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Abstract

In medical image analysis, registration is necessary to establish spatial correspondences
across two or more images. Registration is rarely the end-goal, but instead, the results of
image registration are used in other tasks, such as voxel-based morphometry, functional
group analysis, image segmentation and tracking.

In this thesis, we argue that the quality of image registration should be evaluated in the
context of the application. Consequently, we develop a framework for learning registration
cost functions optimized for specific tasks. We demonstrate that by taking into account
the application, we not only achieve better registration, but also potentially resolve certain
ambiguities and ill-posed nature of image registration.

We first develop a generative model for joint registration and segmentation of images.
By jointly modeling registration and the application of image segmentation, we demonstrate
improvements in parcellation of the cerebral cortex into different structural units.

In this thesis, we work with spherical representations of the human cerebral cortex.
Consequently, we develop a fast algorithm for registering spherical images. Application to
the cortex shows that our algorithm achieves state-of-the-art accuracy, while being an order
of magnitude faster than competing diffeomorphic, landmark-free algorithms.

Finally, we consider the problem of automatically determining the “free” parameters of
registration cost functions. Registration is usually formulated as an optimization problem
with multiple tunable parameters that are manually set. By introducing a second layer of
optimization over and above the usual registration, this thesis provides the first effective
approach to optimizing thousands of registration parameters to improve alignment of a new
image as measured by an application-specific performance measure.

Much previous work has been devoted to developing generic registration algorithms,
which are then specialized to particular imaging modalities (e.g., MR), particular imaging
targets (e.g., cardiac) and particular post-registration analyses (e.g., segmentation). Our
framework provides a principled method for adapting generic algorithms to specific ap-
plications. For example, we estimate the optimal weights or cortical folding template of
the generic weighted Sum of Squared Differences dissimilarity measure for localizing un-
derlying cytoarchitecture and functional regions of the cerebral cortex. The generality of
the framework suggests potential applications to other problems in science and engineering
formulated as optimization problems.
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Chapter 1

Introduction

Advances in neuroimaging have provided neuroscientists with powerful tools to study dif-

ferent aspects of the human brain (Fig. 1-1). For example, structural Magnetic Resonance

Imaging (MRI) has allowed us to build detailed models of the cortical surface and its folding

pattern. Diffusion Tensor Imaging (DTI) non-invasively measures the diffusion of water in

in-vivo biological tissues. The diffusion is anisotropic in tissues such as cerebral white mat-

ter and therefore DTI is a powerful imaging modality for studying white matter structures

in the brain. Histology and high-resolution MRI of ex-vivo brains offers us a glimpse into the

cellular architecture of the cortex. Finally, functional Magnetic Resonance Imaging (fMRI)

and Electroencephalography/Magnetoencephalography (EEG/MEG) provide insights into

in-vivo brain activity. With so many imaging modalities, it is necessary to build models for

individual modalities and to fuse data from different modalities.

Building these models usually requires us to establish spatial correspondences across

images. These images can be snapshots of a single or multiple subjects using a single or

multiple imaging modalities at single or multiple time instances. This process of bringing

images into the same coordinate system is known as image registration and is perhaps one

of the most fundamental problems in medical image analysis [31, 103, 122, 194]. Indeed,

the concept of a common coordinate system is implicitly or explicitly assumed in almost

every medical imaging application involving more than one image.

Traditionally, registration is considered a pre-processing step. Images are registered

and are then used for other image analysis applications, such as voxel-based morphom-

etry (VBM), functional group analysis, image segmentation, shape analysis and tracking

anatomical changes or tumor growth. These applications aim at better understanding of

brain function and neurological diseases, as well as at aiding surgical planning and early

diagnosis of neuropathology.

This thesis is motivated by our belief that the notion of “correct registration” makes

sense only within the context of the application. By properly considering the application

when performing registration, we significantly improve the application performance and

15



Macro-anatomy 
(T1, T2, DTI)

Micro-anatomy
(Histology, Hires MR)

Functional Activity
(fMRI, EEG/MEG)

Figure 1-1: Different imaging modalities allow neuroscientists to study different aspects of
the human brain.

potentially resolve certain ambiguities of image registration.

We begin this chapter by presenting examples demonstrating the ill-posed nature of

image registration. We then discuss our primary motivation in this thesis: the localization

of structures and functions in the human cerebral cortex. We conclude this chapter with a

summary of our contributions and a preview of the results.

1.1 Motivating Examples

We will now discuss three different examples that illustrate ambiguities and difficulties that

arise in medical image registration when we ignore the end-goal application.

1. Fig. 1-2(a) shows the sagittal slices of the brains of two subjects. Depending on the

application when registering the brain images, one might be more concerned with

accuracy in registering boundaries of structures, rather than voxel-wise accuracy. For

example, suppose the goal is to segment the corpus callosum in the second image. A

common approach is to register the first image to the second image, and to transfer

the manual labels from the first image to second image. Therefore, for accurate seg-

mentation, it is sufficient to accurately align the boundaries of corpus callosum in the

two images. On the other hand, deformation-based morphometry [13, 36] extracts

local morphometric information, such as local volumetric changes, from dense defor-

mation fields computed between images. Because deformation-based morphometry

is typically performed on entire images, rather than regions of interests, voxel-wise

accuracy is desirable. This suggests that for the same pair of images, depending on

the application, the requirements for registration can be quite different.

2. The variability of the folding pattern in the human cerebral cortex is well-documented

16
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(a) Boundary vs. Voxel-wise Accuracy (b) Sulci with Different Topologies

(c) Brodmann Areas Overlaid on Cortex

Figure 1-2: Examples of ambiguities and ill-posedness in image registration, which can
potentially be resolved by taking the application at hand into account.

(see e.g. [116]). Fig. 1-2(b) shows postcentral sulci of two different subjects. Note the

differences in topology between the two sulci. When matching cortical folds, even

neuroanatomical experts do not agree on whether to join the ends of the broken

sulcus or to break up the uninterrupted sulcus.

3. In population studies of human brain mapping, it is common to align subjects into a

single coordinate system by aligning macroanatomy or cortical folding patterns. The

pooling of functional data in this common coordinate system boosts the statistical

power of group analysis and allows functional findings to be compared across different

studies. However, substantial cytoarchitectonic [4, 5, 56] and functional [108, 149,

150, 151, 172, 176] variability is widely reported. One reason for this variability is
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certainly mis-registration of the highly variable macroanatomy. However, even if we

perfectly align the macroanatomy, the underlying function and cellular architecture

of the cortex will not be aligned because the cortical folds do not completely predict

the underlying brain function. To illustrate this, Fig. 1-2(c) shows nine Brodmann

Areas (BAs) projected on the cortical surfaces of two different subjects, obtained

from histology. BAs define cytoarchitectonic parcellation of the cortex closely related

to brain function [30]. Here, we see that perfectly aligning the inferior frontal sulcus

(Fig. 1-2(c)) will misalign the superior end of BA44 (Broca’s language area). If our

goal is to segment sulci and gyri, perfect alignment of the cortical folding pattern

is ideal. However, it is unclear that perfectly aligning cortical folds is optimal for

function localization.

1.2 Thesis Overview

The examples above motivate our argument that the quality of image registration should

be evaluated in the context of the application. We will show in this thesis that by taking

into account the application, we achieve better registration as measured by the application

performance.

1.2.1 Cerebral Cortex

Although the formulations we develop in this thesis are general, we will focus mostly on the

human cerebral cortex. The cortex is a thin, convoluted sheet about 2-4mm thick, forming

the outer layer of the brain. The cortex plays an important role in cognitive functions,

including memory, awareness and language. The cortical folding pattern is correlated with

both cyto-architectonics and function.

With the use of modern 3D MRI, each half of the cortex can be accurately segmented

and modeled as a closed 2D mesh1 in 3D (Fig. 1-3(i)). Because the resulting hemispherical

mesh has the same topology as a sphere, we can impose a spherical coordinate system on the

mesh (Fig. 1-3(iia)). Here, we choose a spherical coordinate system that minimizes metric

distortion [42, 58]. The result is a spherical image representation of the cortex, where the

image intensity at each vertex encodes the local geometry of the cortex. While there are

many possible choices of geometric features [28, 89, 177, 178, 187, 190], in this thesis, we

choose to work with average convexity and mean curvatures of the partially inflated (bottom

row of Fig. 1-3(ii)) and original cortical surface [58, 59].

Since cortical areas – both structure and function – are arranged in a mosaic across

the cortical surface, a major advantage of the spherical representation is that the cortical

1Technically, the cortex does not have the same topology as a sphere because of the corpus callosum
connecting the hemispheres and the brain stem carrying signals to and from the spinal cord. The corpus
callosum and brain stem are typically removed as a preprocessing step [42].
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(i) Coronal MR Slice (ii) Spherical Representation and Registration

Figure 1-3: Extraction, representation and registration of cortical surfaces. In (a), the
segmented cortical surface is overlaid onto the coronal slice of a 3D MRI volume. In (b),
the green regions indicate gyri (ridges) and the red regions indicate sulci (valleys). The
bottom row in (b) displays partially inflated cortical surfaces.

regions that are far apart as measured along the cortical surface remains far apart on the

sphere, which is not the case in the original 3D coordinates. Registration of the cortical

surfaces then involves warping the spherical coordinate systems (Fig. 1-3(iib)). We note

that in this case, registration establishes correspondences between the surfaces, but does

not actually change the 3D vertex locations of the original surfaces (Fig. 1-3(iic)).

1.2.2 Applications

In this thesis, we will consider three applications of localizing structure and function in the

cerebral cortex.

1. We consider automatic parcellation of the cortex into different sulci (grooves) and gyri

(ridges). Automatic labeling of surface models of the cerebral cortex is important for

identifying regions of interest for clinical, functional and structural studies [43, 130].

Recent efforts range from identification of sulcal or gyral ridge lines [148, 159] to seg-

mentation of sulcal or gyral basins [43, 60, 88, 97, 105, 128, 130]. Here, we consider the

left and right cortical surfaces of 39 subjects. The data set exhibits significant anatom-

ical variability since it contains young, middle-aged, elderly subjects and Alzheimer’s

patients. The surfaces are topologically corrected [55, 145] and a spherical coordinate

system is established by minimizing metric distortion [58].The surfaces are manually

parcellated by a neuroanatomical expert into 35 labels [43] so that they can be used
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Figure 1-4: Example of manual parcellation shown on a partially inflated cortical surface.
In our data set, the neuroanatomist preferred gyral labels to sulcal labels. There are also
regions where sulci and gyri are grouped together as one label, such as the superior and
inferior parietal complexes.

both for training and evaluating the accuracy of the segmentation algorithm. Fig-

ure 1-4 illustrates the manual parcellation for one subject. A complete list of the

parcellation units is included in Table 1.1.

2. We consider the problem of localizing Brodmann Areas (BAs) in the cortex using only

cortical folding patterns. As discused in Section 1.1, BAs are cyto-architectonically

defined parcellations of the cerebral cortex [30], more closely related to brain func-

tion than macro-anatomy. They can be observed through histology and more recently,

through ex-vivo high resolution MRI [14]. Unfortunately, much of the cytoarchitecton-

ics cannot be observed with current in-vivo imaging. Nevertheless, most studies today

report their functional findings with respect to Brodmann areas, usually estimated by

visual comparison of cortical folds with Brodmann’s original drawings without quan-

titative analysis of local accuracy. By combining histology and MRI, recent methods

for creating probabilistic Brodmann area maps in the Talairach, Colin27 and cortical

folding normalized space promise a more principled approach [4, 49, 56, 143, 144, 193].
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Table 1.1: List of Parcellation Structures

1. Sylvian Fissure / Unknown 2. Bank of the Superior Temporal Sulcus
3. Caudal Anterior Cingulate 4. Caudal Middle Frontal Gyrus
5. Corpus Callosum 6. Cuneus
7. Entorhinal 8. Fusiform Gyrus
9. Inferior Parietal Complex 10. Inferior Temporal Gyrus
11. Isthmus Cingulate 12. Lateral Occipital
13. Lateral Orbito Frontal 14. Lingual
15. Medial Orbito Frontal 16. Middle Temporal Gyrus
17. Parahippocampal 18. Paracentral
19. Parsopercularis 20. Parsorbitalis
21. Parstriangularis 22. Peri-calcarine
23. Post-central Gyrus 24. Posterior Cingulate
25. Pre-central Gyrus 26. Pre-cuneus
27. Rostral Anterior Cingulate 28. Rostral Middle Frontal
29. Superior Frontal Gyrus 30. Superior Parietal Complex
31. Superior Temporal Gyrus 32. Supramarginal
33. Frontal Pole 34. Temporal Pole
35. Transverse Temporal

Here, we work with postmortem histological images of ten brains created using the

techniques described in [5, 143, 193]. The histological sections were aligned to post-

mortem MR with nonlinear warps to build a 3D histological volume. These volumes

were segmented to separate white matter from other tissue classes, and the segmen-

tation was used to generate topologically correct and geometrically accurate surface

representations of the cerebral cortex using FreeSurfer [42]. We consider nine semi-

automatically labeled Brodmann area maps (areas 2, 4a, 4p, 6, 44, 45, V1, V2 and

MT) mapped onto the surface representations of each hemisphere. Errors in this

mapping were manually corrected (e.g., when a label was erroneously assigned to

both banks of a sulcus). A morphological close was then performed on each label

to remove small holes. We note that Brodmann areas 4a, 4p and 6 were mapped in

only eight of the ten subjects. Fig. 1-2(c) shows these nine Brodmann areas on the

resulting cortical representations for two subjects.

3. We consider the application of localizing fMRI-defined functional areas in the cortex

using only cortical folding patterns. FMRI measures the haemodynamic response re-

lated to neural activity in the brain [92] and is perhaps the most popular measure

of brain activity locations. Here, we consider the so-called MT+ area localized in 42

in-vivo subjects using fMRI. The MT+ area defined functionally is thought to include

primarily the cytoarchitectonically-defined MT and a small part of the medial supe-
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Figure 1-5: Constrast between our approach and the traditional one.

rior temporal (MST) area (hence the name MT+). The imaging paradigm involved

subjects viewing an alternating 16 second blocks of moving and stationary concen-

tric circles. The structural scans were processed using the FreeSurfer pipeline [62],

resulting in spherically parameterized cortical surfaces [42, 59]. The functional data

were analyzed using the general linear model [63]. The resulting activation maps were

thresholded by drawing the activation boundary centered around the vertex with

maximal activation. The threshold was varied across subjects in order to maintain a

relatively fixed ROI area of about 120mm2(±5%) as suggested in [156].

1.2.3 Contributions

The contributions of this thesis are as follows:

1. We propose a generative model for joint registration and segmentation (Fig. 1-5(b),

Fig. 1-6(a)) [179, 180]. By jointly modeling both registration and the application of

segmentation, we achieve improved parcellation of the cerebral cortex into different

gyral units in in-vivo brain images.

2. We develop a fast algorithm for registering spherical images [183, 184]. By leveraging

the tools of differential geometry (Fig. 1-6(b)) and spherical spline vector interpolation

(Fig. 1-6(c)), the resulting Spherical Demons algorithm achieves state-of-the-art accu-
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Figure 1-6: Preview. (a) Generative model for joint registration and segmentation. (b) Co-
ordinate chart parameterization of the sphere S2. (c) Spherical vector spline interpolation.
Left image: input vector field; Right image: output smoothed vector field. (d) Task-optimal
template for localizing Brodmann Area 2.

racy, while being an order magnitude faster than competing diffeomorphic, landmark-

free algorithms. We demonstrate our algorithms in two different applications that

use registration to transfer segmentation labels onto a new image: (1) parcellation

of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical

surfaces.

3. We develop the task-optimal registration framework [181] that optimizes the parame-

ters of any differentiable family of registration cost functions on a training set, with the

aim of improving the performance of a particular task for a new image (Fig. 1-5(c)).

This thesis provides the first effective approach of optimizing thousands of registra-

tion parameters to improve alignment of a new image as measured by an application-

specific performance measure. Our framework leads to the estimation of optimal
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cortical folding template and optimal weighting of different cortical regions for lo-

calizing cytoarchitectural and functional regions in the cerebral cortex (Fig. 1-6(d)).

The generality of the framework suggests potential applications to other problems in

science and engineering formulated as optimization problems.

1.3 Thesis Outline

In the next chapter, we present a review of related work in registration and segmentation.

Chapter 3 discusses the generative model for joint registration and segmentation. It is fol-

lowed by the presentation of the fast Spherical Demons registration algorithm in Chapter 4.

Finally, we develop the task-optimal registration framework for estimating the parameters of

registration cost functions in Chapter 5. We conclude with a discussion of the implications

of this dissertation and future work in Chapter 6.
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Chapter 2

Registration, Segmentation and

Atlas Construction

In this chapter, we present a survey of related work in medical image registration, seg-

mentation and atlas construction. More specifically, we focus on intensity-based (as op-

posed to landmark-based) registration and atlas-based medical image segmentation. For

a more complete review, we refer the readers to the multiple surveys of image registra-

tion [31, 75, 103, 122, 194] and segmentation [24, 41, 109, 117, 121].

In the next section, we provide a brief overview of modern pairwise and groupwise inter-

subject registration methods. In Section 2.2, we describe existing approaches to atlas-based

segmentation. This is followed by an in-depth discussion of the contributions of this thesis

in specific areas of registration and segmentation in Section 2.3.

2.1 Registration

Registration is the process of establishing spatial correspondences across images. These

images can be snapshots of a single or multiple subjects using a single or multiple imaging

modalities at single or multiple time instances.

