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On the Construction of Invertible
Filter Banks on the 2-Sphere
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Abstract—The theories of signal sampling, filter banks, wavelets,
and “overcomplete wavelets” are well established for the Euclidean
spaces and are widely used in the processing and analysis of im-
ages. While recent advances have extended some filtering methods
to spherical images, many key challenges remain. In this paper, we
develop theoretical conditions for the invertibility of filter banks
under continuous spherical convolution. Furthermore, we present
an analogue of the Papoulis generalized sampling theorem on
the 2-Sphere. We use the theoretical results to establish a general
framework for the design of invertible filter banks on the sphere
and demonstrate the approach with examples of self-invertible
spherical wavelets and steerable pyramids. We conclude by ex-
amining the use of a self-invertible spherical steerable pyramid
in a denoising experiment and discussing the computational
complexity of the filtering framework.

Index Terms—Channel bank filters, feature extraction, filtering,
frequency response, image sampling, image orientation analysis,
spheres, spherical images, wavelet transforms.

I. INTRODUCTION

MULTISCALE filtering methods, such as wavelets [7] and
“overcomplete wavelets” [9], [23], [25] have many ap-

plications in feature detection, compression, and denoising of
planar images. Extending the theories and the methods of fil-
tering to spherical images promises similar benefits in the fields
that give rise to such images, including shape analysis in com-
puter vision [5], illumination computation in computer graphics
[21], [22], cosmic background radiation analysis in astrophysics
[26], [29] and brain cortical surface analysis in medical imaging
[32], [33].

We consider a two-stage filtering framework [Fig. 1(a)],
conceptually equivalent to the usual Euclidean filtering frame-
work except the planar images and filters are replaced by
spherical ones. We can think of the first set of filters as analysis
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filters which project the input image onto the space spanned
by the analysis filters. A reconstructed image is then obtained
by passing the intermediate outputs through the second layer
of filters. Fig. 1(b) shows a modification of the framework
in Fig. 1(a) that introduces sampling between the first and
the second layers of filters. The sampling is useful if one is
interested in processing the outputs of the analysis filters before
passing them through the synthesis filters.

In this work, we analyze the relationship between the recon-
structed image and the original image, and establish conditions
under which the reconstructed image is the same as the orig-
inal one, i.e., conditions for invertibility. We demonstrate the
use of our results on continuous invertibility and generalized
sampling for designing filter banks that enable explicit control
of both analysis and synthesis filters. We illustrate the frame-
work by creating examples of self-invertible spherical wavelets
and steerable pyramids.

Self-invertible filter banks employ identical filters for anal-
ysis and synthesis. Self-invertibility is desirable for image ma-
nipulation in the wavelet domain, leading to an intuitive notion
that a convolution coefficient corresponds to the contribution
of the corresponding filter to the reconstructed signal. Without
self-invertibility, the effects of nonlinear processing of wavelet
coefficients could propagate to spatial locations and frequencies
other than those which were used to compute the coefficients
[23]. To the best of our knowledge, this is the first approach
demonstrated on a sphere that enables the design of self-invert-
ible filter banks.

II. RELATED WORK

In the Euclidean domain, convolution is computed efficiently
using the fast Fourier transform (FFT) [6]. Once we move to
the sphere, FFT must be replaced with an alternative efficient
method for computing convolutions. An original algorithm for
axisymmetric convolution kernels on the sphere was derived in
[11] and was recently extended to arbitrary functions [28], [30].
These results allow us to efficiently compute the outputs of the
first set of filters. Unfortunately, they do not apply to the inverse
convolution with the second layer of filters because the outputs
of the first layer of filters are in general not spherical images as
we will see in Section III.

In the past decade, there has been much work on extending
the general paradigm of linear filtering to the spherical domain
[1], [4], [8], [12], [13], [17], [21], [22], [26], [29]. For example,
the lifting scheme in [21] and [22] adopts a nonparametric ap-
proach to computing the wavelet decomposition of arbitrary
meshes by generalizing the standard two-scale relation of Eu-
clidean wavelets. This method enables a multiscale representa-
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Fig. 1. Continuous and discrete filter bank diagram. (a) Continuous filter bank. (b) Discrete filter bank.

tion of the original mesh (image) with excellent compression
and speed performance. However, the lifting wavelets are not
overcomplete, i.e., exactly one wavelet coefficient is created per
sample point, causing difficulties in designing filters for oriented
feature detection and invariance to rotation [33].

A similar problem in the Euclidean domain leads to the in-
vention of “overcomplete wavelets,” such as steerable pyramids
[14], [23]. A group theoretic formulation of overcomplete con-
tinuous spherical wavelets is proposed in [1]. In particular, it
can be shown that the stereographic projection of an admissible
planar wavelet to the sphere is also admissible under the group
theoretic framework, providing a straightforward framework for
the design of analysis filters for specific features of interest, such
as oriented edges [29].

In the group theoretic approach, defining the mother wavelet
completely determines the analysis and synthesis filters. How-
ever, while the analysis filters are related by stereographic dila-
tion, the synthesis filters are in general not related by dilation. In
fact, the support of corresponding analysis and synthesis filters
is guaranteed to be the same in frequency domain but not in the
spatial domain. Bogdanova et al. [4] discretize the group the-
oretic wavelets, providing a sampling guarantee for the frame-
work of Fig. 1(b) for the restricted class of axisymmetric filters.
An axisymmetric spherical function is one which is symmetrical
about the north pole. This work is, therefore, the most similar to
ours. In contrast, we study general filter banks, without any re-
striction on the relationships among the cascade of filters. We
derive the analogue of the Papoulis generalized sampling the-
orem [18] on the sphere, applicable to both axisymmetric and
nonaxisymmetric filters.

Driscoll and Healy [11] provide the equivalent of the
Nyquist–Shannon sampling theorem on the sphere. While the
Nyquist–Shannon sampling theorem provides reconstruction
guarantees for bandlimited signals in Euclidean space under
perfect sampling (convolution with a delta function), the Pa-
poulis generalized sampling theorem provides guarantees for
bandlimited signals sampled via convolutions with kernels of
sufficient bandwidth.

An earlier version of this work was first presented at the In-
ternational Conference on Image Processing [31]. In this paper,
we include proofs of the invertibility conditions and demon-
strate the generation of self-invertible spherical steerable pyra-
mids. In Section III, we introduce the notation used throughout
the paper. In Section IV, we present the main theoretical contri-
butions of this paper: continuous invertibility and the general-
ized sampling theorem. We propose a procedure for generating

self-invertible multiscale filter banks on the sphere in Section V.
In Section VI, we illustrate the procedure to design wavelets
and steerable pyramids and employ a steerable pyramid in de-
noising. We conclude with the discussion of future research and
outstanding challenges in the proposed framework.

To summarize, our contributions are as follows.
1) We present theoretical conditions for the invertibility of ax-

isymmetric and nonaxisymmetric filter banks under con-
tinuous spherical convolution.

