able that adding contour information to the descriptor improves
performance since this captures the change from foreground to
background in patches. Instead of only matching patches that
have an overall similar appearance, adding gradient-based fea-
tures ensures that the matched patches contain similar contours.
In contrast, smoothing filter features such as mean, median, or
Gauss features provide less information complementary to the
intensity patch and do not yield a large improvement over patch
intensity values alone.

E. Optimal Feature Parameters

This section discusses the optimal weights f and ¢ for each
feature and the optimal feature-specific parameters and imple-
mentations outlined in Section III. The weights f and ¢ deter-
mine the influence of the feature and location component in the
descriptor, cf. (5). Table I reports the range of feature weights f

and location weights ¢ that achieved the mean Dice scores within
0.002 of the highest mean Dice for each feature in the results for
the left parotid and within 0.003 of the highest mean Dice in the
results for the right parotid. Different thresholds were chosen to
account for the difference in the ranges of mean Dice scores for
the left and right parotids. We evaluated weights f and ¢ in the
range from 0.01 to 5.0. As shown in the table, the optimal lo-
cation weights ¢ were between 0.2 and 1.0. The optimal feature
weights f varied significantly between different features. The
features with the highest segmentation accuracy such as entropy
image features and gradient image features generally performed
well with higher feature weights. The features with the lowest
segmentation accuracy yielded similar Dice scores with both
low feature weights of at most 0.1 and high feature weights of at
least 1.0. Features such as the mean image exhibited this trend,
which may reflect the limited additional discriminative ability
conferred by smoothed intensity values over patch intensity val-
ues alone.

The optimal composition of the descriptor is patch intensity
values, location information, and entropy image features. The
patch sizes should be selected between 7 x 7 x 3and9 x 9 x 5;
the location weights between ¢ = 0.3 and ¢ = 0.6; and the fea-
ture weights between f = 1.0 and f = 2.0. Segmenting a single
test subject using the other 17 image-segmentation pairs as an
atlas ran in about three minutes in MATLAB. We believe that
further optimization could improve this runtime considerably.

F. Multiscale Patch

As shown in Fig. 6, more accurate segmentation results are
generally obtained when the MP neighborhood size N ex-
ceeds the size of the intensity patch. However, using a larger
MP neighborhood size causes voxels outside the patch size,
which were not considered in computing the distances, to be
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TABLE |
MEAN DICE AND RANGES OF OPTIMAL FEATURE WEIGHTS f AND LOCATION WEIGHTS ¢ FOR EACH FEATURE FOR THE LEFT PAROTID
Left Parotid

Feature Entropy  Grad HoG STD Sobel mPb Var LBP Haar Median  Multi Gauss  Laplace  Gabor None Mean

Mean Dice  0.8756 0.8687 0.8685 0.8670 0.8666 0.8633 0.8616 0.8615 0.8597 0.8588 0.8577 0.8569 0.8563  0.8556 0.8537 0.8533

Optimal f  1.0-20 02-0.5 0.05-02 0.05-0.5 0.5-2.0 02-0.5 005-02 02-02 02-50 1.0-5.0 0.05-02 1.0-5.0 001-1.0 0.01-1.0 NA  0.01-2.0

Optimal /  02-04 02-1.0 02-1.0 02-09 0.6-20 03-0.6 02-0.9 02-08 04-50 0.6-1.0 03-1.0 04-1.0 02-0.6 02-04 02-0.6 02-1.0
0.865 , the highest segmentation accuracy. The first conclusion that can

[l Patch and Multi-Scale . . . .
[_IPatch be drawn from our results is the importance of location informa-
0.6l tion. As mentioned in Section I, including location information
in the descriptor diverges from the location-independent com-
oassh — - parisons used in NLM [10]. However, the high performance of
u ' NLM segmentation methods [6], [7] can be attributed to the
a implicit inclusion of location as a descriptor by restricting the
085 search to small local windows. Our results demonstrate that
the explicit integration of location information into the descrip-
0.845 tor yields better segmentation results than the hard spatial cut-
off imposed by small search windows. This effect results from
0.84 the potential to simultaneously select distant patches as nearest
’ (5,531 [5,5.5] [7,7.3] . . . . .
Intensity Patch Size neighbors and impose spatial constraints on the nearest neighbor
search. This additional flexibility is important when segment-
Fig. 8. Comparison of mean Dice overlap scores for segmentations

of the left parotid such that the descriptor contains: (1) multiscale patch
intensity values and location information; and (2) patch intensity values
and location information. The differences are not statistically significant.
The MP neighborhood size is set equal to the total extent of the multiscale
patch, which is three times the intensity patch size along each dimension,
in (1). The MP neighborhood size is set equal to the patch size in (2).