Intra-subject intra-modality registration involves normalizing images of a single subject

of the same modality, such as when tracking the disease progression of patients [61]. Ex-

amples of intra-subject inter-modality registration include the alignment of fMRI and/or

anatomical images into the 3D space that the patient and surgeon reside in during a surgical

procedure [171] and the registration of functional scans to the anatomical image of the same

subject [6].

In population group analysis, inter-subject registration is frequently needed. For exam-

ple, inter-subject intra-modality registration is required when analyzing structural MR [10,

11, 16, 86, 196], diffusion MR [1, 118, 185, 186, 192, 191] or fMRI [7, 59, 64, 110, 127, 163].
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This thesis focuses on inter-subject registration, which is especially challenging due

to high anatomical and functional variability in the human population. One example is

the folding patterns of the cerebral cortex (Fig. 1-2(b)). Because cortical folding patterns

correlate with both cytoarchitectural [56] and functional regions [59], in group studies of

structure or function, it is desirable to normalize the sulci (valleys) and gyri (ridges) of

different subjects.

While the applications of interest utilize multiple modalities for inference on the func-

tional organization of the brain, this thesis does not deal with the intra-subject inter-

modality registration required (e.g., histology with MRI and fMRI with MRI) in the creation

of the ground truth data. In other words, we assume that the distribution of inter-modality

misregistration within any subject is such that the comparison of different algorithms is

not biased, i.e., algorithm A is better than algorithm B regardless of the inaccuracies in

the data. Obviously, an improvement in the intra-subject inter-modality registration can

improve the accuracy of the data and thus the applications of interest.

2.1.1 Pairwise Registration

We first discuss pairwise registration since registration of a group of images can typically

be reduced to registration of pairs of images. Let F : ΩF 7→ R and M : ΩM 7→ R be

two images defined on the discrete sets of voxels or vertices, ΩF ,ΩM ⊂ D. Classically, the

domain D is either R
2 or R

3. In this thesis, we deal with spherically parameterized meshes,

so that D corresponds to the sphere S2. Let Γ : D 7→ D denote the spatial transformation

that maps voxel (vertex) coordinates x in image F to the coordinates Γ(x) in image M .

Registration of images F and M is traditionally formulated as an optimization problem

over the deformation Γ:

Γ∗ = argmin
Γ

λDissim(F,M ◦ Γ) + Reg(Γ), (2.1)

where the first term is the dissimilarity between the image F and the deformed image

M ◦ Γ and the second term is the regularization on the deformation Γ. Consequently, F

is known as the fixed image and M is known as the moving image, since interpolation is

performed on M . λ is the tradeoff between the dissimilarity term and regularization term.

For appropriate similarity measures and regularization, Eq. (2.1) can be probabilistically

interpreted as

Γ∗ = argmax
Γ

log p(M |Γ;F ) + log p(Γ) (2.2)

= argmax
Γ

p(Γ|M ;F ), (2.3)
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where Dissim(F,M ◦ Γ) = − log p(M |Γ;F ) and Reg(Γ) = − log p(Γ). In other words,

registration can be interpreted as Maximum-A-Posteriori estimation of the unknown random

deformation Γ.

To instantiate the optimization problem in Eq. (2.1), we need to define the dissimilarity

measure, the regularization, the feasible set of allowable deformations and the choice of

interpolation. We discuss the possible choices in the context of our thesis contributions in

Section 2.3.

2.1.2 Groupwise Registration and Templates

To register a group of images {In}, one generalizes the pairwise formulation as follows:

{Γ∗
n} = argmin

{Γn}
λDissim({In ◦ Γn}) + Reg({Γn}). (2.4)

Since pairwise registration is a well-studied problem, most instantiations of Eq. (2.4) in-

volve defining a template image T , so that the groupwise registration of N images can be

formulated as

Γ∗
n = argmin

Γn

λDissim(T, In ◦ Γn) + Reg(Γn) n = 1, · · · ,N. (2.5)

The resulting groupwise registration problem is therefore reduced to N independent pairwise

registration problems. The template T can simply be one of the images {In}. To avoid bias

induced by choosing a particular subject, the template T can also be estimated together

with the deformations [2, 16, 59, 86]:

({Γ∗
n}, T ∗) = argmin

{Γn},T
λ
∑

n

Dissim(T, In ◦ Γn) + Reg(Γn). (2.6)

Optimization typically proceeds via coordinate descent, by iterating between (1) fixing the

template T and registering each image In to the template and (2) fixing the deformations

and estimating the template T using Eq. (2.6). The template is also often referred to as an

atlas. We use the two words interchangeably in this thesis.

We note that Eq. (2.6) is quite general. Even the “template-free” congealing groupwise

registration [196] can be reformulated as Eq. (2.6), where T is a template histogram rather

than a template image. We also note that recent advances have generalized Eq. (2.6) to

estimate multiple templates within a given population of subjects [2, 27, 136].
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(a) WM (b) GM (c) CSF

Figure 2-1: Tissue probability maps of white matter (WM), gray matter (GM) and cerebral
spinal fluid (CFS). Images from [19].

2.2 Template-based Segmentation

Segmentation is the partitioning of an image into different regions or the delineating of a

region of interest within an image. Here, we focus on the classification of individual image

voxels (or mesh vertices) into different segmentation labels. The methods proposed for

voxel-based segmentation of MR images can be grouped into two broad categories. The

first approach involves an unsupervised classification of each image voxel into different

segmentation labels (e.g., tissue types) [170].

The second approach performs registration of the image to an atlas template [38, 101].

The atlas encodes prior segmentation knowledge, leading to better segmentation. Proba-

bilistic atlases provide a principled approach for encoding prior segmentation knowledge [12,

37, 43, 57, 60, 123]. The simplest probabilistic segmentation atlases provide only the prior

probability of labels at a spatial position and no information about the expected appear-

ance of the image (Fig. 2-1). The label probabilities are combined with the intensity of the

new image to produce the final segmentation [12]. This approach estimates the relationship

between labels and image intensities in the new image, rather than assuming the intensity

distribution of a new image is the same as that of training images. This is usually achieved

by essentially clustering the voxel intensities [93]. Consequently, this approach tends to

have difficulties distinguishing fine structures that have similar image intensities (Fig. 2-2).

Recent advances have made significant progress in resolving structures with similar image

intensities, such as by the use of topological priors of segmented structures [20].

More complex probabilistic atlases provide statistics on the relationship between the

segmentation labels and the image intensities [43, 51, 57, 60, 123] (Fig. 2-2). The intensity

model in the atlas is used to bring the atlas and the new image into the same space. The

label probabilities and intensity model are then used to segment the new image. Such a

registration process can be done sequentially [43, 57, 60] or jointly with segmentation [123].

Since this complex atlas contains more prior information than the simpler atlases that
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Figure 2-2: Intensity histograms of various cortical and subcortical structures. Images
from [57].

capture label statistics only, it can be a more powerful tool for segmentation. However,

extra care is needed if the imaging modalities of the new image and of the training images

are different.

2.2.1 Atlas Construction

An initial step in probabilistic atlas computation is the spatial normalization of the training

images. The features used for co-registering images are usually derived from the images

themselves [2, 25, 44, 58, 69, 86, 107, 120, 160] or from the segmentation labels [40, 99,

165, 169, 182]. After normalization to a common space, the statistics of the intensity values

(and possibly of the labels) in the atlas space are computed. This method is based on the

assumption that a new image registered into the atlas space exhibits the same statistics as

those computed from the registered training images.

Spatial normalization of the training subjects can be achieved with different registration

algorithms that vary in the flexibility of warps they allow. Both low-dimensional warps, e.g.,

affine [123], and richer, more flexible warps can be employed, e.g., splines [25, 160, 169],

dense displacement fields [40, 69, 58, 60] and velocity fields [86, 99]. Yet another route

to vary the warp flexibility is to tune the tradeoff λ between the regularization and the

dissimilarity measure. More restricted warps yield blurrier atlases that capture inter-subject

variability of structures, enlarging the basin of attraction for the registration of a new

subject. However, label prediction accuracy is limited by the sharpness of the atlas. The

choice of the deformation flexibility is a major problem in registration, which we will address

in Section 2.3.2.
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2.3 Thesis Contributions

We now discuss the contributions of this thesis towards different aspects of registration and

atlas-based segmentation. In particular, we will discuss our contributions to (1) spherical

image registration and (2) general registration and template construction theory.

2.3.1 Spherical Image Registration

As mentioned in the introduction, the cortex is typically modeled as a 2D mesh embedded

in 3D. There has been much effort focused on registering cortical surfaces directly in 3D [46,

47, 66, 81, 82, 153]. Since cortical areas — both structure and function — are arranged in

a mosaic across the cortical surface, an alternative approach is to model the surface as a

2D closed manifold in 3D and to warp the underlying spherical coordinate system [50, 59,

126, 146, 157, 154, 163]. Modeling the cortex as a surface has led to multiple discoveries in

neuroscience, such as the effects of aging and diseases [54, 91, 133, 141]. More recent efforts

have sought to combine both approaches [84, 85, 124].

Nonlinear registration of spherical images presents distinct challenges due to differences

between the geometry of the sphere and the standard Euclidean spaces. In Chapter 4, we

develop the Spherical Demons algorithm to greatly speed up the registration of spherical

images. We note that while fast algorithms are useful for deploying the developed tool

on large datasets, they can further allow for complex applications that were previously

computationally intractable. For example, incorporating the ideas behind Spherical Demons

renders the task-optimal registration framework in Chapter 5 tractable. Spherical Demons

speed up spherical image registration by focusing on the challenges of warp parameterization

and regularization.

Warp Parameterization

In registration, there is frequently a need for invertible deformations. The assumption is

that the topology of structural or functional regions are preserved across subjects. Unfor-

tunately, this causes many spherical warping algorithms to be computationally expensive.

Previously demonstrated methods for cortical registration [59, 157, 180] rely on soft regu-

larization constraints to encourage invertibility. These require unfolding the mesh triangles,

or limiting the size of optimization steps to achieve invertibility [59, 180]. Elegant regu-

larization penalties that guarantee invertibility exist [10, 114] but they explicitly rely on

special properties of the Euclidean image space that do not hold for the sphere.

An alternative approach to achieving invertibility is to work in the group of diffeomor-

phisms [9, 16, 21, 46, 67, 106, 167, 168]. In this case, the underlying theory of flows of vector

fields can be extended to manifolds [26, 111, 115]. The Large Deformation Diffeomorphic

Metric Mapping (LDDMM) [16, 21, 46, 67, 106] is a popular framework that seeks a time-
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varying velocity field representation of a diffeomorphism. Because LDDMM optimizes over

the entire path of the diffeomorphism, the resulting method is slow and memory intensive.

In contrast, Ashburner [9] and Hernandez et al. [73] consider diffeomorphic transformations

parameterized by a single stationary velocity field. While restricting the space of solutions

reduces the memory needs relative to LDDMM, these algorithms still have to consider the

entire trajectory of the deformation induced by the velocity field when computing the gra-

dients of the objective function, leading to a long run time. We note that recent algorithmic

advances [74, 106] promise to improve the speed and relieve the memory requirements of

both LDDMM and the stationary velocity approach.

We choose to adopt the approach of the Diffeomorphic Demons algorithm [168], origi-

nally demonstrated in the Euclidean image space, which constructs the deformation space

that contains compositions of diffeomorphisms, each of which is parameterized by a sta-

tionary velocity field. Unlike the Euclidean Diffeomorphic Demons, the Spherical Demons

algorithm utilizes velocity vectors tangent to the sphere and not arbitrary 3D vectors. This

constraint does not require additional explicit steps in our algorithm since we directly work

with the tangent spaces. In each iteration, the method greedily seeks the locally optimal

diffeomorphism to be composed with the current transformation. As a result, the approach

is much faster than LDDMM [16, 21, 46, 67] and its simplifications [9, 73]. A drawback is

that the path of deformation is no longer a geodesic in the group of diffeomorphisms, which

is problematic if the deformation path is used to measure similarities between images.

Warp Regularization

Since most types of regularization favor smooth deformations, the gradient computation of

the cost function in Eq. (2.1) is complicated by the need to take into account the deformation

in neighboring regions. This coupling among the voxels or vertices of an image slows down

the registration algorithm. For Euclidean images, the popular Demons algorithm [152] can

be interpreted as optimizing an objective function with two regularization terms [32, 168]

instead of one in Eq. (2.1). The special form of the objective function facilitates a fast

two-step optimization where the second step handles the warp regularization via a single

convolution with a smoothing filter.

Using spherical vector spline interpolation theory [67] and other differential geometric

tools, we show that the two-stage optimization procedure of Demons can be efficiently ap-

proximated on the sphere. We note that the problem is not trivial since tangent vectors

at different points on the sphere are not directly comparable. We also emphasize that this

decoupling of the image similarity and the warp regularization could also be accomplished

with a different space of admissible warps, e.g., spherical thin plate splines [197].

One problem we will not consider is the difficulty of performing interpolation on a spherical
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grid, unlike a regular Euclidean grid. In this work, we use existing methods for interpola-

tion, requiring about one second to interpolate data from a spherical mesh of 160k vertices

onto another spherical mesh of 160k vertices. Recent work on using different coordinate

charts of the sphere [161] promises to further speed up our implementation of the Spherical

Demons algorithm.

2.3.2 Registration and Template Construction

We now discuss our contributions towards general theories of registration and atlas con-

struction.

Joint Registration-Segmentation

Joint registration-segmentation algorithms are generally more effective than sequential pro-

cedures that first register the new image to the atlas and then segment the new image

based on the priors and model parameters provided by the atlas since registration and

segmentation benefit from the additional knowledge that each provides the other [12, 123,

173, 174, 175, 188]. In joint methods, the registration and segmentation of images are es-

timated simultaneously under a single framework. Previous work on joint registration and

segmentation typically assumes a precomputed registration-segmentation atlas.

In Chapter 3, we develop a generative model for the joint registration and segmenta-

tion of images, such that the atlas construction arises naturally as estimation of the model

parameters. The estimation process proceeds via coordinate descent, by iterating between

(1) fixing the atlas parameters and registering the training subjects using both image inten-

sities and manual segmentations and (2) fixing the deformations and estimating the atlas

parameters. Given a new image, the requirement to jointly perform registration to the atlas

and atlas-guided segmentation is a natural consequence of the generative model.

Regularization Tradeoff

As discussed in Section 2.2.1, the choice of the deformation flexibility can influence the

quality of the atlas constructed. Indeed, recent work has shown that taking into account

the tradeoff between the regularization and dissimilarity measure in registration can signif-

icantly improve population analysis [104] and segmentation quality [39, 180].

As a classical example, the traditional choice of image dissimilarity for unimodal images

is the weighted Sum of Squared Differences (wSSD) similarity measure:

Dissim(T, I ◦ Γ) =
∑

i

λ2
i (T (xi) − I(Γ(xi)))

2 , xi ∈ ΩT . (2.7)

The wSSD similarity measure implicitly assumes an independent Gaussian distribution on

32



the image intensities, where the weights λ2
i correspond to the precision (reciprocal of the

variance) and T is the mean of the Gaussian distribution. The parameterization of the

weights as λ2
i ensures non-negative weights. The weights are typically set to a constant

value [86, 168]. Alternatively, a spatially-varying variance can be estimated from the in-

tensities of registered images [59]. However, depending on the tradeoff between the wSSD

criterion and the regularization term, there is an arbitrary choice of the scale of the vari-

ance. With weaker regularization, the training images will be better aligned, resulting in

lower variance estimates.

Recent work in probabilistic template construction resolves this problem by either

marginalizing the tradeoff under a Bayesian framework [2] or estimating the tradeoff with

the Minimum Description Length principle [160]. While these methods are optimal for the

assumed generative models, it is unclear whether the estimated parameters are optimal for

application-specific tasks. After all, the parameters for optimal image segmentation might

be different from those for optimal group analysis. In contrast, Van Leemput [165] pro-

poses a generative model for image segmentation. The estimated parameters are therefore

Bayes-optimal for segmentation.

In the case of our joint registration-segmentation generative model in Chapter 3, there

is a single smoothness parameter. We show that the direct approach of cross-validating

the segmentation accuracy through an exhaustive search over the values of the tradeoff

parameter offers an effective approach to selecting the value of the regularization parameter.

Estimation of Multiple Parameters in the Registration Cost Function

When there are multiple “free” parameters in the registration cost function, the exhaustive

cross-validation approach becomes infeasible. Consequently, in Chapter 5, we propose a

task-optimal registration framework that introduces a second layer of optimization over

and above the usual registration step. This second layer of optimization traverses the

space of parameters of any differentiable family of registration cost functions, selecting

the registration parameter setting that results in better registration as measured by the

performance of the specific application in a training data set. We assume that given a set of

deformation fields or warped images obtained from registration, there exists a differentiable

cost function that accurately measures the task performance; this task performance is used

as a proxy of registration accuracy. The training data provides additional information

not present in a test image, allowing the task-specific cost function to be evaluated during

training. For example, if the task is segmentation, we assume the existence of a training data

set with ground truth segmentation and a smooth cost function that evaluates segmentation

accuracy. We demonstrate the optimization of thousands of parameters by gradient descent

on the task performance of the training data.

Our formulation is related to the use of continuation methods [3] in computing the
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entire path of solutions of learning problems (e.g., SVM or Lasso) as a function of a single

regularization parameter [48, 71, 119]. For example, the cost function in Lasso [155] consists

of the tradeoff between the least-squares term and the L1 regularization term. Least-angles

Regression (LARS) allows one to compute the entire set of solutions of Lasso as a function

of the tradeoff parameter [48]. Because we deal with multiple parameters, it is impossible

for us to compute a solution manifold. Instead, we trace a path within the solution manifold

that improves the task-specific cost function. Furthermore, registration is not convex (unlike

SVM and Lasso), resulting in several theoretical and practical conundrums that we have to

overcome, some of which we leave for future work.