2) We present a generalized sampling theorem of signals on
the 2-Sphere for both axisymmetric and nonaxisymmetric
filter banks. This generalizes the works of Bogdanova et
al. [4] and Starck et al. [26] to nonaxisymmetric filters
and opens a way for nonlinear processing of the wavelet
coefficients generated from general filter banks.

3) We present a mechanism for generating invertible, as well
as self-invertible, wavelets, and steerable pyramids. We
provide an analysis of the computational complexity of the
filtering framework.

III. DEFINITIONS

Let be a square-integrable function on the
2-D unit sphere, where are the spherical coordinates. Sup-
pose is a point on the sphere. Then, is the
co-latitude, which is the angle between the positive -axis (north
pole) and the vector corresponding to . is the lon-
gitude and is taken to be the angle between the positive -axis
and the projection of onto the plane. is undefined on
the north and south poles.

The spherical harmonics [20] form an orthonormal
set of basis functions for : i.e.,

(1)

where is the spherical harmonic coefficient of degree
and order obtained by projecting the function onto

(2)

where and denotes complex conjugation. We
call a spherical harmonic of degree and order . We
note that for axisymmetric functions (independent of ), only
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Fig. 2. Rotation via euler angles (�; �; ). (a) Original spherical image. (b) Rotation by  about z-axis. (c) Rotation by � about y-axis. (d) Rotation by � about
z-axis.

the order 0 harmonics are nonzero. A more detailed background
of spherical harmonics is found in Appendix A.

We choose to parameterize rotations on the sphere by the
Euler angles, ( , , ). The
rotation operator first rotates a function by about
the -axis [Fig. 2(b)], then by about the -axis [Fig. 2(c)],
and finally by about the -axis [Fig. 2(d)]. The direction of
positive rotation follows the right-hand screw rule. The three
angles specify an element of the rotation group and pro-
vide a natural parametrization of convolution on the sphere. The
effects of rotation on the spherical harmonic coefficients of a
function is expressible in terms of the so-called Wigner-D func-
tions. The Wigner-D functions form an irreducible representa-
tion of the rotation group [20]. Appendix A provides the explicit
expressions for the Wigner-D functions.

A. Continuous Convolution

On the plane, convolution is defined in terms of the inner
product between two functions translated relative to each other,
and is parameterized by the amount of translation. On the
sphere, it is more natural to talk about rotation rather than trans-
lation, and, therefore, spherical convolution is parameterized
by rotation. Given a spherical image and a spherical
filter , their spherical convolution

(3)

is a function of rather than . This definition
of convolution is identical to that in [28], [30], although [30]
calls it directional correlation.

By convention, we shall consider the center (origin) of a
spherical filter to be at the north pole . Then intuitively,

is the inner product between the re-oriented filter
[e.g., Fig. 2(d)] and the spherical image. In other

words, we obtain by first re-orienting the spherical
filter by a rotation of about the -axis (center still at north
pole), then bringing the center of the filter to the point of
the spherical image, and performing an inner product between
the image and filter. Therefore, is the correlation of
the rotated version of with , or the projection coefficient of

onto . In the case of the filter shown in Fig. 2, a
high value of would imply a presence of an oriented
edge at spherical coordinate with orientation .

We note that the notion of orientation is inherently local here
because a continuous unit-norm vector field does not exist on the

sphere. Therefore, it is not meaningful to claim an existence of
an edge of orientation at location without specifying
a local coordinate system. In our case, we can define such a
local coordinate system by first specifying one at the north pole.
Our choice of parameterizing rotation via the Euler angles then
induces a local coordinate system everywhere, except the south
pole.

For axisymmetric filters, , the rotation by
about the -axis has no effect, i.e., is a
spherical image parametrized by , .

To project a function in onto , we de-
fine the inverse convolution of a spherical filter with

to be

(4)

where the integration is over the Euler angles:
. Our definition of inverse convolution gener-

alizes the spherical convolution between two functions on
defined by Driscoll and Healy [11], and is identical to theirs
if , i.e., a spherical image. Our inverse
convolution operation is similar to the transpose convolution
operation defined in [2], [28]. However, the transpose convolu-
tion uses the uniform measure , ignoring the intrinsic
nonuniform component of the measure on .

We can think of the inverse convolution in the following intu-
itive way. The reconstructed value at a given is obtained
by summing (integrating) the contributions of the rotated recon-
struction filters , centered at all possible positions and
oriented by all possible angles , where the weights of the con-
tributions are given by the convolution outputs (projection co-
efficients on the corresponding input filters).

We distinguish between the forward convolution (3) and the
inverse convolution (4) because the forward convolution com-
bines two spherical images to give a function on , while
the inverse convolution combines a spherical image and a func-
tion on to give a spherical image. Both definitions of
convolutions generalize the concept of convolution in Euclidean
spaces.

When using a filter bank of analysis-synthesis filter pairs
[Fig. 1(a)], the reconstructed signal is obtained by summing the
response of all filter pairs

(5)
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which is analogous to the definition in [1], with integration over
scale replaced by summation over the filter index.

B. Discrete Convolution

In the Euclidean case, we typically discretize both the
input images and the convolution outputs. When working on
the sphere, we choose to keep the image domain continuous
by working with spherical harmonic coefficients rather than
sample values, because this allows us to exploit efficient algo-
rithms for spherical convolution [28], [30]. Since no uniform
sampling grid exists on the sphere, performing convolution
completely by quadrature would be slow. This is because under
each rotation of the filter relative to the spherical image, we
would need to re-sample (or re-interpolate) the filter or the
image.

For (or equivalently, in the spherical wavelet do-
main), continuous representation is possible through series of
complex exponentials [28] or Wigner-D functions [30]. How-
ever, both the complex exponentials and the Wigner-D functions
have global support. Therefore, in applications where we want
to modify the image in the wavelet domain, manipulating the
series coefficients would be tantamount to simultaneously al-
tering all the wavelet coefficients, defeating the purpose of the
wavelet decomposition, which is to provide localized control in
both spatial and frequency domain. To avoid this, we sample
the output of the continuous convolution to create its
discrete counterpart , where define a
particular sampling grid [Fig. 1(b)]. The inverse convolution be-
tween the sampled projection coefficients and the contin-
uous reconstruction filters is then defined as

(6)

which includes sampling-dependent quadrature weights ,
introduced so that the discrete case converges to the continuous
case as the number of samples increases. This definition allows
for an easy transfer of continuous filtering theory to its discrete
analogue. In Section IV, we show that “good” choices of
exist, corresponding to different sampling schemes. In contrast
with the Euclidean case, are necessary because of the
nonuniform measure on the Euler angles ,
as we discuss in Section IV.

Similar to the continuous case [cf. (4)], the signal recon-
structed through analysis-synthesis filter pairs is defined as
a sum of contributions of all filter pairs

(7)

The sampling grid and the quadrature weights now depend on
since different filters in the filter bank might use different

sampling schemes.