used for label propagation. This effect can lead to poor pairings
in the ANN search that could have been avoided by considering
additional context within the image. The multiscale patch over-
comes this issue by considering additional context while using
a smaller core set of patch intensity values. Fig. 8 shows the
improvement on using (1) multiscale patch intensity values and
location information over (2) patch intensity values and loca-
tion information. In (1), the MP neighborhood size is set equal
to the total extent of the multiscale patch, which is three times
the intensity patch size along each dimension. For instance, a
patch size of 7 x 7 x 3 yields to a multiscale patch that covers
a region of 21 x 21 x 9 voxels, which is also MP size. In (2),
the MP neighborhood size is set equal to the patch size. The
multiscale patch presents an interesting new patch design that
provides wider context without having peripheral voxels domi-
nate distances computed in the nearest neighbor search. In this
study, we compute mean intensity values as summary statistics
in generating the multiscale patch. A future research direction
is to instead generate the multiscale patch with image features
other than intensity values and to consider a summary statistic
different from the mean.

V. DISCUSSION

Our results indicate that including patch intensity values, lo-
cation information, and image features in the descriptor yields

ing structures with large shape variations in the training set and
when the initial alignment is of limited accuracy. In our method,
the location weight parameter permits direct control over the
influence of location information on the distances used in the
ANN search. The spatial regularization imposed by location is
especially important when the training set or test image contains
image distortions that lead to the propagation of incorrect labels
when considering image information only. In the segmentation
of parotid glands, this effect is most commonly seen in segment-
ing images of patients with dental implants, which can create
strong artifacts in the image.

Our second conclusion is that features improve the perfor-
mance of intensity values. Other than at very large patch sizes,
including only image features in the descriptor leads to worse
segmentation results than those obtained using only patch in-
tensity values. Features should therefore not replace patch in-
tensities but rather augment them with additional information
in order to obtain more accurate segmentations. From this per-
spective, features that provide information complementary to
patch intensities can be expected to yield the best results. The
high Dice scores achieved by entropy, HoG, and Sobel im-
age features suggest that image gradients and contours provide
complementary information to patch intensities for the purpose
of image segmentation. In contrast, smoothing filters do not
add much additional information to the patch description of an
image.

A general note for NLM segmentation is that a rough initial
alignment of the structures of interest is required. Otherwise,
the definition of local search windows is not meaningful. Sim-
ilarly for our descriptor-based approach, we need rough cor-
respondences between images to obtain comparable location
information. For domains where it is complicated to obtain an
alignment of the structures of interest with affine registration,
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the segmentation with NLM techniques is challenging. Our pro-
posed approach is likely to offer advantages in such situations
because we do not work with a hard cutoff but instead use a soft
spatial prior in combination with larger search windows.

Our results compare positively to the approach presented in
[15], which combines label fusion with statistical appearance
models and geodesic active contours. On the same dataset, a
mean dice of 0.84 was reported for the left parotid and 0.81
for right parotid. Comparing to the results presented in Fig. 7,
we see that all features for the left parotid are above 0.84 dice,
with the best performing entropy features resulting in a dice of
0.875. For the right parotid gland, entropy features result in a
dice of 0.823. The reported run time in [15] is 15 min per subject,
where our presented method runs in about 3 min. These results
highlight the large potential of descriptor-based segmentation.

VI. CONCLUSION

We introduced a generalization of NLM segmentation by
moving from comparing patches to descriptors. The proposed
descriptor consists of patch intensity values, location informa-
tion, and image features. We investigated larger search windows
than previous studies that employed NLM, enabled by an effi-
cient nearest neighbor search. In an extensive comparison of
features for segmentation, we found the best performance for
entropy image features, which have not yet been used for patch-
based segmentation. Taken together, our analysis did not only
provide new insights into NLM-based segmentation but also
demonstrated the importance of including location and features.
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