Traditionally, much of the research efforts have been devoted to developing generic reg-

istration algorithms. These algorithms are then specialized to particular imaging modalities

(e.g., MR, CT, histology, etc.), particular imaging targets (e.g., cardiac, brain, etc.) and

particular post-registration analysis (e.g., segmentation, voxel-based morphometry, func-

tional group analysis, etc.). The task-optimal framework provides a principled method for

adapting these generic algorithms to specific applications.

In this thesis, we focus mostly on variations of the generic wSSD criterion for measuring

image dissimilarity. In particular, we seek to learn the weights of the weighted Sum of

Squared Differences (wSSD) family of registration cost functions and to estimate an optimal

macroanatomical template for localizing the cytoarchitectural and functional regions based

on the cortical folding pattern. Our work can be in principle generalized and applied to

the estimation of parameters in similarity measures such as cross-correlation [15, 31, 32] or

mutual information [102, 171], and a variety of regularization terms.

We emphasize that the task-optimal template we estimate based on the wSSD dis-

similarity measure is different from the mean image that is traditionally estimated when

substituting the wSSD criterion (Eq. (2.7)) into the groupwise registration cost function

in Eq. (2.6). Optimizing Eq. (2.6) leads to a template image that is optimal at “predicting”

the intensities of new image, but may not be optimal for application-specific performance.

Lack of Ground Truth Deformations

By learning the weights of the wSSD, we implicitly learn the tradeoff betweeen the dissim-

ilarity measure and regularization. Furthermore, the tradeoff we learn is spatially varying.

Previous work on learning a spatially varying regularization prior suffers from the lack of

ground truth (nonlinear) deformations. For example, [39, 68] assume that the deformations

obtained from registering a set of training images can be used to estimate a registration

regularization to register new images. However, a change in the parameters of the registra-

tion cost function used by these methods to register the training images would lead to a

different set of training deformations and thus a different prior for registering new images.

Furthermore, the methods are inconsistent in the sense that the learned prior applied on
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the training images will not result in the same training deformations obtained previously.

While there has been efforts in obtaining ground truth human-annotated deformation

fields [96], the images considered typically have well-defined correspondences, rather than

for example, the brain images of two different subjects. As suggested in the previously

presented examples (Fig. 1-2), the concept of “ground truth deformations” may not always

be well-defined, since the optimal registration may be a function of the application at hand.

In contrast, our approach avoids the need for ground truth deformations by focusing on

the application performance, where ground truth (e.g., via segmentation labels) is better

defined.

Function Localization

We note that an alternative approach to overcome the imperfect correlation between anatomy

and function is to directly use the functional data for establishing across-subject functional

correspondence [137, 142]. However, these approaches require extra data acquisition (such

as fMRI scans) of all future test subjects. In contrast, our method aims to take a training

data set containing information about both anatomy and function (or cytoarchitectonics)

and generalize the prediction patterns in neuroanatomy for functional localization in future

subjects.

2.4 Summary

In this chapter, we provide a review of previous work on registration, atlas-based segmen-

tation and atlas construction. We also discuss our contributions with respect to current

literature. In the next chapter, we present our first contribution to the atlas construction

literature: a generative model for joint registration and segmentation.
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Chapter 3

Generative Model for Joint

Registration-Segmentation

In non-rigid registration, the tradeoff between warp regularization and image fidelity is

typically determined empirically. In atlas-based segmentation, this leads to a probabilistic

atlas of arbitrary sharpness: weak regularization results in well-aligned training images and

a sharp atlas; strong regularization yields a “blurry” atlas.

In this chapter, we formulate a generative model for the joint registration and seg-

mentation of images. The atlas construction process arises naturally as estimation of the

model parameters. This model allows for computation of unbiased atlases from manually

labeled data at various degrees of “sharpness”, as well as a procedure for the simultaneous

registration and segmentation of a novel brain consistent with the atlas construction.

We study the effects of the tradeoff of atlas sharpness and warp smoothness in the

context of cortical surface parcellation. By cross-validating the segmentation performance,

we find that the optimal segmentation corresponds to a unique balance of atlas sharpness

and warp regularization, yielding statistically significant improvements over the FreeSurfer1

parcellation algorithm [43, 60].

Furthermore, we conclude that one can simply use a single atlas computed at an optimal

sharpness for the registration-segmentation of a new subject with a pre-determined optimal

warp constraint. While this might be obvious from our explicit generative model, there is an

increasing availability of atlases in public databases, such as MNI305 [51], and registration

algorithms are commonly developed separately from the atlas construction process. Our

experiments suggest that segmentation accuracy is tolerant up to a small mismatch between

atlas sharpness and warp smoothness.

A preliminary version of this work was published at the International Conference on

1FreeSurfer is a freely available software package [62] that is widely used in the neuroscientific community.
It is considered to contain some of most accurate algorithms that have been repeatedly validated. It is also
commonly used as a baseline for evaluation of other algorithms.
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Figure 3-1: Generative model for joint registration and segmentation. A is an atlas used
to generate the label map L′ in some universal atlas space. The atlas A and label map
L′ generate image I ′. S is the smoothness parameter that generates random warp field Γ.
This warp is then applied to the label map L′ and image I ′ to create the label map L and
the image I. We assume the label map L is available for the training images, but not for
the test image. The image I is observed in both training and test cases.

Medical Image Computing and Computer Assisted Intervention [179]. An expanded version

was published in the Journal of Medical Image Analysis [180] and forms the core of this

chapter.

In the next section, we introduce the generative model, describe the resulting atlas esti-

mation process, and the registration and segmentation of a novel image. Section 3.2 intro-

duces the cortical surface parcellation problem and describes further modeling assumptions

made in the context of this problem. We present experimental results in Section 3.3.

3.1 Theory

Given a training set of N images I1:N = {I1, · · · , IN} with label maps L1:N = {L1, · · · , LN},
joint registration-segmentation aims to infer the registration parameters Γ and segmentation

labels L of a new image I. To achieve this goal, we first learn the parameters of the

generative model (Figure 3-1) from the training images. These parameters correspond to

the atlas A and warp smoothness parameter S. Estimating the parameters S and A involves

co-registration of the training images and labels into a common space.

3.1.1 Generative Model for Registration and Segmentation

We consider the generative model of Figure 3-1. L′ is a label map in the atlas space generated

probabilistically by the atlas A. For example, L′ could be the tissue type at each MRI pixel,

generated by a tissue probability map. Given the label map, the atlas then generates image

38



I ′. For example, at each pixel, we can generate an MR intensity conditioned on the tissue

type and spatial location. Finally, we generate a random warp field Γ controlled by the

smoothness parameter S. For example, we can generate a random displacement field, with

neighboring displacements encouraged to be “close”. For example, S can be the spacing of

spline control points or the penalty in a cost function that discourages large or discontinuous

deformation fields. The random warp Γ is then applied to the label map L′ and image

I ′ to create the observed label map L and observed image I, i.e., I(Γ(x)) = I ′(x) and

L(Γ(x)) = L′(x). Thus a location x in the atlas space is mapped to a location Γ(x) in the

native (or raw) image space. We defer a detailed instantiation of the model to Section 3.2.

During co-registration, a small value of smoothness parameter S leads to less constrained

warps, resulting in better alignment of the training images2. This results in a sharper atlas.

On the other hand, a larger smoothness parameter yields more regularized warps and a

blurrier atlas.

3.1.2 Atlas Building: Estimating Parameters of Generative Model

To estimate the parameters of the generative model, we maximize the likelihood of the

observed images I1:N and L1:N over the values of the non-random smoothness parameter S

and atlas A.

(S∗, A∗) = argmax
S,A

log p(I1:N , L1:N ;S,A) (3.1)

= argmax
S,A

log

∫
p(I1:N , L1:N ,Γ1:N ;S,A)dΓ1:N . (3.2)

Here p(a; b) indicates the probability of random variable a parameterized by a non-random

parameter b while p(a|b) indicates the probability of random variable a conditioned on the

observation of a random variable b.

In this case, we need to marginalize over the registration warps Γ1:N , which is diffi-

cult. Previously demonstrated methods for atlas construction use various approximations

to evaluate the integral. In this paper, we adopt the standard mode approximation that re-

places the integral with the value of the integrand estimated at the Maximum-A-Posteriori

(MAP) estimate of deformation. For large number of training images, such a mode approx-

imation is justified as the posterior distribution is presumably peaky. In contrast, [129] uses

a sampling method while [164] uses the Laplace approximation, which essentially models

the distribution to be a Gaussian centered at the MAP estimate. It is unclear that these

more computationally complex methods, while theoretically more sound, lead to (practi-

2By a “better alignment of images”, we mean that the warped images look more similar, i.e., the similarity
measure is improved. However, an improved similarity measure does not necessarily imply deformations with
better label alignment. In fact, we show in the paper that the best segmentation occurs when warps are not
overly flexible.
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cally) better approximation. A possible avenue of future research is the investigation of

variational methods to approximate the integral, since variational methods are known to

be computationally efficient, although not as accurate as sampling methods. Based on the

mode approximation, we seek

(S∗, A∗,Γ∗
1:N ) = argmax

S,A,Γ1:N

log p(I1:N , L1:N ,Γ1:N ;S,A) (3.3)

= argmax
S,A,Γ1:N

N∑

n=1

log p(In, Ln,Γn;S,A) (3.4)

= argmax
S,A,Γ1:N

N∑

n=1

[log p(Γn;S) + log p(In, Ln|Γn;A)] . (3.5)

The second equality comes from the fact that the training images are independent of each

other given the atlas A and smoothness parameter S. The last equality is implied by the

independence relations specified by the graphical model in Figure 3-1.

Optimizing the above expression yields the atlas A∗ and smoothness parameter S∗. As

mentioned before, a smaller value of the smoothness parameter S results in a sharper atlas.

Since we are interested in how atlas sharpness affects segmentation accuracy, instead of

estimating one single optimal S∗, we construct a series of atlases corresponding to different

values of the regularization parameter S. In particular, we discretize S into a finite set

{Sk} = {S1 > S2 > · · · > SK}. For each value Sk, we seek the optimal atlas and set of

deformations:

(A∗,Γ∗
1:N ) = argmax

A,Γ1:N

N∑

n=1

[log p(Γn;Sk) + log p(In, Ln|Γn;A)] . (3.6)

We shall refer to the atlas computed using a particular Sk as Aα=Sk
. We use alternating

optimization to maximize Eq. (3.6). In each step, we fix the set of registration warps Γ1:N

and estimate the atlas Aα=Sk
:

A∗
Sk

= argmax
ASk

N∑

n=1

log p(In, Ln|Γn;ASk
). (3.7)

We then fix the atlas Aα=Sk
, and optimize the registration warps Γ1:N by optimizing each

warp independently of others:

Γ∗
n = argmax

Γn

log p(Γn;Sk) + log p(In, Ln|Γn;ASk
), ∀n = 1, . . . ,N. (3.8)

This process is repeated until convergence. Convergence is guaranteed since this is essen-

tially a coordinate-ascent procedure operating on a bounded function.
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We can think of Eq. (3.8) as the atlas co-registration objective function by treating

log p(In, Ln|Γn;ASk
) as the data fidelity function and log p(Γn;Sk) as the regularization

term. We effectively register each image independently to the atlas Aα=Sk
. This iterated

process of updating the atlas is similar to [16, 86], except we include training labels in the

co-registration. We will show a concrete instantiation of this formulation in Section 3.2.

In practice, we first create atlas A∞ based on a simple rigid-body registration on the

sphere and use it to initialize the atlas AS1 , where S1 is large enough such that the resultant

warp is almost rigid. We then use atlas AS1 to initialize the atlas AS2 where S1 > S2, and

so on. The result is a set of atlases {Aα} = {AS1 · · ·ASK
}. With enough samples, the finite

set {Sk, Aα=Sk
} accurately represents the underlying continuous space of atlases at different

levels of sharpness.

3.1.3 Registration and Segmentation of a New Image

Given an atlas A and smoothness parameter S, the registration and segmentation of a new

image I can be computed using a MAP estimate. This involves finding the mode of the

posterior distribution of the new image labels L and registration Γ given the observed image

I and atlas A and smoothness parameter S:

(L∗,Γ∗) = argmax
L,Γ

log p(L,Γ|I;S,A) (3.9)

= argmax
L,Γ

log p(I, L,Γ;S,A) (3.10)

= argmax
L,Γ

log p(Γ;S) + log p(I, L|Γ;A). (3.11)

The second equality follows from the definition of the conditional probability. The last

equality follows from the independence relations specified by the graphical model in Fig-

ure 3-1. In prior work, this MAP approach is favored by some [173, 174, 175], while others

suggest estimating the MAP solution for the registration warp alone [12, 123]:

Γ∗ = argmax
Γ

p(I,Γ;S,A) (3.12)

= argmax
Γ

log
∑

L

p(L, I,Γ;S,A), (3.13)

and recovering the segmentation labels as a final step after recovering the optimal registra-

tion Γ∗. Prior work in joint registration and segmentation did not consider atlas construction

in the same framework [12, 123, 173, 174, 175]. Furthermore, S is usually set by an expert

rather than estimated from the data.

We previously reported results based on the latter two-step approach [179]. In this

version, we use the former MAP framework since it requires fewer assumptions for practical
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(a) Multiple Atlases, Multi-
ple Smoothness (MAMS)

(b) Single Atlas, Multiple
Smoothness (SAMS)

(c) Single Atlas, Single
Smoothness (SASS)

Figure 3-2: Strategies for exploring space of atlas sharpness and warp smoothness of a new
image.

optimization. As we show in Section 3.2, optimizing Eq. (3.11) using a soft-MAP coordinate

ascent approach using the Mean Field approximation [79, 87] results in the same update

rule used by our previously demonstrated method [179].

To optimize Eq. (3.11), we use a coordinate ascent scheme. In step t, we fix the regis-

tration parameters Γ(t) and estimate the labels L(t+1):

L(t+1) = argmax
L

log p(Γ(t);S) + log p(I, L|Γ(t);A) (3.14)

= argmax
L

log p(I, L|Γ(t);A) (3.15)

= argmax
L

log p(L|I,Γ(t);A). (3.16)

Eq. (3.16) optimizes the log posterior probability of the label map L given the image I, atlas

A and current estimate of the registration parameters Γ(t). Next, we fix the label estimate

L(t+1) and re-estimate the registration parameters Γ(t+1):

Γ(t+1) = argmax
Γ

log p(Γ;S) + log p(I, L(t+1)|Γ;A). (3.17)

We can think of Eq. (3.17) as the new image registration objective function by treating

log p(I, L(t+1)|Γ;A) as the data fidelity term and log p(Γ;S) as the regularization term.

To maintain generality, we allow the use of a smoothness parameter Sk for the registra-

tion and segmentation of a new subject with an atlas Aα where Sk may not be equal to α.

In other words, we can, for instance, compute an atlas using affine transformations, while

using a flexible deformation model for the registration of a new subject. Strictly speaking,

Sk should theoretically be equal to α in Eq. (3.11) from the perspective of probabilistic

inference. Here, we examine whether using different warp smoothness and atlas sharpness

is necessarily detrimental to segmentation in practice.

More specifically, we investigate three strategies for exploring the space of atlas sharpness

and warp smoothness to register and segment a new image as illustrated in Figure 3-2.
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1. Multiple Atlas, Multiple Smoothness (MAMS): A multiscale approach where we op-

timize Eq. (3.16) and Eq. (3.17) w.r.t. Γ and L with the blurry atlas AS1 and warp

regularization S1. The resulting alignment is used to initialize the registration with

a sharper atlas AS2 and a correspondingly flexible warp regularization S2, and so on

(Figure 3-2a).

2. Single Atlas, Multiple Smoothness (SAMS): We use a fixed atlas of a fixed sharp-

ness scale ASk
to compute Γ and L according to Eq. (3.16) and Eq. (3.17) using a

progressively decreasing warp smoothness S (Figure 3-2b).

3. Single Atlas, Single Smoothness (SASS): We optimize Eq. (3.16) and Eq. (3.17) w.r.t.

Γ and L with a fixed atlas ASk
and warp regularization Sm, where Sk might not be

equal to Sm (Figure 3-2c).

So far, the derivations have been general without any assumption about the atlases Aα,

the prior p(Γ;Sk) or the image-segmentation fidelity p(I, L|Γ;Aα). In the next section,

we instantiate this approach for a concrete example of cortical surface registration and

parcellation.

3.2 Cortical Surface Parcellation

We now demonstrate the framework developed in the previous section for the joint registra-

tion and parcellation of surface models of the cerebral cortex. As discussed in Chapter 1.2.1,

each half of the cortex is modeled as triangular meshes with a spherical coordinate system.

The aim is to register an unlabeled cortical surface to a set of manually labeled surfaces

and to classify each vertex of the triangular mesh into sulcal and gyral units.

To instantiate the generative model for this problem, we need to define the prior on the

registration parameters p(Γ;S) and the model for label and image generation p(I, L|Γ;Aα).

In general, our model decisions were inspired by previous work on cortical surface parcella-

tion [43, 58, 55, 60].