IV. INVERTIBILITY CONDITIONS

In this section, we present the main theoretical contributions
of our work.

1) Theorem 4.1: (Continuous Frequency Response).
Let be an analysis-synthesis filter bank. Then
for any spherical image and its corresponding
reconstructed image

(8)

where and are the spherical harmonic coefficients
of the input and reconstructed images, respectively. and

are the spherical harmonic coefficients of the th analysis
and synthesis filters, respectively.

Appendix B presents the proof of Theorem 4.1. To draw an
analogy with the Euclidean case, we call

(9)

the frequency response of the analysis-synthesis filter bank.
Note that the degree spherical harmonics coefficients of the
reconstructed image are affected only by the degree spherical
harmonic coefficients of the filters. However, the degree order

spherical harmonic coefficient of the reconstructed signal
is affected by all the orders of degree spherical harmonic
coefficients of the filters. In contrast, on the plane, the fre-
quency response is simply the sum of products of the Fourier
coefficients of the analysis and the synthesis filters

(10)

where , , and
denote the Fourier transforms of the re-

constructed signal, original signal, analysis filters and syn-
thesis filters respectively. We note that under Euclidean
space conventions, a “self-invertible” filter bank is one with

and . We
see that the effects of and are separable, unlike and .
Furthermore, on the sphere, the frequency response contains
an extra modulating factor that decreases with degree . The
following corollary of Theorem 4.1 provides the necessary and
sufficient condition for the invertibility of filter banks under
continuous convolution.

2) Corollary 4.2: (Continuous Invertibility). Let
be an analysis-synthesis filter bank. Then for

any spherical image and its corresponding recon-
structed image

for all

for all (11)
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We note that the corollary is easily satisfied if there is no con-
straint on the relationships among the cascade of filters: given
a set of analysis filters , there are in general multiple sets of
synthesis filters that can achieve invertibility. For example, we
can define the synthesis filters to be , where

for

otherwise
(12)

and is the frequency response defined in (9). is a
frequency modulating operator that normalizes the synthesis
filters at each degree, such that the combined frequency re-
sponse of the filter bank is 1 for all with .
This filter bank is, therefore, invertible over the frequency
range of the support of the filters. This operation is similar
to the frame operator in the continuous spherical wavelet
transform of [1], where the counterpart of is given

by , replacing the
summation over by the integration over the scale , with mea-
sure . For the special case of the analysis filters being
dilated versions of each other, this choice of the synthesis filters
is a direct discretization of [1], albeit ignoring the measure
of . The complete discretization of the continuous wavelet
transform in [1] is actually accomplished in [4]. However,
regardless of using or the frame operators of [1], [4], the
synthesis filters are in general not related by dilation even if the
analysis filters are.

We now define and to be the highest
nonzero harmonic degree (order) of and , respectively.
The following result relates the spherical harmonics coefficients
of the input image and reconstructed image under
the sampling framework of Fig. 1(b).

3) Theorem 4.3: (Generalized Sampling Theorem). Let
be a filter bank with (and, thus, ) and

(and, thus, ) . Suppose the sampling grid and the
quadrature weights satisfy:

• for ;
• for ;
• and are the quadrature weights and knots such

that

(13)

for , , where and are the
Wigner-d functions;

• .
Then

(14)

Appendix A provides the definitions and the explicit expres-
sions for the Wigner-d functions. Note that there is an implicit
link between the number of samples and the bandwidths

and (see Appendix D). The constraints in this theorem en-
sure that the number of samples remain finite and is similar to
the tradeoff between the number of points in a spherical grid
and the maximum bandwidth of signals defined on it [11]. The
samples and the weights are picked such that the discrete re-
construction defined in (7) gives the same result as the contin-
uous version in (5). The proof is found in Appendix C. In Ap-
pendix D, we demonstrate two sets of quadrature weights and
knots that satisfy the conditions of the theorem. We note that
the use of quadrature methods as tools for sampling proofs was
previously employed in the fast spherical transform [11], [15]
and the fast Wigner-D transform (SOFT) [16].

The measures corresponding to and are constants in
, just like in the Euclidean space. We, therefore, use

uniform sampling for these parameters in our work. For dis-
crete planar convolution, it is customary to have no weights (or
rather, unit weights). On the sphere, however, the nonuniform
measure on , , presents challenges for sampling.
If we are simply interested in convergence, then setting

for uniform samples
of corresponds to the Riemann sum of the integral.
Theorem 4.3 states that better quadrature schemes exist that
allow for faster convergence with finite numbers of samples.

The continuous invertibility corollary and the generalized
sampling theorem imply the following:

4) Corollary 4.4: (Discrete Invertibility). Consider a filter
bank of filters with finite maximum spherical harmonic degrees.
There exists quadrature schemes such that the filter bank is in-
vertible over a particular frequency range under the discrete
spherical convolution if the filter bank is also invertible over the
same frequency range under the continuous spherical convolu-
tion.

Because functions in have finite energy, their spher-
ical harmonic coefficients must necessarily decay to zero.
Therefore, we can reasonably assume that the filters of the filter
bank are of finite bandwidth as required by Theorem 4.3 by
representing the filters with a finite number of coefficients up to
an arbitrary prespecified precision. We will, therefore, focus on
constructing invertible filter banks for continuous convolution.

The discrete invertibility corollary opens a way for nonlinear
processing of the wavelet coefficients generated from general
filter banks. Applications may include compression, denoising
and image enhancement. The corollary also enables the perfect
reconstruction of an original signal sampled with equipment that
introduces blurring during the acquisition process. For example,
the first layer of filters could be the blurring kernels of a set
of radio dishes measuring the cosmic background radiation
of the sky. We can then hope to recover the true cosmic back-
ground radiation signal by passing the recorded signal through
the second bank of filters.

V. CONSTRUCTING SELF-INVERTIBLE MULTISCALE

FILTER BANKS

In this section, we show how to use the continuous invert-
ibility corollary to generate self-invertible multiscale filter
banks. The optimization framework presented here can be
easily adapted to design other types of filter banks by altering
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Fig. 3. Stereographic dilation. Correspondence between the spherical sur-
face and tangent plane is established via stereographic projection: point P
on the sphere is mapped to the point P on the tangent plane of the north
pole. This allows a spherical function f(�; �) to be mapped onto the tan-
gent plane. The usual dilation is then performed on the tangent plane. The
resulting dilated function is mapped back onto the sphere via stereographic
dilation: (1=a)f(2 tan ((1=a) tan(�=2));�). The normalization factor
(1 + tan (�=2))=(1+ ((1=a) tan (�=2)) ) is added to conserve the inner
product between dilated functions.

the structure of the optimization problem according to an
application’s needs.

For self-invertible filter banks, is constrained to be
the same as . Furthermore, in multiscale analysis, the
analysis filters are related through dilation and scaling of a par-
ticular template , i.e.,

(15)

where and is the nonlinear dilation operator,1 both
of which will be explained shortly. We use the convention that
larger corresponds to smaller (narrower filters),

In this paper, we adopt the stereographic dilation operator in-
troduced in [1] (Fig. 3), which involves stereographically pro-
jecting the function from the sphere onto the tangent plane of
the north pole, performing the usual dilation operation on the
plane and then projecting the resulting function back onto the
sphere2

(16)

The normalization factor
ensures the inner product between func-

tions is conserved under stereographic dilation. Stereographic
dilation allows for an explicit control of the spatial localization
of the wavelets in contrast with previous approaches that define
dilation in the frequency domain [4]. Because of the nonlinear
nature of stereographic dilation, extreme dilation of a spherical
function will eventually lead to high frequencies. Initial

1We note that the symbolD is overloaded to imply rotation as well as dilation,
but the meaning should be clear depending on the context.

2We note that the approach commonly used with planar images of applying
a constant filter to a subsampled image fails here because the sphere is periodic
and bounded, causing the effective size of the image features (relative to the
filter) to stay constant with subsampling. We also note that nonlinear dilation
is necessary since the sphere is compact, hence dilating a spherical function
by naively scaling the radial component of the spherical function, f(�; �) !
f((�=a); �), leads to undesirable “wrap-around” effects.

Fig. 4. Effect on energy due to norm preserving stereographic dilation.

dilation of a function localized at the north pole increases the
support of the function and results in lower frequencies. As
dilation continues, oscillations will accumulate near the south
pole, resulting in high frequencies. A useful analysis of this
phenomenon can be found in Bogdanova et al. [4]. In practice,
we will avoid working in that region, since the dilated filter no
longer looks like the original filter.

The ’s in (15) are the amplitude scaling parameters that
control the tradeoff between self-invertibility and norm-pre-
serving dilation. Corollary 4.2 implies that the sum of squares
of the spherical harmonic coefficients of a bank of self-invert-
ible filters must increase linearly with degree. But stretching a
function while preserving its norm shifts its spherical harmonic
coefficients to the left (spherical harmonic degrees decrease)
and magnifies them (Fig. 4).

These extra weights are analogous to the measure of scale
in the group theoretic formulation of spherical wavelets

[1] and its discretization in the axisymmetric case [4], resulting
in wider filters being assigned smaller weights. On the contin-
uous real line, the measure nicely cancels out the di-
lation of the filter (cf. [27, Ch. 5]). On the discrete real line,
the convolution outputs of narrower filters are sampled more
densely. This suggests two possible approaches: variable sam-
pling of the convolution outputs or variable scaling of the fil-
ters. Yet another approach is to sample the scale space unevenly
rather than according to a power law. Because the effects of
stereographic dilation on the spherical harmonic coefficients of
a function are not analytical, none of these approaches leads to a
closed-form solution. In this paper, we take the variable scaling
approach by finding the appropriate ’s as part of the filter de-
sign.

Fortunately, stereographic dilation is distributive over
addition. Suppose the template is expressible as a
linear combination of the basis functions , i.e.,

. Here, we assume that
are spherical harmonics and note that the technique is still
applicable if a more suitable basis is found, such as described
in [24]. Applying stereographic dilation to

(17)

yields the spherical harmonic coefficients of the analysis filter
at another scale. This is useful since the invertibility condition
in Corollary 4.2 is expressed in terms of the spherical harmonic
coefficients of the filters. We can, therefore, decide on a set of
scales and precompute a table of spherical harmonic
coefficients of the dilated basis functions . Equation
(17) allows us to determine the spherical harmonic coefficients
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of the dilated filters at each relative scale given
and . This technique can also be applied to other
definitions of scale that are distributive over addition.

After fixing the set of basis functions and the set of
scales , we now pose a constrained optimization problem to
determine and . Similarly to the filter design in the Euclidean
space, the objective function should be application dependent,
and could for example be a function of the frequency response.
The constraints come from enforcing self-invertibility: we as-
sume that the analysis and synthesis filters are identical and
optimize the cost function under the invertibility constraints of
Corollary 4.2. Since we cannot have more constraints than vari-
ables, self-invertibility cannot be achieved for more degrees than
the number of basis functions and scales. We will discuss sev-
eral specific examples of the objective function in Section VI.

The quadratic penalty method [3] is effective in solving this
optimization problem with nonconvex constraints by incorpo-
rating the constraints into the objective function and solving the
resulting unconstrained optimization problem using nonlinear
least squares minimization

(18)
The first term corresponds to the invertibility conditions by con-
straining the frequency response ((9)) to be 1. The sum
in the first term is over the desired invertibility range. Note
that and completely determine the first term since they de-
fine the filter bank via (15) and (17). The vector-
valued functions ’s in the second term reflect the (un)de-
sirable properties of the filter bank. For example, could be
the discrete second derivatives of the spherical harmonic co-
efficients of the filters. Minimizing the norms of ’s would
then lead to smooth filters. We repeat the optimization procedure
while increasing the weight of the constraints and using the
solution corresponding to the previous value of as the starting
point for the next iteration, until convergence to a local min-
imum of the original optimization problem. Our implementation
uses the Matlab’s lsqnonlin function to minimize the objective
function at each iteration.

VI. EXPERIMENTS

In this section, we demonstrate the optimization procedure
formulated in the previous section. We demonstrate the con-
struction of both self-invertible spherical wavelets and spher-
ical steerable pyramids. Similar to the Euclidean domain, we
define a spherical wavelet transform to be the decomposition of
a spherical signal into component signals at different scales, i.e.,
employing axisymmetric filter kernels. On the other hand, we re-
serve the term spherical steerable pyramid transform for the de-
composition of a spherical signal into component signals at dif-
ferent scales and orientations, i.e., using nonaxisymmetric filter
kernels. We note that in some literature [1], [4], [29], the term
“spherical wavelets” includes spherical steerable pyramids.

A. Spherical Wavelets

In designing axisymmetric wavelets, we limit our set of basis
functions to be the first hundred spherical harmonics of

order 0, since the spherical harmonic coefficients of axisym-
metric functions are zero for orders other than 0.