3.2.1 Generative Model for Registration and Segmentation

We model the warp regularization with an MRF parameterized by S:

p(Γ;S) ,
F (Γ)

Z1(S)
exp

{
− S

[∑

i

∑

j∈Ni

(dΓ
ij − d0

ij

d0
ij

)2]}
(3.18)

where dΓ
ij is the distance between vertices i and j under registration Γ, d0

ij is the origi-

nal distance, Ni is a neighborhood of vertex i and Z1(S) is the partition function. Our

regularization penalizes percentage metric distortion weighted by a scalar S that reflects
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the amount of smoothness (rigidity) of the final warp. We choose a percentage metric dis-

tortion instead of an absolute metric distortion [58] to ensure that the tradeoff between

the regularization and the data fidelity term is invariant to scale in our multi-resolution

framework. This is especially important in our work since we explore a large range of warp

smoothness parameter S. F (·) ensures invertibility. It is zero if any triangle is folded by

warp Γ and one otherwise. We represent the warp Γ as a displacement field on the sphere.

Therefore, a term like F (Γ) is necessary. One could replace F (Γ) with a more sophisticated

invertibility prior (e.g., [10, 114]) or restrict the space of feasible warps to be the space of

diffeomorphisms [86, 67].

We first decompose the label and image prior

p(I, L|Γ;Aα) = p(L|Γ;Aα)p(I|L,Γ;Aα). (3.19)

and impose an MRF prior on the parcellation labels

p(L|Γ;Aα) ,
1

Z2(Aα)
exp

{∑

i

Ui(Aα)L(Γ(xi)) +
∑

i

∑

j∈Ni

LT (Γ(xi))Vij(Aα)L(Γ(xj))
}

.

(3.20)

Here, we use the vectorized MRF notation of [87]. Assuming the total number of labels is

M , L(Γ(xi)) is a column vector of size M × 1 that sums to 1. Each component of L(Γ(xi))

is an indicator variable. In particular, suppose the image has label m at location Γ(xi),

then L(Γ(xi)) is zero for all entries, except for the m-th entry, which is equal to 1. It is

a common practice to relax the constraint so that L still sums to 1 but the entries might

take on fractional values to indicate uncertainty in the segmentation results [87]. Ui(Aα)

is a 1 × M local potential vector that captures the frequency of label L(Γ(xi)) at vertex i

of the atlas mesh. The M × M compatibility matrix Vij(Aα) reflects the likelihood of two

labels at vertices i and j being neighbors. Z2(Aα) is the partition function dependent on

the atlas Aα, ensuring the given MRF is a valid probability distribution.

We further assume that the noise added to the mean image intensity at each vertex

location is independent, given the label at that location.

p(I|L,Γ;Aα) ,
∏

i

Wi(I(Γ(xi));Aα)L(Γ(xi)), (3.21)

where Wi(I(Γ(xi));Aα) is a 1×M observation potential vector defined at each atlas vertex

i. The m-th entry corresponds to the likelihood of observing a particular image intensity

or vectors of intensity (in this case, the local surface geometries) at location Γ(xi) given

a particular label m. We assume Wi follows a Gaussian distribution, e.g., given that the

post-central gyrus is at location Γ(xi) of the image, we expect the local curvature and/or
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sulcal depth I(Γ(xi)) to follow a Gaussian distribution whose parameters are estimated

from the training images.

The collection of model components {Ui, Vij ,Wi} define the atlas Aα. Eq. (3.20) defines

an isotropic prior on the labels, which is a simpler model than that used by modern ap-

proaches. The FreeSurfer parcellation algorithm uses a spatially varying and anisotropic

MRF model [60], whose parameters change dynamically with the geometries of the sub-

ject being segmented. An anisotropic MRF improves the parcellation accuracy because the

boundaries of certain gyral regions are predicted robustly by the variation in curvature. For

example, the boundary between the pre-central and post-central gyrus is the central sulcus.

Along the boundary, there is high curvature, while across the boundary, the curvature drops

off sharply.

We made the explicit choice of warping an image (interpolating an image) to the atlas

space. The alternative of warping the atlas (interpolating the atlas) to image space would

require us to interpolate the MRF, which is non-trivial. Interpolating U would result in the

partition function being a function of the warp, which is exponentially hard to compute. In

addition, if we were to use the dynamic model of FreeSurfer, since we have made the choice

of warping the subject, this would mean that the model parameters and hence the partition

function of the MRF would change during the registration step. FreeSurfer does not have

this problem because it does not perform joint registration and segmentation. Therefore,

we assume V to be spatially stationary and isotropic and drop the subscripts i, j. However,

we note that recent work has suggested that warping an atlas is fundamentally more correct

compared with warping the image [2].

3.2.2 Atlas Building: Estimating Parameters of Generative Model

Substituting Eq. (3.18), Eq. (3.20) and Eq. (3.21) into the atlas co-registration objective

function in Eq. (3.8), we obtain:

Γ∗
n = argmax

Γn

log p(Γn;Sk) + log p(In, Ln|Γn;ASk
)

= argmax
Γn

log F (Γn) − Sk

∑

i

∑

j∈Ni

(dΓn

ij − d0
ij

d0
ij

)2
+

+
∑

i

Ui(Aα)L(Γn(xi)) +
∑

i

∑

j∈Ni

LT (Γn(xi))V (Aα)L(Γn(xj))+

+
∑

i

Wi(I(Γn(xi));Aα)L(Γn(xi)) + const. (3.22)

where the first term prevents folding triangles, the second term penalizes metric distortion,

the third and fourth terms are the Markov prior on the labels and the last term is the

likelihood of the surface geometries given the segmentation labels of the n-th training image.
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We can then fix Γ∗
n and estimate the atlas parameters Aα = {Ui, V,Wi} using Eq. (3.7).

In practice, we use the naive approach of frequency counts [60] to estimate the clique

potentials U, V and the maximum likelihood estimation of the Gaussian likelihood terms

W . Appendix A.2 provides the implementation details.

3.2.3 Registration and Segmentation of a New Image

Similarly, we substitute Eq. (3.18), Eq. (3.20) and Eq. (3.21) into the update rules for the

new subject segmentation in Eq. (3.16) and registration in Eq. (3.17).

Warping the subject to the atlas, optimization in Eq. (3.16) with a fixed Γ(t) involves

estimating the segmentation labels at positions Γ(t)({xi}) of the subject, where {xi} are

vertices of the atlas mesh. We will denote this segmentation estimate by L̂(t+1). Eq. (3.16)

becomes

L̂(t+1) = argmax
bL

log p(L̂|I(Γ(t)({xi}));Aα). (3.23)

Even with fixed Γ(t), solving the MAP segmentation Eq. (3.23) is NP-hard. We adopt the

Mean Field approximation [79, 87]. We then use the complete approximate distribution

provided by the Mean Field solver in optimizing Eq. (3.17). This approximation effectively

creates a soft segmentation estimate L̂
(t+1)
i at each location Γ(t)(xi) of the new subject.

L̂
(t+1)
i is a column vector of size M x 1. The m-th component of L̂

(t+1)
i is the probability

of finding label m at location Γ(t)(xi) of the new subject. To estimate the label L̂(x) at an

arbitrary location x in the subject space, we interpolate from L̂(t+1) defined at Γ(t)({xi})
onto location x.

This optimization procedure leads to fewer local minima since it avoids commitment to

the initial estimates obtained through hard thresholding that might be very far from a good

solution if the new image is originally poorly aligned to the atlas. Appendix A.1 provides

an outline for computing L̂(t+1) via the Mean Field approximation. Warping the subject to

the atlas, Eq. (3.17) becomes:

Γ(t+1) = argmax
Γ

log F (Γ) − Sk

∑

i

∑

j∈Ni

(dΓ
ij − d0

ij

d0
ij

)2
+

+
∑

i

Ui(Aα)L̂(Γ(xi)) +
∑

i

∑

j∈Ni

L̂T (Γ(xi))V (Aα)L̂(Γ(xj))+

+
∑

i

Wi(I(Γ(xi));Aα)L̂(Γ(xi)) + const. (3.24)

Further implementation details can be found in Appendix A.2.

46



3.3 Experiments and Discussion

In this experiment, we consider the automatic parcellation of the 39 pairs of hemispheres

described in Chapter 1.2.2. For each hemisphere, the 39 cortical surfaces are first rigidly

aligned on the sphere, which corresponds to rotation only. For an illustration of the manual

parcellation of the cortex and a list of parcellation units, we refer the readers to Fig. 1-4

and Table 1.1 respectively.

We perform cross-validation by leaving out subjects 1 through 10 in the atlas construc-

tion, followed by the joint registration-segmentation of left-out subjects. We repeat with

subjects 11 through 20, 21 through 30 and finally 31 through 39. We select S to be the

set {100, 50, 25, 12.5, 8, 5, 2.5, 1, 0.5, 0.25, 0.1, 0.05, 0.01}. We find that in practice, S = 100

corresponds to allowing minimal metric distortion and S = 0.01 corresponds to allowing

almost any distortion. The intervals in the set S are chosen so that each decrease in the

value of S roughly corresponds to an average of 1mm increased displacement in registration.

Since we treat the subject mesh as the moving image, both registration and parcellation

are performed on the fixed atlas mesh. The segmentation is interpolated from the atlas

mesh onto the subject mesh to obtain the final segmentation. We compute segmentation

quality by comparing this final segmentation with the “ground truth” manual parcellation.

To speed up the algorithm, we construct the atlas on a sub-divided icosahedron mesh

with about 40k vertices. Typically, each subject mesh has more than 100k vertices. The

segmentation labels inferred on the low resolution atlas mesh are therefore computed on a

coarser grid than that of the manual parcellation. Yet, as we discuss in the remainder of this

section, the proposed implementation on average outperforms the FreeSurfer parcellation

algorithm [60].

Despite working with a lower resolution icosahedron mesh, registration at each smooth-

ness scale still takes between 20 minutes to 1.5 hours per subject per atlas. Registration

with weakly constrained warps (S ≤ 0.1) requires more time because of the need to preserve

the invertibility of the warps. The entire set of experiments took approximately 3 weeks to

complete on a computing cluster, using up to 80 nodes in parallel.

3.3.1 Exploration of Smoothness S and Atlas Aα

In this section, we discuss experimental results for the exploration of the smoothness param-

eter S and atlases Aα. We measure the segmentation accuracy using the Dice coefficient,

defined as the ratio of cortical surface area with correct labels to the total surface area,

averaged over the test set.

Figure 3-3 shows the segmentation accuracy for SAMS (Aα = A1) and MAMS as we

vary S. The average Dice peaks at approximately S = 1 for all cross-validation trials,
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Figure 3-3: Parcellation accuracy as a function of warp smoothness. S is plotted on a log
scale.
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Figure 3-4: Histogram of optimal warp smoothness S across subjects (MAMS).

although individual variation exists, as shown in Figure 3-43. For a particular value of

S, outliers warp more because the tradeoff between the data-fidelity and regularization is

skewed towards the former. However, it is surprising to find that the optimal S is mostly

constant across subjects. It also appears that peaks of the segmentation accuracy plots are

relatively broad, implying that good parcellation results can be obtained for a range of S

between 1 and 2.5.

For large S (highly constrained warps), MAMS consistently outperforms SAMS. Because

the surfaces are initially misaligned, using a sharp atlas (in the case of SAMS, atlas A1)

results in poor segmentation accuracy due to a mismatch between the image features and

the atlas statistics. As we decrease the smoothness S, SAMS allows for more flexible warps

towards the population average than MAMS since it uses a sharper atlas. The similarity

measure is therefore given higher weight to overcome the regularization. This results in

3The optimal value of S = 1 is coincidental in the sense that it depends on the unit chosen for metric
distortion.
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Figure 3-5: (a) Typical plot of Dice against smoothness S. (b) A noisy plot of Dice against
smoothness S.
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Figure 3-6: Histogram of optimal smoothness S across structures (MAMS).

better segmentation accuracy than MAMS. Eventually, SAMS and MAMS reach similar

maximal values at the same optimal smoothness S. Beyond the optimal S, however, both

MAMS and SAMS exhibit degraded performance. This is probably due to overfitting and

local optima created by more flexible warps.

We also examine the Dice measure of each parcellation structure as a function of the

warp smoothness S. In general, the curves are noisier but follow those of Figure 3-3.

Figure 3-5(a) shows a typical curve that peaks at S = 1, while Figure 3-5(b) shows a curve

that peaks at S = 5. However, in general, for most structures, the optimal smoothness S

occurs at approximately S = 1 (Figure 3-6), which is not surprising since for most subjects,

the optimal overall Dice (computed over the entire surface) also occurs at S = 1 (Figure 3-4).

We now explore the effects of both warp smoothness S and atlas sharpness α on par-

cellation accuracy. Figure 3-7 shows a plot of Dice averaged over all 39 subjects. The

performances of MAMS, SAMS and SASS at (S = 1, α = 1) are indistinguishable. As an

example, we see that for both hemispheres, SAMS with α = 0.01 (green line) starts off well,
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Figure 3-7: Overall Dice versus smoothness. S is plotted on a log scale.

but eventually overfits with a worse peak at S = 1 (p < 10−5 for one-sided paired-sampled

t-test, statistically significant even when corrected for multiple comparisons). Similarly for

SASS, the best values of α and S are both equal to 1. We also show SASS with α = 0.01

and S = 1 in Figure 3-7. In general, there is no statistical difference between MAMS, SAMS

or SASS at their optima: α = 1, S = 1.

Originally, MAMS and SAMS were introduced to reduce local optima in methods, such

as SASS. It is therefore surprising that the performance of all three methods is comparable.

While using the correct smoothness and atlas sharpness is important, our “annealing”

process of gradual reduction of smoothness (MAMS and SAMS) does not seem to increase

the extent of the basins of attraction in the context of cortical parcellation. One possible

reason is that on the cortical surfaces, two adjacent sulci might appear quite similar locally.

Smoothing these features might not necessarily remove the local minima induced by such

similarity. Incorporating multiscale features [80, 112, 190, 189] with multiple smoothness

offers a promising approach for avoiding such local optimal issues on the cortex.

The fact that the optimal smoothness parameter S∗ corresponds to the optimal atlas

sharpness parameter α∗ is not surprising. According to the graphical model in Figure 3-1

and as mentioned in the derivations in Section 3.1.2 and Section 3.1.3, theoretically, we

do expect S∗ = α∗. Learning this optimal S∗ in the atlas construction process is a future

avenue of investigation.

Alternatively, we can also determine the best S and Aα for a new image registration by

optimizing the objective function in Eq. (3.11). Unfortunately, there are technical difficulties

in doing this. First, we notice that the objective function in Eq. (3.11) increases with

decreasing S. This model contains no Occam’s razor regularization terms that penalize

overfitting due to flexible warps. This is mainly because Eq. (3.11) omits certain difficult-

to-compute normalization terms, such as the partition function that depends on U , V and

W and thus dependent on S and α. These terms are ignored for fixed values of S and α.
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(a) left lateral (b) Right lateral

(c) Left medial (d) Right medial

Figure 3-8: Percentage improvement of SASS over FreeSurfer. The boundaries between
parcellation regions are set to reddish-brown so that the different regions are more visible.

We can use various approximation strategies to compute the normalization terms. But it is

not clear whether these approximations yield sufficient accuracy to determine the optimal

values for S and α. On the other hand, empirically we find that S = α = 1 consistently

yields the optimal (or very close to the optimal) segmentation performance. This suggests

that one can probe the training data using a MAMS-type strategy to determine the optimal

values of warp smoothness and atlas sharpness, and then use the SASS strategy for future

registration and segmentation of new subjects. Furthermore, our experiments suggest that

segmentation accuracy is tolerant up to a small mismatch between atlas sharpness and warp

smoothness.

3.3.2 Comparison with FreeSurfer

We now compare the performance of our algorithm with the FreeSurfer parcellation algo-

rithm, described in [60] and extensively validated in [43].

It is unclear which algorithm has a theoretical advantage. The FreeSurfer algorithm

is essentially a “Single Atlas, Single Smoothness” (SASS) method that uses a sequential

registration-segmentation approach and a more complicated anisotropic MRF model that

has been specifically designed and fine-tuned for the surface parcellation application. Our

model lacks the anisotropic MRF and introducing it would further improve its performance.

On the other hand, FreeSurfer uses Iterated Conditional Modes [23] to solve the MRF, while

we use the more powerful Mean Field approximation [79, 87]. FreeSurfer also treats the

subject mesh as a fixed image and the parcellation is performed directly on the subject
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Figure 3-9: Structure-specific parcellation accuracy for the left hemisphere. First col-
umn (dark blue) corresponds to FreeSurfer. Second (light blue), third (yellow) and fourth
(brown) columns correspond to MAMS, SAMS and SASS respectively. (S = 1, α = 1). * in-
dicates structures where SASS shows statistically significant improvement over FreeSurfer.
There is no structure that becomes worse.

mesh. Therefore, unlike our approach, no interpolation is necessary to obtain the final

segmentation.

As shown in Figure 3-7, the optimal performances of MAMS, SAMS and SASS are

statistically significantly better (even when corrected for multiple comparisons) than the

FreeSurfer, with p-value 1 x 10−8 (SASS) for the left hemisphere and 8 × 10−4 (SASS) for

the right hemisphere.

Because Dice computed over the entire surface can be deceiving by suppressing small

structures, we show in Figure 3-8 the percentage improvement of SASS over FreeSurfer on

inflated cortical surfaces. Qualitatively, we see that SASS performs better than FreeSurfer

since there appears more orange-red regions than blue regions. The fact that the colorbar

has significantly higher positive values than negative values indicates that there are par-

cellation regions with significantly greater improvements compared with regions that suffer

significant penalties.
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Figure 3-10: Structure-specific parcellation accuracy for the right hemisphere. First col-
umn (dark blue) corresponds to FreeSurfer. Second (light blue), third (yellow) and fourth
(brown) columns correspond to MAMS, SAMS and SASS respectively. (S = 1, α = 1). * in-
dicates structures where SASS shows statistically significant improvement over FreeSurfer.
There is no structure that becomes worse.