We define the set of scales to be ,
, with corresponding to the

undilated template. We use S2kit [15]3 to create a table of the
spherical harmonic coefficients of for . As
mentioned earlier, extreme stereographic dilation and shrinking
of spherical harmonics can result in high frequencies. We find
the first 600 order 0 spherical harmonic coefficients of each
dilated spherical harmonic (a dilated axisymmetric function
remains axisymmetric). We verify that for and

, .
For axisymmetric filters, we can use the fast spherical con-

volution [11] to compute the forward convolution (3). We quote
the results here for completeness

(19)

Furthermore, as noted before, the inverse convolution (4) be-
tween two spherical images is the same as the definition of con-
volution by Driscoll and Healy [11] (except for a conjugation)

(20)

Because we seek a multiscale decomposition of the original
spherical signal, we would like the filter at each scale to act as
a bandpass filter. Similar to the Euclidean domain, we require a
residual lowpass filter to ensure that the combined wavelet and
the lowpass filter bank is invertible up to a particular degree.
Since we only use the first 100 spherical harmonics as our basis,
the frequency response of will be zero for all degrees
higher than 99. If we also penalize the magnitude of the leading
spherical harmonic coefficients of , the frequency re-
sponse of will be zeros at both ends, i.e., it will serve
as a bandpass filter. To satisfy the self-invertibility conditions,
the solution cannot be identically zero, but must rise to a peak
somewhere in the middle of the frequency range.

We also penalize the second derivatives of the filters’ fre-
quency responses and spherical harmonic coefficients to force
the filters to be relatively smooth and to reduce ringing. Note
that the second derivatives are discrete since spherical har-
monic degrees are discrete. We can induce a sharper cutoff
frequency by penalizing the magnitude of the combined fre-
quency response above a cutoff degree . In addition, we
fix the amplitude scaling factors ’s (15) to be the same.
While allowing the ’s to take on different values provides
the optimization procedure more flexibility in finding a set of
desired filters, we find that in practice, having the same for all
the scales results in the frequency responses of the filters at all
scales having comparable amplitude. Once again, we note that
the energies of the filters at different scales will be different
because of Corollary 4.2.

Fig. 5(a) illustrates the frequency response of a ten-scale
wavelet filter bank ( , )

3We use the matlab interface from the publicly available Yet Another Wavelet
Toolbox (YAWTb): http://rhea.tele.ucl.ac.be/yawtb/
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Fig. 5. Ten-scale wavelet filter bank obtained by imposing invertibility from degree 15 to 79 and a combined frequency response cutoff atL = 150. (a) Frequency
response of individual filters. (b) Individual filters in the spatial domain (0 � � � 1 radian). The second peak indicates ringing. (c) Combined frequency response,
L = 150.

obtained through our optimization procedure. Invertibility is
enforced from degree 15 to 79. Furthermore, we impose a
quadratic penalty on the magnitude of the combined frequency
response for degrees above . The combined frequency
response of the filters is shown in Fig. 5(c).

Because the filters are axisymmetric, we can plot the filters
in the image domain as a function of [Fig. 5(b)]. The exis-
tence of a second peak after the peak at (north pole) in-
dicates ringing. When we vary the cutoff frequency penalty, we
can trade off the amount of ringing for the slope of the cutoff.
For example, Fig. 6(a) shows the combined frequency response
of a wavelet filter bank obtained by penalizing the magnitude of
the combined frequency response for degrees above .
Notice the combined frequency response drops rapidly after de-
gree 79. However, this results in increased ringing. If we mea-
sure ringing by the ratio of the second maxima to the maxima
at the north pole, we can measure the tradeoff between ringing
and the cutoff frequency, as shown in Fig. 6(a).

As a verification, we apply the resulting filters to a high reso-
lution world elevation map . We bilinearly
interpolate the map onto the S2kit [15] grid and convert the spa-
tial image into spherical harmonics using S2kit. This is followed
by the inverse transform using S2kit to obtain a final spherical
image. The spherical harmonics and the final spherical image
become the “ground truth” for measuring invertibility. Lower
resolution versions of the elevation map are obtained by trun-
cating the higher degrees spherical harmonics. It is necessary
to use the spherical image obtained from inverting the spher-
ical harmonics rather than from the linearly interpolated image
because the linearly interpolated image might not be samples

Fig. 6. (a) Combined frequency response of the filters obtained when the com-
bined frequency response cutoff is set to L = 100. Note the sharper cutoff
obtained. However, this is at the expense of ringing. (b) Plot of ringing versus
cutoff frequency L . Ringing is defined to be the ratio of the second peak to the
maximum peak at the lowest scale, a = 4. (a) Combined frequency response,
L = 100. (b) Ringing versus L .

from a bandlimited signal. In that case, the sampling theorem of
Driscoll and Healy [11] does not hold since the quadrature knots
and weights were computed assuming samples from a bandlim-
ited signal. This is in contrast to the Euclidean case, where the
forward and inverse discrete Fourier transform always return the
same results. As a result, the fast spherical harmonic transform
of S2kit is not completely invertible for nonbandlimited signals
and is instead an approximate fit of the linearly interpolated data.
The final spherical image and the spherical harmonics are, how-
ever, exact inverses of each other.

We convolve the wavelet filter bank of Fig. 5(a) with the
world elevation map [Fig. 7(a)]. The results for four scales are
shown in Fig. 7(b)–(e). Upon reconstruction using (20), we find
that for degrees
between 15 to 79 inclusive. The reconstruction error obtained is
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Fig. 7. Outputs of the analysis filter bank of Fig. 5 applied to the world elevation map. Only four scales are shown. (a) Original Image. (b) a = 4. (c) a = 2.
(d) a = 1. (e) a = 0:5.

Fig. 8. (a) Combined frequency response of a four-scale wavelet filter bank
obtained by our optimization procedure. a = f4; 2; 1; 0:5g. Invertibility is
imposed from degree 10 to 89. Combined frequency response cutoff is set to
L = 150. (b) Plot of ringing versus cutoff frequency L . (a) Combined fre-
quency response, L = 150. (b) Ringing versus L .

expected since the quadratic penalty optimization method from
the previous section is performed until [in
(18)] is in the order of . The reconstruction errors can be
made arbitrarily small by running the quadratic penalty method
with increasingly higher weights on the invertibility constraints.

To demonstrate that the optimization procedure is stable
across different settings of parameters, we show a second
example where we optimize for a four-scale wavelet filter bank

. We enforce invertibility from degree 10
to 89 and apply a quadratic penalty on the magnitude of the
combined frequency response for degrees above .
The combined frequency response of the resultant filter bank is
shown in Fig. 8(a). Once again, by varying the cutoff frequency
threshold, we can obtain a tradeoff between ringing and sharp-
ness of the cutoff [see Fig. 8(b)]. We apply the filter bank to
the world elevation map [see Fig. 9] and find that invertibility
is indeed obtained for degrees between 10 and 89 inclusive.
Notice that there is significantly less ringing artifacts than in
Fig. 7 as predicted by our measure of ringing at
[compare Figs. 6(b) and 8(b)].

B. Spherical Steerable Pyramid

Just like the Euclidean domain [14], it can be shown that there
is a direct tradeoff between angular resolution and steerability of
oriented (nonaxisymmetric) filters on the sphere [29], i.e., filters
that have higher angular resolving power requires a bigger set of
“steering” basis filters. This can also be seen from Theorem 4.3.

Fig. 9. Convolution outputs obtained by applying the analysis filter bank of
Fig. 8(a) to the world elevation map of Fig. 7(a). Notice that there is less ringing
artifacts than in Fig. 7 because ringing is lower in the four-scale filter bank than
in the ten-scale filter bank whenL is set to 150. (a) a = 4. (b)a = 2. (c) a = 1.
(d) a = 0:5.

Filters with higher angular resolving power require spherical
harmonics of higher orders, translating to more samples needed
to satisfy the conditions of the generalized sampling theorem.

In our experiments, we limit our set of basis functions
to be the first two hundred spherical harmonics of order and

. We note that we can increase our angular power by using
higher orders, but this decreases the steerability of our filters.
By considering only real filters, we can avoid working directly
with the order spherical harmonics, since their coefficients
are effectively constrained by those of the order spherical
harmonics (see Appendix A). For convenience, we further con-
strain the coefficients of the order spherical harmonics to be
real.

We define the set of scales to be ,
, with corresponding to the undilated

template. Once again, we use S2kit [15] to create a table of the
spherical harmonic coefficients of for .
We find the first 999 order 1 spherical harmonic coefficient of
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Fig. 10. (a)–(d) Nine-scale steerable pyramid (a = f2 g, n = �4; . . . ; 4) obtained by imposing invertibility from degree 20 to 170. Note that the frequency
response is equal to 0.5 in the invertibility range because we only plot the frequency response contributed by the order +1 harmonics. (e)–(h) Five-scale steerable
pyramid (a = f4;2; 1; 0:5; 0:25g) obtained by imposing invertibility from degree 10 to 180. Note that the frequency response is equal to 0.5 in the invertibility
range because we only plot the frequency response contributed by the order +1 harmonics. (a) Individual frequency response. (b) Combined frequency response.
(c) h (�; �). (d) Plot of h (�; �) (�1:5 � � � 1:5 radian). (e) Individual frequency response. (f) Combined frequency response. (g) h (�; �). (h) Plot
of h (�; �) (�1:5 � � � 1:5 radian).

each dilated spherical harmonic (the order of a spherical func-
tion does not change under dilation). We verify that for
and , .

Similar to the previous subsection, we penalize the magnitude
of the leading coefficients of . We also penalize the
second derivatives of the filters’ frequency responses and spher-
ical harmonic coefficients. Finally, we fix the amplitude scaling
factors ’s at all scales to be the same.

Fig. 10(a) and (b) illustrates the frequency response of a nine-
scale steerable pyramid ( , ) ob-
tained through our optimization procedure. Invertibility is en-
forced from degree 20 to 170. Note that the frequency response
is equal to 0.5 in the invertibility range because we only plot
the frequency response contributed by the order harmonics.
Fig. 10(c) shows as a spherical image. Note that it
looks like a derivative of Gaussian. We can also quantify ringing
by plotting as a function of while fixing to cor-
respond to the great circle passing through the maxima and
minima of the filter [Fig. 10(d)].

Similarly, Fig. 10(e)–(f) shows the frequency response of a
five-scale steerable pyramid obtained
through our optimization procedure. Invertibility is enforced
from degree 10 to 180. Fig. 10(g) shows as a spher-
ical image and Fig. 10(h) is a plot of as a function
of by fixing .

C. Denoising

We now employ the steerable pyramid from Fig. 10(e)–(f)
in a denoising experiment. We emphasize that this toy example

only serves to illustrate the use of the self-invertible steerable
pyramid and is not meant to be the model on how wavelet or
steerable pyramid denoising should be done. We first obtain a
full pass steerable pyramid filter bank by computing a residual
lowpass and highpass filter bank so that the combined filter bank
is invertible up to degree 300. By constraining the analysis and
synthesis filters to be identical and axisymmetric, the lowpass
and highpass filters are uniquely determined.

We use the world elevation map truncated to a maximum de-
gree of 300. A Gaussian noise map is first produced in the spa-
tial domain on the S2kit grid. The forward and inverse spher-
ical harmonic transform is then performed with S2kit [15]. As
noted earlier, the resulting noise image map from the inverse
spherical harmonic transform will be different from the orig-
inal noise map, because the fast spherical harmonic transform
[11] is not invertible for nonbandlimited signals. Interestingly,
noise near the poles tends to be suppressed under the forward
and inverse spherical harmonic transform (not shown), possibly
related to the concentration of samples near the poles on a lat-
itude-longitude grid. The noise map obtained from the inverse
spherical harmonic transform is then added to the world map.
Fig. 11(a)–(d) display world elevation maps with different peak
signal-to-noise ratios (PSNR).

We adapt the wavelet shrinkage technique pioneered by
Donoho and Johnstone [10] to our denoising problem.

1) We perform continuous spherical convolution between the
noisy world elevation map and the analysis filters of the
steerable pyramid using the algorithm in [28].

2) We sample the transform coefficients using the inverse
FFT, by using the uniform sampling grid of the second
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Fig. 11. (a)–(d) Corrupted world elevation maps. (e)–(h) Corresponding denoised world elevation maps, i.e., (e) shows the denoised version of (a), and so on.
(a)PSNR = 27:923 dB. (b) PSNR = 21:943 dB. (c) PSNR = 15:9035 dB. (d) PSNR = 9:8804 dB. (e) PSNR = 31:578 dB. (f) PSNR = 27:74 dB.
(g)PSNR = 24:16 dB. (h) PSNR = 21:0649 dB.

quadrature rule (Appendix D) and the fact that the con-
tinuous spherical convolution in step 1 is computed by
representing functions on as sum of complex
exponentials.

3) We threshold the sampled transform coefficients

(21)

where for brevity, we denote the sampled transform coef-
ficients by . The soft threshold
(shrinkage) sets to zero for below in absolute
value and pulls other data towards the origin by an amount

. The noise standard deviation can be determined
empirically or by simulations [26]. In our toy example,
we find that consistently doubles from one steerable
pyramid scale to the finer one, except for the scale corre-
sponding to the highpass filter. is a user-defined param-
eter. In our experiments, we vary from 0.5 to 5. We note
that in the SureShrink [10] algorithm, the parameter is
found automatically once the noise standard deviation
is known. Unfortunately, naive application of SureShrink
gives poor results. One reason is that the coefficients of the
overcomplete steerable pyramid is correlated, and, hence,
the noise is no longer independently and identically dis-
tributed (i.i.d) in the steerable pyramid domain.

4) We utilize (6) and (7) to reconstruct the denoised image.
Details of the computation are found in Appendix E.

Recall that is the maximum degree (order) of the th
synthesis filter (and the analysis filter since they are identical).
Then, step 1 of the above procedure roughly requires computa-
tional complexity of . Step 2 requires
computations. Step 3 requires computations. Step
4 is the bottleneck, requiring computations. We are
currently working on faster algorithms and quadrature rules for
step 4.

Fig. 12. PSNR of denoised images as t is varied from 0.5 to 5.