More quantitatively, Figure 3-9 and 3-10 display the average Dice per structure for

FreeSurfer, MAMS, SAMS and SASS at (S = 1, α = 1) for the left and right hemispheres

respectively. Standard errors of the mean are displayed as red bars. The numbering of the

structures correspond to Table 1.1. The structures with the worst Dice are the frontal pole,

corpus callosum and entorhinal cortex. These structures are small and relatively poorly

defined by the underlying cortical geometry. For example, the entorhinal cortex is partially

defined by the rhinal sulcus, a tiny sulcus that is only visible on the pial surface. On the

other hand, the corpus callosum is mapped from the white matter volume onto the cortical

surface. Its boundary is thus defined by the surrounding structures, rather than by the

cortical geometry.

For each structure, we perform a one-sided paired-sampled t-test between SASS and

FreeSurfer, where each subject is considered a sample. We use the False Discovery Rate

(FDR) [22] to correct for multiple comparisons. In the left hemisphere, SASS achieves
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statistically significant improvement over FreeSurfer for 17 structures (FDR < 0.05), while

the remaining structures yield no statistical difference. In the right hemisphere, SASS

achieves improvement for 11 structures (FDR < 0.05), while the remaining structures yield

no statistical difference. The p-values for the left and right hemispheres are pooled together

for the False Discovery Rate analysis.

3.4 Summary

In this chapter, we proposed a generative model for the joint registration and segmentation

of images. The atlas construction process is formulated as estimation of the graphical model

parameters. The framework incorporates consistent atlas construction, multiple atlases of

varying sharpness and MRF priors on both registration warps and segmentation labels. We

show that atlas sharpness and warp regularization are important factors in segmentation and

that the optimal smoothness parameters are stable across subjects in the context of cortical

parcellation. The experimental results imply that the optimal atlas sharpness and warp

smoothness can be determined by cross-validation. Furthermore, segmentation accuracy

is tolerant up to a small mismatch between atlas sharpness and warp smoothness. With

the proper choice of atlas sharpness and warp regularization, even with a less complex

MRF model, the joint registration-segmentation framework achieves better segmentation

accuracy than the state-of-the-art FreeSurfer algorithm [43, 60].

A serious drawback of the algorithm presented in this chapter is the registration-

segmentation runtime. There are two reasons for this: (1) coupling of neighboring voxels or

vertices introduced by the registration regularization and (2) the desire to maintain defor-

mation invertibility. In the next chapter, we introduce the Spherical Demons algorithm that

significantly reduces the time needed to register closed 2D surfaces. Furthermore, while we

have shown that cross-validation is an effective way for estimating an optimal tradeoff, it is

simply not feasible with multiple parameters. We will address this problem in Chapter 5.

54



Chapter 4

Spherical Demons: Fast Surface

Registration

In this chapter, we present the Spherical Demons algorithm for registering two spherical

images. By exploiting spherical vector spline interpolation theory, we show that a large class

of regularizors for the modified Demons objective function can be efficiently approximated

on the sphere using iterative smoothing. Based on a one-parameter subgroup of diffeo-

morphisms, the resulting registration method is diffeomorphic and fast. Furthermore, the

accuracy of our method compares favorably to the state-of-the-art registration algorithms.

We validate the technique in two different applications that use registration to transfer

segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2)

Brodmann area localization in ex-vivo cortical surfaces.

A preliminary version of this work was published at the International Conference on

Medical Image Computing and Computer Assisted Intervention [183]. An expanded version

has been accepted to the IEEE Transactions on Medical Imaging and forms the core of this

chapter [184]. We also note that our Spherical Demons code is freely available1.

While most discussion in this chapter concentrates on pairwise registration of spherical

images, the proposed Spherical Demons algorithm can be modified to incorporate a prob-

abilistic atlas. We derive and implement two variants of the algorithm for registration to

an atlas corresponding to whether we warp the atlas or the subject. On a Xeon 3.2GHz

single processor machine, registration of a cortical surface mesh to an atlas mesh, both

with more than 160k nodes, requires less than 5 minutes when warping the atlas and less

than 3 minutes when warping the subject. The runtime is therefore comparable to other

non-linear landmark-free cortical surface registration algorithms whose runtime ranges from

1There are two versions of the code (matlab and ITK) available at
http://sites.google.com/site/yeoyeo02/software/sphericaldemonsrelease. The matlab code is used
in the experiments of this chapter. The preliminary ITK code [76, 77, 78] can also be found at
http://hdl.handle.net/10380/3117.
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minutes [47, 157] to more than an hour [59, 180]. However, the other fast algorithms suf-

fer from folding spherical triangles [157] and intersecting triangles in 3D [47] since only

soft constraints are used. No runtime comparison can be made with spherical registration

algorithm of the LDDMM type because to the best of our knowledge, no landmark-free

LDDMM spherical registration algorithm that handles cortical surfaces has been developed

yet.

Unlike landmark-based methods for surface registration [18, 46, 53, 67, 126, 153, 163],

we do not assume the existence of landmarks that can be easily matched across images.

Landmark-free methods have the advantage of allowing for a fully automatic processing

and analysis of medical images. Unfortunately, landmark-free registration is also more

challenging, because no information about correspondences is provided. The difficulty is

exacerbated for the cerebral cortex since different sulci and gyri appear locally similar.

Nevertheless, we demonstrate that our algorithm is accurate in both cortical parcellation

and cyto-architectonic localization applications.

The Spherical Demons algorithm for registering cortical surfaces presented here does

not take into account the metric properties of the original cortical surface. FreeSurfer [59]

uses a regularization that penalizes deformation of the spherical coordinate system based

on the distortion computed on the original cortical surface. Thompson et al. [154] suggest

the use of Christoffel symbols [90] to correct for the metric distortion of the initial spherical

coordinate system during the registration process. However, it is unclear whether correcting

for the metric properties of the cortex is important in practice, since we demonstrate that

the accuracy of the Spherical Demons algorithm compares favorably to that of FreeSurfer.

A possible reason is that we initialize the registration with a spherical parametrization that

minimizes metric distortion between the spherical representation and the original cortical

surface [59], so that inter-subject variability is greater than the initial metric distortion.

This chapter is organized as follows. In the next section, we discuss the classical Demons

algorithm [152] and its diffeomorphic variant [168]. In Section 4.2, we present the extension

of the Diffeomorphic Demons algorithm to the sphere. We conclude with experiments in

Section 4.3 and further discussion in Section 4.4. Appendix B at the end of the thesis

provides technical and implementation details of the Spherical Demons algorithm and the

extension to probabilistic atlases.

4.1 Background - Demons Algorithm

We choose to work with the modified Demons objective function [32, 168]. Let F be the

fixed image, M be the moving image and c be the desired transformation that deforms

the moving image M to match the fixed image F . Throughout this chapter, we assume

that F and M are scalar images, even though it is easy to extend the results to vector
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Algorithm 1: Demons Algorithm

Data: A fixed image F and moving image M .
Result: Transformation Γ so that M ◦ Γ is “close” to F .
Set Υ0 = identity transformation (or some a-priori transformation, e.g., from a
previous registration)
repeat

Step 1. Given Υ(t),
Minimize the first two terms of Eq. (4.1)

u(t) = argmin
u

∥∥∥Σ−1
(
F − M ◦ {Υ(t) ◦ u}

)∥∥∥
2
+

1

σ2
x

dist
(
Υ(t), {Υ(t) ◦ u}

)
, (4.2)

where u is any admissible transformation. Compute Γ(t) = Υ(t) ◦ u(t).

Step 2. Given Γ(t),
Minimize the last two terms of Eq. (4.1):

Υ(t+1) = argmin
Υ

1

σ2
x

dist(Υ,Γ(t)) +
1

σ2
T

Reg(Υ). (4.3)

until convergence ;

images [185, 186]. We introduce a hidden transformation Υ and seek

(Υ∗,Γ∗) = argmin
Υ,Γ

‖Σ−1 (F − M ◦ Γ) ‖2 +
1

σ2
x

dist(Υ,Γ) +
1

σ2
T

Reg(Υ). (4.1)

In this case, the fixed image F and warped moving image M ◦Γ are treated as N×1 vectors.

Typically, dist(Υ,Γ) = ‖Υ−Γ‖2, encouraging the resulting transformation Γ to be close to

the hidden transformation Υ and Reg(Υ) = ‖∇(Υ− Id)‖2, i.e., the regularization penalizes

the gradient magnitude of the displacement field Υ− Id of the hidden transformation Υ. σx

and σT provide a tradeoff among the different terms of the objective function. Σ is typically

a diagonal matrix that models the variability of a feature at a particular voxel. It can be

set manually or estimated during the construction of an atlas.

This formulation facilitates a two-step optimization procedure that alternately optimizes

the first two (first and second) and last two (second and third) terms of Eq. (4.1). Starting

from an initial displacement field Υ0, the Demons algorithm iteratively seeks an update

transformation to be composed with the current estimate, as summarized in Algorithm 1.

In the original Demons algorithm [152], the space of admissible warps includes all 3D

displacement fields, and the composition operator ◦ corresponds to the addition of dis-

placement fields. The resulting transformation might therefore be not invertible. In the

Diffeormorphic Demons algorithm [168], the update u is a diffeormorphism from R
3 to R

3

parameterized by a stationary velocity field ~v. Note that ~v is a function that associates a
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tangent vector with each point in R
3. Under certain mild smoothness conditions, a sta-

tionary velocity field ~v is related to a diffeomorphism through the exponential mapping

u = exp(~v). In this case, the stationary ODE ∂x(t)/∂t = ~v(x(t)) with the initial condition

x(0) ∈ R
3 yields exp(~v) as a solution at time 1, i.e., x(1) = exp(~v)(x(0)) ∈ R

3. In this case,

exp(~v)(x(0)) maps point x(0) to point x(1).

The Demons algorithm and its variants are fast because for certain forms of dist(Υ,Γ)

and Reg(Υ), Step 1 reduces to a non-linear least-squares problem that can be efficiently

minimized via Gauss-Newton optimization and Step 2 can be solved by a single convolution

of the displacement field Γ with a smoothing kernel. The proof of the reduction of Step 2 to

a smoothing operation is illuminating and holds for dist(Υ,Γ) = ‖Υ−Γ‖2 and any Sobolev

norm Reg(Υ) =
∑

i σi‖∇i(Υ− Id)‖2 [32, 113]. In practice, a Gaussian filter is used without

consideration of the actual induced norm [32, 168]. The proof uses Fourier transforms and

is therefore specific to the Euclidean domain. Due to differences between the geometry of

the sphere and Euclidean spaces, we will see in Section 4.2.4 that the reduction of Step 2

to a smoothing operation is only an approximation on the sphere.

4.2 Spherical Demons

In this section, we demonstrate suitable choices of dist(Υ,Γ) and Reg(Υ) that lead to

efficient optimization of the modified Demons objective function in Eq. (4.1) on the unit

sphere S2. We construct updates u as diffeomorphisms from S2 to S2 parameterized by

a stationary velocity field ~v. We emphasize that unlike Diffeomorphic Demons [168], ~v is

a tangent vector field on the sphere and not an arbitrary 3D vector field. A glossary of

common terms used throughout the chapter is found in Table 4.1.

4.2.1 Choice of dist(Υ, Γ)

Suppose the transformations Γ and Υ map a point xn ∈ S2 to two different points Γ(xn) ∈
S2 and Υ(xn) ∈ S2 respectively. An intuitive notion of distance between Γ(xn) and Υ(xn)

would be the geodesic distance between Γ(xn) and Υ(xn). Therefore, we could define

dist(Υ,Γ) =
∑N

n=1 geodesic(Υ(xn),Γ(xn)). For reasons that will become clear in Sec-

tion 4.2.4, we prefer to define dist(Υ,Γ) in terms of a tangent vector representation of

the transformations Γ and Υ, illustrated in Fig. 4-1, where the length of the tangent vector

encodes the amount of deformation.

Let TxnS2 be the tangent space at xn. We define ~Γn ∈ TxnS2 to be the tangent vector

at xn pointing along the great circle connecting xn to Γ(xn). In this work, we set the length

of ~Γn to be equal to the sine of the angle between xn and Γ(xn). With this particular choice

of length, there is a one-to-one correspondence between Γ(xn) and ~Γn, assuming the angle

between xn and Γ(xn) is less than π/2, which is a reasonable assumption even for relatively
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Table 4.1: Glossary of terms used throughout the chapter.

F,M Fixed image F , moving image M .
Σ Typically a diagonal matrix that models variability of feature values

at a particular vertex.
σx, σT Parameters of Demons cost function in Eq. (4.1).

Γ,Υ Transformations from S2 to S2. Γ is the transformation we are seek-
ing. Υ is the smooth hidden transformation close to Γ.

~Γ , {~Γn}, ~Υ , {~Υn} Discrete tangent vector representation of the deformations (see
Fig. 4-1 and Eq. (4.5)). For example, given the tangent vector ~Γn

at xn ∈ S2, one can compute c(xn).

~v , {~vn} We parameterize diffeomorphic transformations from S2 to S2 by a
composition of diffeomorphisms, each parameterized by a stationary
velocity field ~v. ~vn is the velocity vector at xn.

u(·) , exp(~v)(·) The diffeomorphism parameterized by the stationary velocity field ~v
is the solution of a stationary ODE at time 1.

En , [~en1 ~en2] ~en1 and ~en2 are orthonormal vectors tangent to the sphere at xn

Ψn Coordinate chart defined in Eq. (4.10): Ψn(x′) = xn+Enx′

‖xn+Enx′‖ . Ψn is a

diffeomorphism between R
2 and a hemisphere centered at xn ∈ S2.

~zn ~zn is a tangent vector at the origin of R
2. At xn, the velocity vector

~vn = En~zn via the coordinate chart Ψn (see Eq. (4.14)).

�Γn

Γ(xn) xn

O

sin
−1 ‖�Γn‖
−1

nn

Figure 4-1: Tangent vector representation of transformation Γ. See text for more details.

large deformations. The choice of this length leads to a compact representation of ~Γn via

vector products. We define Gn to be the 3 × 3 skew-symmetric matrix representing the
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cross-product of xn with any vector:

Gn =





0 −xn(3) xn(2)

xn(3) 0 −xn(1)

−xn(2) xn(1) 0



 , (4.4)

where xn(i) is the i-th coordinate of xn. Thus, xn × Γ(xn) = GnΓ(xn). Then on a unit

sphere, we obtain

~Γn = −xn × (xn × Γ(xn)) = −G2
nΓ(xn). (4.5)

A more intuitive choice for the length of ~cn might be the geodesic distance between

xn and Γ(xn). If we restrict ~cn to be at most length π, there is a one-to-one mapping

between this choice of the tangent vector ~Γn and the resulting transformation Γ(xn). Indeed,

such a choice of a tangent vector corresponds to an exponential map of S2 [90]. The

resulting expression for ~Γn = −2G2
nΓ(xn)

‖G2
nΓ(xn)‖ sin−1

(
Γ(xn)−xn

2

)
is feasible, but more complicated

than Eq. (4.5). In this work, for simplicity, we follow the definition in Eq. (4.5).

Given N vertices {xn}N
n=1, the set of transformed points {Γ(xn)}N

n=1 – or equivalently

the tangent vectors {~Γn}N
n=1 – together with a choice of an interpolation function define

the transformation Γ everywhere on S2. Similarly, we can define the transformation Υ or

the equivalent tangent vector field ~Υ through a set of N tangent vectors {~Υn}N
n=1. We

emphasize that these tangent vector fields are simply a convenient representation of the

transformations Υ and Γ and should not be confused with the stationary velocity field ~v

that will be used later on. We now set

dist(Υ,Γ) =

N∑

n=1

‖~Υn − ~Γn‖2, (4.6)

which is well-defined since both ~Γn and ~Υn belong to TxnS2 for each n = 1, · · · ,N .

4.2.2 Spherical Demons Step 1

In this section, we show that the update for Step 1 of the Spherical Demons algorithm can

be computed independently for each vertex. With our choice of dist(Υ,Γ), step 1 of the

algorithm becomes a minimization with respect to the velocity field ~v , {~vn ∈ TxnS2}N
n=1.
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�zn

�vn = [�en1 �en2]�zn

Figure 4-2: Coordinate chart of the sphere S2. The chart allows a reparameterization of
the constrained optimization problem f in step 1 of the Spherical Demons algorithm into
an unconstrained one.

By substituting u = exp(~v) and dist(Υ,Γ) =
∑N

n=1 ‖~Υn − ~Γn‖2 into Eq. (4.2), we obtain

~v(t) = argmin
~v

f(~v) (4.7)

= argmin
~v

∥∥∥Σ−1
(
F − M ◦ {Υ(t) ◦ exp(~v)}

)∥∥∥
2
+

1

σ2
x

dist
(
Υ(t), {Υ(t) ◦ exp(~v)}

)
(4.8)

= argmin
~v

N∑

n=1

1

σ2
n

(
F (xn) − M ◦ {Υ(t) ◦ exp(~v)}(xn)

)2
+

1

σ2
x

N∑

n=1

∥∥∥~Υ(t)
n + G2

n{Υ(t) ◦ exp(~v)}(xn)
∥∥∥

2
,

(4.9)

where σ2
n is the n-th diagonal entry of Σ and ◦ denotes warp composition.