Fig. 12 shows a plot of the PSNR of the denoised images as
we vary from 0.5 to 5. In general, the noisier the image before
denoising, the greater the improvement. In particular, there is
an improvement of more than 10dB for the noisiest map. The
best results are obtained for between 1 and 2. The denoised
maps corresponding to the best ’s are shown in Fig. 11(e)–(f).
Artifacts become more noticeable for the noisier images. These
artifacts are likely the by-products of ringing.

VII. DISCUSSION AND CONCLUSION

In this paper, we present theoretical conditions for the
invertibility of filter banks under continuous convolution on
the 2-Sphere. We discretize the results using quadrature,
thus obtaining a generalized sampling theorem. We propose
a general procedure for constructing invertible filter banks
and demonstrate the procedure by generating self-invertible
spherical wavelets and steerable pyramids. Finally, we provide
an analysis of the computational complexity of the filtering
framework.
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Nonlinear dilation of functions on the sphere remains diffi-
cult to work with. While we circumvent the problem by using
the distributive property of stereographic dilation, the spherical
harmonic coefficients table can take up a substantial amount of
space. More efficient methods are, therefore, needed. Other def-
initions of dilation (such as those defined in the frequency do-
main) might also fit better into the computational framework.
More work is needed to understand the space of invertible and
self-invertible filter banks. As seen in our experiments, there is
an implicit tradeoff between the sharpness of the frequency re-
sponse of the filters and ringing. It will be useful to formulate
an objective function that directly trades off between ringing
and the sharpness of the frequency response. The bandlimited
spatially-concentrated eigenfunctions proposed by Simons et al.
[24] could prove to be a useful set of basis functions for the op-
timization problem in our framework.

This paper introduces theoretical results on invertibility and
sampling, and represents a step towards a general framework
for filter design on the 2-Sphere. Just as wavelets and steerable
pyramids have been useful for the processing and analysis of
planar images, we are optimistic that future work will lead to
similar applications on the sphere.

APPENDIX A
SPHERICAL HARMONICS BASICS

Here, we review useful facts on the spherical harmonics.
Spherical Harmonics: The spherical harmonics are

defined in terms of the associated Legendre polynomials .
For a given degree and order , and

(22)

where, for and

(23)

(24)

Therefore, for , we have

(25)

(26)

(27)

Rotation of Spherical Harmonics on the Sphere: Under ro-
tation, each spherical harmonic of degree is transformed into

a linear combination of spherical harmonics of the same degree
but possibly different orders. In particular, if we parametrize our
rotation by the three Euler angles, , , , and rotate our orig-
inal function , it can be shown that

(28)

where is the Wigner-D function [20]. We can
further decompose as follows:

(29)

where is the Wigner-d function and is real [20]

(30)

The sum is over all such that none of the denominator terms
with factorials is negative. This reflects the fact that only rota-
tions about the -axis mixes orders.

By the Peter–Weyl theorem on compact groups [30]

(31)

By integrating out and , we obtain

(32)

We will also use the identity [28]

(33)

APPENDIX B
PROOF OF CONTINUOUS-INVERTIBILITY

Here, we prove Theorem 4.1 on continuous frequency re-
sponse. We first note that by using Parseval’s Theorem and sub-
stituting (28), we can re-write the output of the th analysis filter
as

(34)

(35)
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and the reconstructed image as

(36)

(37)

Projecting onto the spherical harmonics basis, we obtain

(38)

(39)

(40)

(41)

(42)

APPENDIX C
PROOF OF DISCRETE-INVERTIBILITY

Here, we prove the generalized sampling theorem. Re-
call from Section III that are samples of

and that and are the highest
nonzero harmonic degree (order) of and , respectively.

Since the output of the th synthesis filter is a linear
combination of rotated versions of (7), for ,

and and we obtain the
trivial result

(43)

We will now show that for

(44)

From (35)

(45)

For (as required by the theorem),
the output of the th synthesis filter becomes (46) and (47),
shown at the bottom of the page. Projecting onto the
spherical harmonics, for (and, thus, ), we
have (48) and (49), shown at the bottom of the next page, where
we have arranged the terms so that they look like the setup for
Peter–Weyl Theorem, except we have summations instead of
integrals. Let be the last part of (49), and, thus, we have

(50)

(46)

(47)
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To simplify , we write

(51)

(52)

We note that and , and, there-
fore, . Since

, , we can conclude
via the geometric series that

if
otherwise.

(53)

Similarly, from (48), we observe that and
. Using the same reasoning, we get

if
otherwise.

(54)

Substituting into (52), we get

(55)

(56)

(57)

(58)

where in the third equality, , because of
the delta functions, and the last equality was obtained using the
assumption that and are the quadrature weights and
knots of the integral . We can
now substitute (58) back into (50)

(59)

(60)

(61)

(48)

(49)
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thus proving (44). Together with (43), we have

for all (62)

APPENDIX D
QUADRATURE RULES

In this appendix, we derive two different quadrature rules that
satisfy the conditions of Theorem 4.3, namely, we show quadra-
ture weights and knots , such that for

(63)

Quadrature Rule (1): We denote
and observe that consists of

a linear combination of even powers of and
(see (30)). Therefore, if we make the substitution

, and noting that (where we are over-
loading ) is now a polynomial with maximum degree,

, we get

(64)

Now, making the substitution, , we have

(65)

where ’s are defined to be the weights of the Gauss–Legendre
quadrature on the interval , and ’s correspond to the
sampling knots [19]. The weights and abscissas can be found by
standard algorithms (see for example [19]). In general, quadra-
ture integration is exact up to polynomial powers where

is the number of samples. Because the integrand’s highest
polynomial power is , if (or ),
then , and, thus, the quadrature formula is exact.

From the substitution above, we have
or .

In conclusion, for , we have
,

and , where and
are the quadrature weights and knots of the Gauss–Legendre

quadrature.
Quadrature Rule 2: We will derive another rule in this sec-

tion, using the technique shown in [11]. However, first we need
to obtain the Fourier series formula for the square wave, ,

which is defined to be periodic from to

.

(66)

Projecting onto the Fourier series basis, we get

(67)

(68)

(69)

(70)

(71)

If , we get
If , we get

If , we get

If , we get

Therefore, the Fourier series for is nonzero for
, and is equal to , and we have

(72)

Now, we can continue with the derivation of the quadrature.
We note that , where
and are always even, non-negative and bounded (once again,
we are overloading ). We can express them as complex expo-
nentials so that where can take on neg-

ative values, but it is still bounded: .
Note that if we make the substitution , we now have

. There-
fore

(73)
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(74)

(75)

where the middle equality was obtained using symmetry argu-
ments since is a linear combination of even positive powers
of and .