Defining Coordinate Charts on the Sphere. The cost function in Eq. (4.9) is a mapping

from the tangent bundle TS2 to the real numbers R. We can think of each tangent vector

~vn as a 3×1 vector in R
3 tangent to the sphere at xn. Therefore ~vn has 2 degrees of freedom

and Eq. (4.9) represents a constrained optimization problem. Instead of dealing with the

constraints, we employ coordinate charts that are diffeomorphisms (smooth and invertible

mappings) between open sets in R2 and open sets on S2. The differential of the coordinate

chart establishes correspondences between the tangent bundles TR
2 and TS2 [90, 111], so

we can reparameterize the constrained optimization problem into an unconstrained one in

terms of TR
2 (see Fig. 4-2).

It is a well-known fact in differential geometry that covering S2 requires at least two

coordinate charts. Since the tools of differential geometry are coordinate-free [90, 111], our

results are independent of the choice of the coordinate charts. Let ~en1, ~en2 be any two
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orthonormal 3× 1 vectors tangent to the sphere at xn, where orthonormality is defined via

the usual Euclidean inner product in 3D. In this work, for each mesh vertex xn, we define

a local coordinate chart Ψn : R
2 7→ S2,

Ψn(x′) =
xn + Enx′

‖xn + Enx′‖ , where En = [~en1 ~en2]. (4.10)

As illustrated in Fig. 4-2, Ψn(0) = xn. Let ~zn be a 2 × 1 tangent vector at the origin of

R
2. With the choice of the coordinate chart above, the corresponding tangent vector at xn

is given by the differential of the mapping DΨn(·) evaluated at x′ = 0:

~vn = DΨn(0)~zn (4.11)

=
I3×3 − Ψn(0)ΨT

n (0)

‖Ψn(0)‖ En~zn (4.12)

=
I3×3 − xnxT

n

‖xn‖
En~zn (4.13)

= En~zn = [~en1 ~en2]~zn. (4.14)

The above equation defines the mapping of a tangent vector ~zn at the origin of R
2 to the

tangent vector ~vn at xn via the differential of the coordinate chart DΨn at x′ = 0. We note

that for a tangent vector at an arbitrary point in R
2, the expression for the corresponding

tangent vector on the sphere is more complicated. This motivates our definition of a sepa-

rate chart for each mesh vertex, to simplify the derivations.

Gauss-Newton Step of Spherical Demons. From Eq. (4.14), we obtain exp(~v) =

exp({~vn}) = exp({En~zn}) and rewrite Eq. (4.9) as an unconstrained optimization problem:

{~z(t)
n } = argmin

{~zn}

N∑

n=1

1

σ2
n

(
F (xn) − M ◦ {Υ(t) ◦ exp({En~zn})}(xn)

)2

+
1

σ2
x

N∑

n=1

∥∥∥~Υ(t)
n + G2

n{Υ(t) ◦ exp({En~zn})}(xn)
∥∥∥

2
,

(4.15)

, argmin
{~zn}

N∑

n=1

1

σ2
n

f2
n(~z) +

1

σ2
x

N∑

n=1

‖gn‖2(~z) (4.16)

This non-linear least-squares form can be optimized efficiently with the Gauss-Newton

method, which requires finding the gradient of both terms with respect to {~zn} at {~zn = 0}
and solving a linearized least-squares problem.

We let ~mT
n be the 1 × 3 spatial gradient of the warped moving image M ◦ Υ(t)(·) at xn

and note that ~mT
n is tangent to the sphere at xn. The computation of ~mT

n is discussed in
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Appendix B.1.1. Defining un , exp({En~zn})(xn), we differentiate the first term of the cost

function fn(~z) in Eq. (4.15) using the chain rule, resulting in the 1 × 2 vector:

∂

∂~zk

[
F (xn) − M ◦ {Υ(t) ◦ exp({En~zn})}(xn)

]

~z=0

= − ∂

∂~zk

M ◦ {Υ(t) ◦ exp({En~zn})}(xn)
∣∣∣
~z=0

(4.17)

= −∂M ◦ {Υ(t) ◦ exp({En~zn})}(xn)

∂ exp({En~zn})(xn)

[
∂ exp({En~zn})(xn)

∂~zk

] ∣∣∣∣
~z=0

(4.18)

= −∂M ◦ Υ(t)(un)

∂un

∣∣∣∣
un=xn

[
∂ exp({En~zn})(xn)

∂Ek~zk

∂Ek~zk

∂~zk

] ∣∣∣∣
~z=0

(4.19)

= −~mT
nEnδ(k, n), (4.20)

where δ(k, n) = 1 if k = n and 0 otherwise. Eq. (4.20) uses the fact that the differential

of exp(~v) at ~v = 0 is the identity [115], i.e, [D exp(0)]~v = ~v. In other words, a change in

velocity ~vk at vertex xk does not affect exp(~v)(xn) for n 6= k up to the first order derivatives.

Similarly, we define ST
n to be the 3×3 Jacobian of Υ(t)(·) at xn. The computation of ST

n

is discussed in Appendix B.1.2. Differentiating the second term of the cost function gn(~z)

in Eq. (4.15) using the chain rule, we get the 3 × 2 matrix:

∂

∂~zk

[
~Υ(t)

n + G2
n{Υ(t) ◦ exp({En~zn})}(xn)

]

~z=0
= G2

nST
n Enδ(k, n), (4.21)

where Gn is the skew-symmetric matrix defined in Eq. (4.4).

Once the derivatives are known, we can compute the corresponding gradients based on

our choice of the metric of vector fields on S2. In this work, we assume an l2 inner product,

so that the inner product of vector fields is equal to the sum of the inner product of the

individual vectors. The inner product of individual vectors is in turn specified by the choice

of the Riemannian metric on S2. Assuming the canonical metric, so that the inner product

of two tangent vectors is the usual inner product in the Euclidean space [90], the gradients

are equal to the transpose of the derivatives Eqs. (4.20), (4.21) (see Appendix B.1.3). We

can then rewrite Eq. (4.15) as a linearized least-squares objective function:

{~z(t)
n } ≈ argmin

{~zn}

N∑

n=1

1

σ2
n

(
fn(~z = 0) + ∇l2fn~z

)2
+

1

σ2
x

N∑

n=1

∥∥∥gn(~z = 0) + ∇l2gn~z
∥∥∥

2
(4.22)

= argmin
{~zn}

N∑

n=1

1

σ2
n

((
F (xn) − M ◦ Υ(t)(xn)

)
− ~mT

nEn~zn

)2
+

1

σ2
x

N∑

n=1

∥∥G2
nST

n En~zn

∥∥2

(4.23)

= argmin
{~zn}

N∑

n=1

∥∥∥∥∥

(
1

σn

(
F (xn) − M ◦ Υ(t)(xn)

)

0

)

+

(
− 1

σn
~mT

n

1
σx

G2
nST

n

)

En~zn

∥∥∥∥∥

2

. (4.24)
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Because of the delta function δ(k, n) in the derivatives in Eqs. (4.20), (4.21), ~zn only appears

in the n-th term of the cost function Eq. (4.24). The solution of Eq. (4.24) can therefore be

computed independently for each ~zn. Solving this linear least-squares equation yields an

update rule for ~zn:

~z(t)
n =

F (xn) − M ◦ Υ(t)(xn)

σ2
n

(
ET

n

[
1

σ2
n

~mn ~mT
n +

1

σ2
x

Sn(G2
n)T G2

nST
n

]
En

)−1

ET
n ~mn . (4.25)

For each vertex, we only need to perform matrix-vector multiplication of up to 3×3 matrices

and matrix inversion of 2 × 2 matrices. This implies the update rule for ~vn:

~v(t)
n = En~z(t)

n (4.26)

=
F (xn) − M ◦ Υ(t)(xn)

σ2
n

En

(
ET

n

[
1

σ2
n

~mn ~mT
n +

1

σ2
x

Sn(G2
n)T G2

nST
n

]
En

)−1

ET
n ~mn .

(4.27)

In practice, we use the Levenberg-Marquardt modification of Gauss-Newton optimiza-

tion [125] to ensure matrix invertibility:

~v(t)
n =

F (xn) − M ◦ Υ(t)(xn)

σ2
n

En

(
ET

n

[
1

σ2
n

~mn ~mT
n +

1

σ2
x

Sn(G2
n)T G2

nST
n

]
En + ǫI2×2

)−1

ET
n ~mn .

(4.28)

where ǫ is a regularization constant. We note that in the classical Euclidean Demons [152,

32], the term ET
n Sn(G2

n)T G2
nST

n En turns out to be the identity, so it can also be seen as

utilizing Levenberg-Marquardt optimization. Once again, we emphasize that a different

choice of the coordinate charts will lead to the same update.

Given {~v(t)
n }N

n=1, we use “scaling and squaring” to compute exp(~v(t)) [8], which is then

composed with the current transformation estimate Υ(t) to form Γ(t) = Υ(t) ◦ exp(~v(t)).

Appendix B.4 discusses implementation details of extending the “scaling and squaring”

procedure in Euclidean spaces to S2.

4.2.3 Choice of Reg(Υ)

We now define the Reg(Υ) term using the corresponding tangent vector field representation

~Υ. Following the work of [67, 158], we let H be the Hilbert space of square integrable vector

fields on the sphere defined by the inner product:

〈~u1, ~u2〉H =

∫

S2

〈~u1(x), ~u2(x)〉R dS2 , (4.29)

where ~u1, ~u2 ∈ H and 〈·, ·〉R refers to the canonical metric. Because vector fields from H

are not necessarily smooth, we restrict the deformation ~Υ to belong to the Hilbert space
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V ⊂ H of vector fields obtained by the closure of the space of smooth vector fields on S2

via a choice of the so-called energetic inner product denoted by

〈~u,~v〉V = 〈L~u,~v〉H , (4.30)

where L could for example be the Laplacian operator on smooth vector fields on S2 [67, 158].

We define Reg(Υ) , ‖~Υ‖V . With a proper choice of the energetic inner product

(e.g., Laplacian), a smaller value of ‖~Υ‖V corresponds to a smoother vector field and thus

smoother transformation Υ. As we will see later in this section, the exact choice of the

inner product is unimportant in our implementation.

4.2.4 Optimizing Step 2 of Spherical Demons

With our choice of dist(Υ,Γ) in Section 4.2.1 and Reg(Υ) in Section 4.2.3, the optimization

in Step 2 of the Spherical Demons algorithm

~Υ(t+1) = argmin
~Υ

1

σ2
x

N∑

n=1

‖~Υn − ~Γ(t)
n ‖2 +

1

σ2
T

‖~Υ‖V (4.31)

seeks a smooth vector field ~Υ ∈ V that approximates the tangent vectors {~Γ(t)
n }N

n=1. This

problem corresponds to the inexact vector spline interpolation problem solved in [67], mo-

tivating our use of tangent vectors in the definition of dist(Υ,Γ) in Section 4.2.1, instead of

the more intuitive choice of geodesic distance.

We can express ~Γn and ~Υn as EnΓn and EnΥn respectively. Let Γ̂ and Υ̂ be 2N × 1

vectors corresponding to stacking Γn and Υn respectively. The particular optimization

formulated in Eq. (4.31) has a unique optimum [67], given by

Υ̂ = K

(
σT

x

σ2
T

I2N×2N + K

)−1

Γ̂, (4.32)

where K is a 2N × 2N matrix consisting of N ×N blocks of 2× 2 matrices: the (i, j) block

corresponds to k(xi, xj)Txi,xj
. The 2×2 linear transformation Txi,xj

(·) parallel transports a

tangent vector along the great circle from Txi
S2 to Txj

S2. k(xi, xj) is a non-negative scalar

function uniquely determined by the choice of the energetic norm. Typically, k(xi, xj)

monotonically decreases as a function of the distance between xi and xj . The proof of the

uniqueness of the global optimum and the form of solution in Eq. (4.32) follow from the

fact that the Hilbert space V is a reproducing kernel hilbert space (RKHS), allowing the

exploitation of the Riesz representation theorem [67]. This offers a wide range of choices of

regularization depending on the choice of the energetic norm and the corresponding RKHS.

In [67], the spherical vector spline interpolation problem was applied to landmark match-
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ing on S2, resulting in a reasonable sized linear system of equations. Solving the matrix

inversion shown in Eq. (4.32) is unfortunately prohibitive for cortical surfaces with more

than 100, 000 vertices. If one chooses a relatively wide kernel k(xi, xj), the system is not

even sparse.

Inspired by the convolution method of optimizing Step 2 in the Demons algorithm [32,

152, 168] and the convolution-based fast fluid registration in the Euclidean space [29], we

propose an iterative smoothing approximation to the solution of the spherical vector spline

interpolation problem.

In each smoothing iteration, for each vertex xi, tangent vectors of neighboring vertices

xj are parallel transported to xj and linearly combined with the tangent vector at xi. The

weights for the linear combination are set to λ(xi, xi) = 1
1+|Ni| exp(− 1

2γ
)

and λ(xi, xj) =

exp(− 1
2γ

)

1+|Ni| exp(− 1
2γ

)
for i 6= j, where |Ni| is the number of neighboring vertices of xi. Therefore,

larger number of iterations m and values of γ results in greater amount of smoothing.

We note that the iterative smoothing approximation to spline interpolation is not exact

because parallel transport is not transitive on S2 due to the non-flat curvature of S2 (unlike

in Euclidean space), i.e., parallel transporting a tangent vector from point a to b to c results

in a vector different from the result of parallel transporting a tangent vector from a to c.

Furthermore, the approximation accuracy degrades as the distribution of points becomes

less uniform. In Appendix B.2, we demonstrate empirically that iterative smoothing pro-

vides a good approximation of spherical vector spline interpolation for a relatively uniform

distribution of points corresponding to those of the subdivided icosahedron meshes used in

this work.

4.2.5 Remarks

The Spherical Demons algorithm is summarized in Algorithm 2.

We run the Spherical Demons algorithm in a multi-scale fashion on a subdivided icosahe-

dral mesh. We begin from a subdivided icosahedral mesh (ic4) that contains 2,562 vertices

and work up to a subdivided icosahedral mesh (ic7) that contains 163,842 vertices, which is

roughly equal to the number of vertices in the cortical meshes we work with. We perform

15 iterations of Step 1 and Step 2 at each level. Because of the fast convergence rate of the

Gauss-Newton method, we find that 15 iterations are more than sufficient for our purposes.

We also perform a rotational registration at the beginning of each multi-scale level via a

sectioned search of the three Euler angles.

Empirically, we find the computation time of the Spherical Demons algorithm is roughly

divided equally among the four components: registration by rotation, computing the Gauss-

Newton update, performing “scaling and squaring” and smoothing the vector field.

In practice, we work with spheres that are normalized to be of radius 100, because we
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Algorithm 2: Spherical Demons Algorithm

Data: A fixed spherical image F and moving spherical image M .
Result: Diffeomorphism c so that M ◦ c is “close” to F .
Set s0 = identity transformation (or some a-priori transformation, e.g., from a
previous registration)
repeat

Step 1. Given s(t),
foreach vertex n do

Compute ~v
(t)
n using Eq. (4.28).

end

Compute c(t) = exp(~v) using “scaling and squaring”.

Step 2. Given c(t),
foreach vertex n do

Compute ~s
(t)
n using Eq. (B.16) implemented via iterative smoothing.

end

until convergence ;

find that at ic7, the average edge length of 1mm corresponds to that of the original cortical

surface meshes. This allows for meaningful interpretation of distances on the sphere. This

requires slight modification of the equations presented previously to keep track of the radius

of the sphere.

The Spherical Demons algorithm presented here registers pairs of spherical images. To

incorporate a probabilistic atlas defined by a mean image and a standard deviation image,

we modify the Demons objective function in Eq. (4.1), as explained in Appendix B.3. This

requires a choice of warping the subject or warping the atlas. We find that interpolating

the atlas gives slightly better results, compared with interpolating the subject. However,

interpolating the subject results in a runtime of under 3 minutes, while the runtime for

interpolating the atlas is less than 5 minutes. In the next section, we report results for

interpolating the atlas.

4.3 Experiments

We use two sets of experiments to evaluate the performance of the Spherical Demons algo-

rithm by comparing it to the widely used and freely available FreeSurfer [59] software. The

FreeSurfer registration algorithm uses the same similarity measure as Demons, but explic-

itly penalizes for metric and areal distortion. As we will show, even though the Spherical

Demons algorithm does not specifically take into account the original metric properties of

the cortical surface, we still achieve comparable if not better registration accuracy than
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FreeSurfer. Furthermore, FreeSurfer runtime is more than an hour while Spherical Demons

runtime is less than 5 minutes on a Xeon 3.2GHz single processor machine.

There are four parameters in the algorithm. 1/σ2
x and ǫ appear in Eq. (4.28). Larger

values of 1/σ2
x and ǫ decrease the size of the update taken in Step 1 of the Spherical Demons

algorithm. In the experiments that follow, we set 1/σ2
x = ǫ and set their values such that the

largest vector of the update velocity field is roughly two times the edge lengths of the mesh.

The number of iterations m and the weight exp(− 1
2γ

) determine the degree of smoothing.

We set γ = 1 and explore a range of smoothing iterations m in the following experiments.

4.3.1 Parcellation of In-vivo Cortical Surfaces

We validate Spherical Demons in the context of automatic cortical parcellation described

in Chapter 1.2.2. We consider the same set of 39 left and right cortical surface models as

the previous chapter. For an illustration of the manual parcellation of the cortex and a list

of parcellation units, we refer the readers to Fig. 1-4 and Table 1.1 respectively.

We co-register all 39 spherical images of cortical geometry with Spherical Demons by

iteratively building an atlas and registering the surfaces to the atlas. The atlas consists of

the mean and variance of cortical geometry represented by the surface features described

above. We then perform 4-fold cross-validation of the parcellation of the co-registered

cortical surfaces. In each iteration of cross-validation, we leave out ten subjects and use

the remainder of the subjects to train a classifier [43, 60] that predicts the labels based

on location and geometric features. We then apply the classifier to the hold-out set of ten

subjects. We perform each iteration with a different hold-out set, i.e., subjects 1-10, 11-20,

21-30 and 31-39.

As mentioned previously, increasing the number of iterations of smoothing results in

smoother warps. As discussed in [180], the choice of the tradeoff between the similarity

measure and regularization is important for segmentation accuracy. We repeat the above

experiments using {6, 8, 10, 12, 14} iterations of smoothing. For brevity, we will focus the

discussion on using 10 iterations of smoothing and comment on results obtained with the

other levels of smoothing.

We repeat the above procedure of performing co-registration and cross-validation with

the FreeSurfer registration algorithm [59] using the default FreeSurfer settings. Once again,

we use the same features and parcellation algorithm [43, 60]. As before, the atlas consists

of the mean and variance of cortical geometry.

To compare the cortical parcellation results, we compute the average Dice measure,

defined as the ratio of cortical surface area with correct labels to the total surface area

averaged over the test set. Because the average Dice can be misleading by suppressing

small structures, we also compute the Dice measure for each structure.

On the left hemisphere, FreeSurfer achieves an average Dice of 88.9, while Spherical
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Dice = 85.7 Dice = 89.6 Dice = 92.3

Figure 4-3: Example parcellations of three different subjects. Blue corresponds to ground
truth segmentation. Red corresponds to automatic segmentation using Spherical Demons
for registration.

Demons achieves an average Dice of 89.6 with 10 iterations of smoothing. While the im-

provement is not big, the difference is statistically significant for a one-sided t-test with the

Dice measure of each subject treated as an independent sample (p = 2×10−6). Furthermore,

the overall Dice is statistically significantly better than FreeSurfer for all levels of smoothing

we considered, with the best overal dice achieved with 12 iterations of smoothing.

On the right hemisphere, FreeSurfer obtains a Dice of 88.8 and Spherical Demons

achieves 89.1 with 10 iterations of smoothing. Here, the improvement is smaller, but still

statistically significant (p = 0.01). Furthermore, the overall dice is statistically significantly

better than FreeSurfer for all levels of smoothing we considered, except when 6 iterations

of smoothing is used (p = 0.06). All results we report in the remainder of this section use

10 iterations of smoothing.

As an illustration, Fig. 4-3 shows the example parcellation of three subjects, where blue

corresponds to ground truth segmentation and red corresponds to the automatic segmen-

tation results from using Spherical Demons with 10 iterations of smoothing. The left most

subject corresponds to the worst subject, while the right most subject corresponds to the

best. The middle subject achieves median segmentation accuracy among the left hemi-

spheres of 39 subjects.

We analyze the segmentation accuracy separately for each structure. To compare Spher-

ical Demons with FreeSurfer, we perform a one-sided paired-sampled t-test treating each

subject as an independent sample and correct for multiple comparisons using a False Dis-

covery Rate (FDR) of 0.05 [22]. On the left (right) hemisphere, the segmentations of 16
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(a) Lateral View (b) Medial View

Figure 4-4: Percentage Improvement over FreeSurfer. Yellow regions indicate structures
scoring better than FreeSurfer. Blue regions correspond to decrease in accuracy. Note that
none of these blue regions are statistically significant. The boundaries between parcellation
regions are set to reddish-brown to improve visualization of the regions.

(8) structures are statistically significantly improved by Spherical Demons with respect to

FreeSurfer, while no structure is significantly worse.

Fig. 4-4 shows the percentage improvement of individual structures over FreeSurfer.

Fig. 4-5 displays the average Dice per structure for FreeSurfer and Spherical Demons (10

iterations of smoothing) for the left and right hemispheres. Standard errors of the mean are

displayed as red bars. The numbering of the structures correspond to Table 1.1. Parcellation

improvements suggest that our registration is at least as accurate as FreeSurfer.

The structures with the worst Dice are the frontal pole and entorhinal cortex. These

structures are small and relatively poorly defined by the underlying cortical geometry. For

example, the entorhinal cortex is partially defined by the rhinal sulcus, a tiny sulcus that is

only visible on the pial surface. The frontal pole is defined by the surrounding structures,

rather than by the underlying cortical geometry.

4.3.2 Brodmann Area Localization on ex-vivo Cortical Surfaces

We now consider the localization of Brodmann Areas (BAs) in the cortex of the 10 ex-vivo

subjects described in Chapter 1.2.2. For an illustration of the BAs on the cortex, we refer

the readers to Fig. 1-2(c). Here, we do not consider MT because it was not yet available at

the time of this experiment.

It has been shown that nonlinear surface registration of cortical folds can significantly

improve Brodmann area overlap across different subjects [56, 181, 182] compared with vol-

umetric registration. Registering the ex-vivo surfaces is more difficult than in-vivo surfaces

because the reconstructed volumes are extremely noisy due to the distortions introduced

by the histology, resulting in noisy geometric features, as shown in Fig. 4-6.

We consider two strategies for aligning Brodmann areas. For both strategies, we will

use 10 iterations of smoothing for Spherical Demons as it proved reasonable in the previous

set of experiments. The first strategy involves co-registering the 10 ex-vivo surfaces using

cortical geometry by repeatedly building an atlas and registering the surfaces to the atlas,

similar to the previous experiment on cortical parcellation. We use either Spherical Demons
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(a) Left hemisphere parcellation
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(a) Right hemisphere parcellation

Figure 4-5: (a) Dice measure for each structure in the left hemisphere. (b) Dice measure
for each structure in the right hemisphere. Black columns correspond to FreeSurfer. White
columns correspond to Spherical Demons. * indicates structures where Spherical Demons
shows statistically significant improvement over FreeSurfer (FDR = 0.05). No structure
exhibit significant decrease in accuracy.

or FreeSurfer for registration. We refer to the co-registration using Spherical Demons and

FreeSurfer as SD10 and FS10 respectively (10 refers to the number of subjects in the study,

not the number of smoothing iterations).

The second strategy involves registering the 10 ex-vivo surfaces to the in-vivo “Buck-
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Reconstructed In-vivo Surface Reconstructed Ex-vivo Surface

Figure 4-6: Left: example in-vivo surface used in the parcellation study. Right: example
ex-vivo surface used in the Brodmann area study.

ner40” atlas, constructed from 40 in-vivo subjects, that is distributed with the FreeSurfer

software. Once again, we use either Spherical Demons or FreeSurfer for the registration.

We refer to the co-registration using Spherical Demons and FreeSurfer as SD40 and FS40

respectively.

To measure the quality of alignment of the Brodmann areas after cortical registration,

we use an adaptation [182] of the modified Hausdorff distance [45]. For each pair of reg-

istered subjects, we project each Brodmann area from the first subject onto the second

subject and compute the mean distance between the boundaries, measured on the original

cortical surface of the second subject. We obtain a second measurement by projecting each

Brodmann area from the second subject onto the first subject. Since we have 10 surfaces,

we get 90 ordered pairs and 90 alignment errors for each Brodmann area.

Table 4.2 reports the mean alignment errors for each Brodmann area and for each

method. The lowest errors for each Brodmann area are shown in bold. We see that for

almost all Brodmann areas, the best alignment come from SD10 or SD40. Similarly, Fig. 4-7

shows the median alignment error for each Brodmann area. The error bars indicate the lower

and upper quartile alignment errors.

We use permutation testing to evaluate statistical significance of the results. We cannot

use the t-test because the 90 alignment errors are correlated - since the subjects are co-

registered together, good alignment between subjects 1 and 2 and between subjects 2 and

3 necessarily implies a higher likelihood of good alignment between subjects 1 and 3.

The tests show that SD10 is better than FS10 and SD40 is slightly better than FS40.

SD10 and SD40 are comparable. Compared with FS10, SD10 improves the median align-

ment errors of 5 (4) Brodmann areas on the right (left) hemisphere (FDR = 0.05) and no

structure gets worse. Compared with FS40, SD40 statistically improves the alignment of 2

(1) Brodmann areas on the right (left) hemisphere (FDR = 0.05) with no structure getting

worse. Permutation tests on the mean alignment errors show similar results, except that

FS40 performs better than SD40 for BA4p on the left hemisphere when using the mean

statistic. These results suggest that the Spherical Demons algorithm is at least as accurate
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Table 4.2: Mean alignment errors of Brodmann areas in mm for the four registration
methods. Lowest errors are shown in bold. SD refers to Spherical Demons; FS refers
to FreeSurfer.

Right Hemisphere
V1 BA4a BA4p BA2 V2 BA6 BA44 BA45

FS10 3.8 4.4 3.8 6.3 4.6 7.0 7.4 6.8
FS40 2.9 3.8 3.6 5.6 4.2 7.1 7.6 6.9
SD10 3.1 3.3 3.3 5.4 3.7 6.4 7.7 6.4
SD40 3.0 3.4 3.2 5.5 3.8 6.4 6.8 6.3

Left Hemisphere
V1 BA4a BA4p BA2 V2 BA6 BA44 BA45

FS10 3.8 3.8 3.1 5.9 4.0 6.5 11.5 9.9
FS40 2.7 3.6 2.9 5.7 3.6 6.3 10.5 9.2
SD10 3.2 3.4 2.8 5.5 3.5 6.4 10.4 8.6
SD40 2.8 3.8 3.7 5.6 3.4 6.6 10.7 9.0
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(a) Right Hemisphere (b) Left Hemisphere

Figure 4-7: Median alignment errors of Brodmann areas in mm for the four registration
methods. The error bars indicate the upper and lower quartile alignment errors. “#”
indicates that the median errors of SD10 are statistically lower than those of FS10 (FDR
= 0.05). “*” indicates SD40 outperforms FS40. For no Brodmann area does FreeSurfer
outperform Spherical Demons.

as FreeSurfer in aligning cortical folds and Brodmann areas.

4.4 Discussion

The Demons algorithms [152, 168] discussed in Section 4.1 and the Spherical Demons algo-

rithm proposed in this chapter use a regularization term that modulates the final deforma-
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tion. Motivated by [29, 32], the Diffeomorphic Demons algorithm [168] admits a fluid prior

on the velocity fields. This involves smoothing the velocity field updates before computing

the exponential map to obtain the displacement field updates to be composed with the cur-

rent transformation. The resulting algorithm is very similar to the fast implementation [29]

of Christensen’s well-known fluid registration algorithm [34], except that Christensen’s al-

gorithm does not employ a higher-order update method like Gauss-Newon. The Spherical

Demons algorithm can similarly incorporate a fluid prior by smoothing the velocity field

~v(t) in Eq. (4.28) before computing the exponential map to obtain the displacement updates

exp(~v(t)).

An alternative interpretation of the smoothing implementation of Christensen’s algo-

rithm comes from choosing a different metric for computing the gradient from the deriva-

tives [21]. The choice of the metric also arises in our problem when computing the gradient

as discussed in Appendix B.1.3. This suggests that the Spherical Demons algorithm can

incorporate a fluid prior by modifying the Gauss-Newton update step Eq. (4.28). Unfor-

tunately, this process introduces coupling among the vertices resulting in the loss of the

speed-up advantage of Spherical Demons (see for example the derivations of [74]). The

exploration of the performance of the different fluid prior implementations is outside the

scope of this thesis.

Because the tools of differential geometry are general, the Spherical Demons algorithm

can be in principle extended to arbitrary manifolds, besides the sphere. One challenge is

that the definition of coordinate charts for an arbitrary manifold is more difficult than that

for the sphere. Approaches of utilizing the embedding space [33] or the intrinsic properties

of manifolds [94] are promising avenues of future work.

4.5 Summary

In this chapter, we presented the fast Spherical Demons algorithm for registering spherical

images. We showed that the two-step optimization of the Demons algorithm can also be

applied on the sphere. By utilizing the one parameter subgroup of diffeomorphisms, the

resulting deformation is invertible. A clear future challenge is to take into account the orig-

inal metric properties of the cortical surface in the registration process, as demonstrated in

previously proposed registration methods [59, 154]. We tested the algorithm extensively in

two different applications and showed that the accuracy of the algorithm compares favor-

ably with the widely used FreeSurfer registration algorithm [59] while offering more than

one order of magnitude speedup.

While we have greatly speeded up registration, the registration parameters still have to

be manually tuned. In the next chapter, we will present a framework that automatically

learns the parameters of registration cost functions. Leveraging on the one parameter
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subgroup of diffeomorphisms presented in this chapter allows the framework to be tractable

in practice.
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Chapter 5

Learning Task-Optimal

Registration Cost Functions

In medical image analysis, registration is rarely the final goal, but instead the resulting

alignment is used in other tasks, such as image segmentation or group analysis. The pa-

rameters of the registration cost function – for example, the tradeoff between the image

similarity and regularization terms – are typically determined manually through inspection

of the image alignment and then fixed for all applications. However, it is unclear that the

same parameters are optimal for different applications.

In this chapter, we propose a principled approach to leveraging the application context

to effectively regularize the ill-posed problem of image registration. Our method learns the

parameters of any smooth family of registration cost functions with respect to a specific

task. The key idea is to introduce a second layer of optimization over and above the usual

registration. This second layer of optimization traverses the space of local minima, selecting

registration parameters that result in good local minima as measured by the performance

of the specific application in a training data set. We instantiate the framework for the

alignment of hidden labels whose extent is not necessarily well-predicted by local image

features. We apply the resulting algorithm to localize cytoarchitectural and functional

regions based only on macroanatomical cortical folding information and achieve state-of-

the-art localization results in both histological and functional Magnetic Resonance Imaging

(fMRI) data sets.

This chapter is organized as follows. In the next section, we introduce the task-optimal

registration framework. We specialize the framework to align hidden labels in Section 5.2.

We present localization experiments in Section 5.3 and discuss outstanding issues in Sec-

tion 5.4. This chapter extends a previously presented conference article [181] and contains

detailed derivations, discussions and experiments that were left out in the conference ver-

sion.
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5.1 Task-Optimal Framework

In this section, we present the task-optimal registration framework for learning the pa-

rameters of a registration cost function. Given an image I, let f(w,Γ) denote a smooth

registration cost function, with parameters w and a transformation Γ. For example,

f(w = {λ, T},Γ) = λDissim(T, I ◦ Γ) + Reg(Γ), (5.1)

where T is the template image and λ is the tradeoff between the image dissimilarity measure

and the regularization on the transformation Γ. f is therefore also a function of the image

I, which we suppress for conciseness. The optimal transformation Γ∗ minimizes the cost

function for a given set of parameters w:

Γ∗(w) = argmin
Γ

f(w,Γ). (5.2)

We emphasize that Γ∗ is a function of w since a different set of parameters w will result in

a different solution to Eq. (5.2) and thus will effectively define a different image coordinate

system.

The resulting deformation Γ∗ is used to warp the input image or is itself used for

further tasks, such as image segmentation or voxel-based morphometry. We assume that

the task performance can be measured by a smooth cost function g, so that a smaller

value of g(Γ∗(w)) corresponds to better task performance. g is typically a function of

additional input data associated with a subject (e.g., manual segmentation labels if the

task is automatic segmentation), although we suppress this dependency in the notation for

conciseness. This auxiliary data is only available in the training set; g cannot be evaluated

for the new image.

Given a set of training subjects, let Γ∗
n(w) denote the solution of Eq. (5.2) for training

subject n for a fixed set of parameters w and gn(Γ∗
n(w)) denote the task performance for

training subject n using the deformation Γ∗
n(w) and other information available for the n-th

training subject. A different set of parameters w would lead to different task performance

gn(Γ∗
n(w)). We seek the parameters w∗ that generalize well to a new subject: registration

of a new subject with w∗ yields the transformation Γ∗(w∗) with a small task-specific cost

g(Γ∗(w∗)). To solve this functional approximation problem [52], we use regularized risk

minimization. Let Reg(w) denote regularization on w. We define

G(w) ,

N∑

n=1

gn(Γ∗
n(w)) + Reg(w) (5.3)
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and seek

w∗ = argmin
w

G(w). (5.4)

The optimization is difficult because evaluating the cost function G for a particular set of

parameters w requires performing N different registrations!

5.1.1 Characterizing the Space of Local Minima

In this section, we provide theoretical characterizations of the optimization problem in

Eq. (5.3). If Γ∗(w) is defined strictly to be the global registration optimum, then Γ∗(w) is

clearly not a smooth function of w, since a small change in w can result in a large change

in the global registration optimum. This definition is also impractical, since the global

optima for most nonlinear optimization problem cannot be guaranteed in practice. Instead,

we relax the definition of Γ∗(w) to be a local minimum of the registration cost function

for fixed values of w. Here, we derive conditions under which Γ∗(w) is a locally smooth

function of w, so we can employ gradient descent to optimize Eq. (5.3) with respect to w.

Let Γ∗(w0) denote a local minimum of the registration cost function for a fixed w = w0.

Suppose we perturb w by an infinitestimally small δw so that Γ∗(w0) is no longer the

registration local minimum for w = w0+δw. We consider two representations of deformation

in the optimization and provide the analysis of the change in local minimum for both

representations.

Additive deformation models arise when the space of deformations is a vector space,

such as the space of displacement fields or positions of B-spline control points. At each

iteration of the registration algorithm, deformation updates are added to the current defor-

mation estimates. The additive model is general and applies to many non-convex, smooth

optimization problems outside of registration. Most registration algorithms can in fact be

modeled with the additive framework.

In some registration algorithms, including the one used in this chapter, it is more natural

to represent deformation changes through composition rather than addition [17, 147, 168].