Since implies that the term has expo-
nential powers , we can eliminate terms in the Fourier
series of that falls out of the range (by orthonormality
of the exponentials), thus we only require such that

(76)

(77)

(78)

(79)

Defining
we have

(80)

(81)

Let us define the highest exponential power to be and notice
that , while lowest
exponential power corresponds to

. Let be the smallest integer such
that , where is an integer. Therefore,

It is easy to verify the following identity:

if
otherwise

(82)

Substituting the identity into (81), we get ;
see (83)–(87), shown at the bottom of the page, where the second

(83)

(84)

(85)

(86)

(87)
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last equality uses the fact that and the function
is even, and the last equality uses the fact that

and is even about . Because
, hence for corre-

sponds to our quadrature knots, with quadrature weights,
.

Summary: We have formulated two possible ways of
obtaining an exact quadrature of
and the integral is equal to

if we select the correct samples and
corresponding weights. In particular, this is true for:

1) and ,
, where:

a) ;
b) is the highest power of when

viewed as a polynomial in ;
c) and are the weights and nodes of the Gaussian-

Lengendre quadrature on the interval .
2) and ,

, where:
a) ;
b) is the highest power of when

viewed as a polynomial in .
Note that . The second set of
quadrature knots is similar to that used in the fast Wigner-D
transform (SOFT) [16], except that the north pole is
removed from the SOFT discretization.

APPENDIX E
INVERSE CONVOLUTION WITH NON-AXISYMMETRIC FILTERS

For brevity, we denote by . Given
, one can compute by rewriting (6) and com-

puting its spherical harmonics

(88)

Since

(89)

for a particular , we can compute
for all degrees and orders with

computations. This can be done by computing and
storing in advance.

Recall that is the maximum degree (order) of the th
synthesis filter (and the analysis filter since they are identical).
Since , and , the
brute force method of computing for all degrees and orders
yields a algorithm.

However, a faster algorithm can be achieved.
1) for all , .
2) For each and :

a) compute for all , ;
b) for each :

i) compute
for all , ;

ii)

Since step dominates step , the runtime complexity is
.

ACKNOWLEDGMENT

The authors would like to thank M. Tappen for discussions on
optimization procedures, B. Freeman and T. Adelson for discus-
sions on self-invertibility, V. Goyal for discussions on norm pre-
serving dilations in Euclidean wavelets and wavelet 7denoising,
and F. Durand and B. Horn for reading earlier drafts of this
paper. The authors would also like to thank the reviewers for
their many useful suggestions and pointers to references. T. Yeo
would like to thank C.-L. Cheng for discussions on spherical
harmonics and Wigner-D functions.

REFERENCES

[1] J.-P. Antoine and P. Vandergheynst, “Wavelets on the 2-Sphere: A
Group-theoretical approach,” Appl. Comput. Harmon. Anal., vol. 7, pp.
262–291, 1999.

[2] C. Armitage and B. D. Wandelt, “Deconvolution map-making for
cosmic microwave background observations,” Phys. Rev. D 70, vol.
123007, pp. 123013–123013, 2004.

[3] D. P. Bertsekas, Nonlinear Programming. Nashua, NH: Athena Sci-
entific, 1998.

[4] I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques, and M.
Morvidone, “Stereographic wavelet frames on the sphere,” Appl.
Comput. Harmon. Anal., vol. 19, pp. 223–252, 2005.

[5] C. H. Brechbuhler, G. Gerig, and O. Kubler, “Parametrization of closed
surfaces for 3-D shape description,” Comput. Vis. Image Understand.,
vol. 61, no. 2, pp. 154–170, 1994.

[6] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcu-
lation of complex Fourier series,” Math. Comput., vol. 19, no. 90, pp.
297–301, 1965.

[7] I. Daubechies, “Ten lectures on wavelets,” SIAM, 1992.
[8] L. Demanet and P. Vandergheynst, “Gabor wavelets on the sphere,”

Proc. SPIE, vol. 5207, pp. 208–215, 2003.
[9] M. N. Do and M. Vetterli, “The finite ridgelet transform for image rep-

resentation,” IEEE Trans. Image Process., vol. 12, no. 1, pp. 16–28,
Jan. 2003.

[10] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness
via wavelet shrinkage,” J. Amer. Statist. Assoc., vol. 90, no. 432, pp.
1200–1224, 1995.

[11] J. R. Driscoll and D. M. Healy, “Computing Fourier transforms and
convolutions on the 2-Sphere,” Adv. Appl. Math., vol. 15, pp. 202–250,
1994.

[12] W. Freeden and U. Windheuser, “Spherical wavelet transform and its
discretization,” Adv. Comput. Math., vol. 5, pp. 51–94, 1996.

[13] W. Freeden, T. Gervens, and M. Schneider, Constructive Approxima-
tion on the Sphere: With Applications to Geomathematics. Oxford,
U.K.: Clarendon, 1998.

[14] W. T. Freeman and E. W. Adelson, “The design and use of steerable
filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 9, pp.
891–906, Sep. 1991.

[15] P. J. Kostelec and D. N. Rockmore, A Lite Version of Spharmonic Kit
[Online]. Available: http://www.cs.dartmouth.edu/geelong/sphere/

[16] P. J. Kostelec and D. N. Rockmore, “Ffts on the rotation group,” in
Proc. Santa Fe Institute Working Papers Series Paper 03-11-060, 2003
[Online]. Available: http://www.cs.dartmouth.edu/geelong/

[17] H. N. Mhaskar, F. J. Narcowich, J. Prestin, and J. D. Ward, “Polynomial
frames on the sphere,” Adv. Comput. Math., vol. 13, pp. 387–403, 2000.

[18] A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits
Syst., vol. 24, no. 11, pp. 652–654, Nov. 1977.

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press.



300 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 3, MARCH 2008

[20] J. J. Sakurai, Modern Quantum Mechanics, 2nd ed. Reading, MA:
Addison Wesley, 1994.

[21] P. Schroder and W. Sweldens, “Spherical wavelets: Efficiently rep-
resenting functions on the sphere,” in Proc. SIGGRAPH, 1995, pp.
161–172.

[22] P. Schroder and W. Sweldens, “Spherical wavelets: Texture pro-
cessing,” Rendering Tech., pp. 252–263, Aug. 1995.

[23] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
“Shiftable multi-scale transforms,” IEEE Trans. Inf. Theory, vol. 38,
no. 2, pp. 587–607, Feb. 1992.

[24] F. Simons, F. Dahlen, and M. Wieczorek, “Spatiospectral concentra-
tion on a sphere,” SIAM Rev., vol. 48, no. 3, pp. 504–536, 2006.

[25] J.-L. Starck, E. J. Candes, and D. L. Donoho, “The curvelet transform
for image denoising,” IEEE Trans. Image Process., vol. 11, no. 6, pp.
670–684, Jun. 2002.

[26] J.-L. Starck, Y. Moudden, P. Abrial, and M. K. Nguyen, “Wavelets,
ridgelets and curvelets on the sphere,” Astron. Astrophys., vol. 446, pp.
1191–1204, 2006.
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