For example, in the diffeomorphic variants of the Demons algorithm [168, 183, 186] discussed

in the previous chapter, the diffeomorphic transformation Γ is represented as a dense dis-

placement field. At each iteration, the transformation update is restricted to be a member

of the one parameter subgroup of diffeomorphisms parameterized by a stationary velocity

field. The diffeomorphic transformation update is then composed with, rather than added

to, the current estimate of the transformation, to ensure that the resulting transformation

is diffeomorphic.

(1) ADDITION. Let Γ∗(w0 + δw) = Γ∗(w0)+ δΓ∗(w0, δw) denote the new locally optimal
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deformation for the new set of parameters w0 + δw. The following proposition characterizes

the existence and uniqueness of δΓ∗(w0, δw) as δw is varied. In particular, we show that

under some mild conditions, δΓ∗(w0, δw) is a well-defined smooth function in the neighbor-

hood of (w0,Γ
∗(w0)). In the remainder, we use ∂x, ∂2

x, and ∂2
x,y to denote the corresponding

partial derivatives.

Proposition 1. If the Hessian1 ∂2
Γf(w0,Γ) is positive definite at Γ = Γ∗(w0), then there

exists an ǫ > 0, such that for all δw, ‖δw‖ < ǫ, a unique continuous function δΓ∗(w0, δw)

exists such that δΓ∗(w0, 0) = 0. Furthermore, δΓ∗ has the same order of smoothness as f .

Proof. We define h(w,Γ) , ∂Γf(w,Γ). Since Γ∗(w0) is a local minimum of f(w0,Γ), we

have

h(w,Γ)
∣∣∣
w0,Γ∗(w0)

= ∂Γf(w,Γ)
∣∣∣
w0,Γ∗(w0)

= 0. (5.5)

At (w0,Γ
∗(w0)), the Hessian matrix ∂2

Γf(w0,Γ) = ∂Γh(w,Γ) is positive definite by the

assumption of the proposition and is therefore invertible. By the Implicit Function Theo-

rem [134], there exists an ǫ > 0, such that for all δw, ‖δw‖ < ǫ, there is a unique continuous

function δΓ∗(w0, δw), such that h(w0 + δw,Γ∗(w0) + δΓ∗(w0, δw)) = 0 and δΓ∗(w0, 0) = 0.

Furthermore, δΓ∗(w0, δw) has the same order of smoothness as h.

Because the Hessian of f is smooth and the eigenvalues of a matrix depend continuously

on the matrix [162], there exists a small neighborhood around (w0,Γ
∗(w0)) in which the

eigenvalues of ∂2
Γf(w,Γ) are all greater than 0. Since both sufficient conditions for a local

minimum are satisfied (zero gradient and positive definite Hessian), Γ∗(w0) + δΓ∗(w0, dw)

is indeed a new local minimum close to Γ∗(w0).

At (w0,Γ
∗(w0)), the Hessian ∂2

Γf(w0,Γ) is positive semi-definite, so the positive definite

condition in Proposition 1 is not too restrictive. Unfortunately, degeneracies may arise for

local minima with a singular Hessian. For example, let Γ be the 1 × 2 vector [a b] and

f(Γ, w) = (ab − w)2. Then for any value of w, there is an infinite number of local min-

ima Γ∗(w) corresponding to ab = w. Furthermore, the Hessian at any local minimum is

singular. In this case, there is an infinite number of local minima near the current local

minimum Γ∗(w0), i.e., δΓ∗(w0, δw) is not a well-defined function and the gradient is not

defined. Consequently, the parameters w of local registration minima whose Hessians are

singular are also local minima of the task-optimal cost function Eq. (5.3).

(2) COMPOSITION. Let Γ∗(w0) be the registration local minimum at w0 and δΓ(v)

1Here, we assume that the transformation Γ is finite dimensional, such as the parameters of affine trans-
formations, positions of spline control points or dense displacement field defined on the voxels or vertices of
the image domain.
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denote an update transformation parameterized by v, so that δΓ(0) corresponds to the iden-

tity transform. For example, v could be a stationary [168, 183, 186] or non-stationary [21]

velocity field parameterization of diffeomorphism or positions of spline control points [135].

In the composition model, Γ∗(w0) is a local minimum if and only if there exists an ǫ > 0,

such that f(w0,Γ
∗(w0)) < f(w0,Γ

∗(w0) ◦ δΓ(v)) for all values of ‖v‖ < ǫ.

Let Γ∗(w0) ◦ δΓ(v∗(w0, δw)) denote the new locally optimal deformation for the new

parameters w0 + δw. In general, there might not exist a single update transformation

δΓ(v∗(w0, δw)) that leads to a new local minimum under a perturbation of the parameters w,

so that there is no correponding version of Proposition 1 for the general composition model.

However, in the special case of the composition of diffeomorphisms model [168, 183, 186]

employed in this and the previous chapters, the following proposition characterizes the

existence and uniqueness of v∗(w0, δw) as δw is varied.

Proposition 2. If the Hessian ∂2
vf(w0,Γ

∗(w0) ◦ δΓ(v)) is positive definite at v = 0, then

there exists an ǫ > 0, such that for all δw, ‖δw‖ < ǫ, a unique continuous function v∗(w0, δw)

exists, such that v∗(w0, δw) is the new local minimum for parameters w0+δw and v∗(w0, 0) =

0. Furthermore, v∗(w0, δw) has the same order of smoothness as f .

Proof. The proof is similar to that of Proposition 1, but with a twist. The details are

found in Appendix C.1.

Just like in the case of the additive deformation model, local registration minima that

do not satisfy the conditions of Proposition 2 are also local minima of the regularized task

performance G. In the next section, we derive exact and approximate gradients of G.

5.1.2 Optimizing Registration Parameters w

We now discuss the optimization of the regularized task performance G.

(1) ADDITION. In the previous section, we have shown that at (w0,Γ
∗(w0)) with a

positive definite Hessian, δΓ∗(w0, δw) is a smooth well-defined function such that Γ∗(w0) +

δΓ∗(w0, δw) is the new local minimum at w0 + δw. Therefore, we can compute the deriva-

tives of Γ∗(w) with respect to w at w0, allowing us to traverse a curve of local optima,

finding values of w that improve the task-specific cost function for the training images. We

first perform a Taylor expansion of ∂Γf(w,Γ) at (w0,Γ
∗(w0)):

∂Γf(w,Γ)

∣∣∣∣
w0+δw,Γ∗(w0)+δΓ

=
[
∂2

Γf(w,Γ)δΓ + ∂2
w,Γf(w,Γ)δw + O(δw2, δΓ2)

]∣∣∣∣
w0,Γ∗(w0)

,

(5.6)
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where we dropped the term ∂Γf(w,Γ)
∣∣∣
w0,Γ∗(w0)

= 0. For δΓ = δΓ∗(w0, δw), the left-hand

side is equal to 0 and we can write

δΓ∗(w0, δw) =
[
−
(
∂2

Γf(w,Γ)
)−1

∂2
w,Γf(w,Γ)δw + O(δw2, δΓ2)

] ∣∣∣∣
w0,Γ∗(w0)

. (5.7)

Therefore by taking the limit δw → 0, we get

∂wΓ∗(w0) , ∂(δw)δΓ
∗(w0, δw)

∣∣∣∣
δw=0

= −
(
∂2

Γf(w,Γ)
)−1

∂2
w,Γf(w,Γ)

∣∣∣∣
w0,Γ∗(w0)

. (5.8)

Eq. (5.8) tells us the direction of change of the local minimum at (w0,Γ
∗(w0)). In prac-

tice, the matrix inversion in Eq. (5.8) is computationally prohibitive for high-dimensional

warps Γ. Here, we consider a simplification of Eq. (5.8) by setting the Hessian to be the

identity:

∂wΓ∗ ≈ −∂2
w,Γf(w,Γ)

∣∣∣
w0,Γ∗(w0)

. (5.9)

Since −∂Γf is the direction of gradient descent of the cost function Eq. (5.2), we can interpret

Eq. (5.9) as approximating the new local minimum to be in the same direction as the change

in the direction of gradient descent as w is perturbed.

Differentiating the cost function in Eq. (5.3), using the chain rule, we obtain

∂wG = ∂w

(
N∑

n=1

gn(Γ∗
n(w)) + Reg(w)

)

(5.10)

=
N∑

n=1

[
∂Γ∗

n
gn

]
[∂wΓ∗

n] + ∂wReg(w) (5.11)

= −
N∑

n=1

[
∂Γ∗

n
gn

]
∂2

w,Γfn(w,Γ)
∣∣∣
w,Γ∗

n(w0)
+ ∂wReg(w). (5.12)

We note the subscript n on f indicates the dependency of the registration cost function on

the n-th training image.

(2) COMPOSITION. In the previous section, we have shown that at (w0,Γ
∗(w0)), as-

suming the conditions of Proposition 2 are true, v∗(w0, δw) is a smooth well-defined function

such that Γ∗(w0) ◦ δΓ(v∗(w0, δw)) is the new local minimum. Therefore, we can compute

82



Algorithm 3: Task-Optimal Registration

Data: A set of training images {In}
Result: Parameters w that minimizes the regularized task performance G (see

Eq. (5.3))
Initialize w0.
repeat

Step 1. Given current values of w, estimate Γ∗
n(w) = argminΓn

fn(w,Γn), i.e.,
perform registration of each training subject n.
Step 2. Given current estimates (w, {Γn(w)}), compute the gradient ∂wG using
either

1. Eq. (5.12) via ∂wΓ∗ in Eq. (5.9) for the addition model or

2. Eq. (5.16) via ∂wv∗ in Eq. (5.14) for the composition model.

Step 3. Perform line search in the direction opposite to ∂wG [125].
until convergence ;

the derivatives of v∗. As before, by performing a Taylor expansion, we obtain

∂wv∗ = −
(
∂2

v1,v2
f(w,Γ∗ ◦ δΓ(v1) ◦ δΓ(v2))

)−1
∂2

w,v2
f(w,Γ∗ ◦ δΓ(v2))

∣∣∣∣
w0,v1=0,v2=0

(5.13)

≈ −∂2
w,vf(w,Γ∗ ◦ δΓ(v))

∣∣∣∣
w0,v=0

. (5.14)

Appendix C.2 provides the detailed derivations. Differentiating the cost function in Eq. (5.3),

using the chain rule, we get

∂G

∂w
=

N∑

n=1

[
∂gn(Γ∗

n ◦ δΓ(v∗))

∂v∗

] [
∂v∗

∂w

] ∣∣∣∣
v∗=0

+
∂

∂w
Reg(w) (5.15)

= −
N∑

n=1

[
∂gn(Γ∗

n ◦ δΓ(v∗))

∂v∗

]
∂2

w,vfn(w,Γ∗
n ◦ δΓ(v))

∣∣∣∣
w,v=v∗=0

+
∂

∂w
Reg(w). (5.16)

Once again, the subscript n on f indicates the dependency of the registration cost function

on the n-th training image.

Algorithm 3 summarizes the method for learning the task-optimal registration parame-

ters. Each line search involves evaluating the cost function G multiple times, which in turn

requires registering the training subjects, resulting in a computationally intensive process.

However, since we are initializing from a local optimum, for a small change in w, each

registration converges quickly.

Since nonlinear registration is dependent on initialization, the current estimates (w,Γ∗(w)),

which were initialized from previous estimates, might not be achievable when initializing
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the registration with the identity transform. The corresponding parameters w might there-

fore not generalize well to a new subject, which are typically initialized with the identity

transform. To avoid this problem, after every few iterations, we re-register the training

images initialized with the identity transform and check that G is better than the current

best value of G computed with initialization from the identity transform.

5.2 Learning wSSD for Hidden Label Alignment

We now instantiate the task-optimal registration framework for localizing hidden labels in

images. We demonstrate two schemes for either (1) learning the weights of the weighted

Sum of Squared Differences (wSSD) family of registration cost functions or (2) estimating

an optimal template for localizing these hidden labels. We emphasize that the optimal

template is not necessarily the average of the training images, since the goal is not to align

image intensity across subjects, but to localize hidden labels.

As before, we instantiate the framework for spherical images that represent the cortex.

Suppose we have a set of spherical training images {In} with some underlying ground truth

structure manually labeled or obtained from another imaging modality. From these training

images and labels, we seek to estimate a registration cost function and an image template

T with corresponding training labels. We define our task as aligning a new image to the

image template and predicting the boundary of the hidden structure in the new subject by

transferring the training labels to the new subject.

5.2.1 Instantiating Registration Cost Function f

To register a given image In to the template image T , we define the following cost function:

fn(w = {{λi}, T},Γn)

=
∑

i

λ2
i [T (xi) − In(Γn(xi))]

2 +
∑

i

1

|Ni|
∑

j∈Ni

(‖Γn(xi) − Γn(xj)‖ − dij

dij

)2

, (5.17)

where transformation Γn maps a point xi on the sphere S2 to another point Γn(xi) ∈ S2.

The first term corresponds to the wSSD image similiarity. The second term is a regular-

ization that penalizes relative metric distortion in the transformation Γn. Ni is a prede-

fined neighborhood around vertex i and dij is the original distance between the neighbors

dij = ‖xi − xj‖ [180]. The weights {λi} are generalizations of the tradeoff parameter λ,

allowing for a spatially-varying tradeoff between the image dissimilarity term and regular-

ization: a higher weight λ2
i corresponds to placing more emphasis on matching the template

image at spatial location xi relative to the regularization.

In this work, we consider either learning the weights λ2
i or the template T for localizing
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Brodmann Area (BA) labels or functional labels by aligning cortical folding pattern. Opti-

mizing λ2
i leads to placing spatially varying importance on matching different cortical folds

with the aim of aligning the underlying cytoarchitectonics or function. Optimizing T corre-

sponds to learning a cortical folding template that is optimal for localizing the underlying

cytoarchitectonics or functional labels of the training subjects.

We choose to represent the transformation Γn as a composition of diffeomorphic warps {Φk}
parameterized by a stationary velocity field ~v, so that Γn = Φ1 ◦ · · · ◦ ΦK [168, 183, 186].

We note that our choice of regularization is different from the implicit hierarchical regular-

ization used in Spherical Demons [183] since the Demons regularization is not compatible

with our derivations from the previous section. Instead of the efficient 2-Step Spherical

Demons algorithm, we will use steepest descent. The resulting registration algorithm is still

relatively fast, requiring about 15 min for registering full-resolution meshes with more than

100k vertices, compared with 5 min of computation for Spherical Demons on a Xeon 2.8GHz

single processor machine. Just like in the previous chapter, we denote Φ(x) = exp(~v)(x).

5.2.2 Optimizing Registration Cost Function f

To register subject n to the template image T for a fixed set of parameters w, let Γ0
n be

the current estimate of Γ∗
n. We seek an update transformation exp(~v) parameterized by a

stationary velocity field ~v:

fn(w,Γ0
n ◦ exp(~v)) =

∑

i

λ2
i

[
T (xi) − In(Γ0

n ◦ exp(~v)(xi))
]2

(5.18)

+
∑

i

1

|Ni|
∑

j∈Ni

(‖Γ0
n ◦ exp(~v)(xi) − Γ0

n ◦ exp(~v)(xj)‖ − dij

dij

)2

.

Let ~vi be the velocity vector tangent to vertex xi, and ~v = {~vi} be the entire velocity

field. We adopt the techniques in the Spherical Demons algorithm [183] described in the

previous chapter, to differentiate Eq. (5.18) with respect to ~v, evaluated at ~v = 0. Using

the fact that the differential of exp(~v) at ~v = 0 is the identity [115], i.e., [D exp(0)]~v = ~v,

we conclude that a change in velocity ~vi at vertex xi does not affect exp(~v)(xn) for n 6= i

up to the first order derivatives. Defining ∇In(Γ0
n(xi)) to be the 1 × 3 spatial gradient of

the warped image In(Γ0
n(·)) at xi and ∇Γ0

n(xi) to be the 3× 3 Jacobian matrix of Γ0
n at xi,

we get the 1 × 3 derivative

∂~vi
fn(w,Γ0

n ◦ exp(~v))
∣∣∣
~v=0

= −2λ2
i

[
T (xi) − In

(
Γ0

n (xi)
)] [

∇In

(
Γ0

n (xi)
)]

(5.19)

+ 2
∑

j∈Ni

(
1

|Ni|
+

1

|Nj|

)(‖Γ0
n(xi) − Γ0

n(xj)‖ − dij

d2
ij‖Γ0

n(xi) − Γ0
n(xj)‖

)
[
Γ0

n(xi) − Γ0
n(xj)

]T ∇Γ0
n(xi).

We can perform gradient descent of the registration cost function fn using Eq. (5.19) to
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obtain Γ∗
n, which can be used to evaluate the regularized task performance G to be described

in the next section. We also note that Eq. (5.19) instantiates ∂~vfn within the task-optimal

gradient Eq. (5.16) for this application.

5.2.3 Instantiating Regularized Task Performance G

We represent the hidden labels in the training subjects as signed distance transforms on

the sphere {Ln} [95]. We consider a pairwise approach, where we assume that the template

image T has a corresponding labels with distance transform LT and set the task-specific

cost function to be

gn(Γ∗
n) =

∑

i

[LT (xi) − Ln (Γ∗
n (xi))]

2 . (5.20)

A low value of gn indicates good alignment of the hidden label maps between the template

and subject n, suggesting good prediction of the hidden label.

We experimented with a prior that encourages spatially constant weights and template,

but did not find that the regularization lead to improvements in the localization results. In

particular, we consider the following smoothness regularization on the registration param-

eters depending on whether we are optimizing for the weights λi or the template T :

Reg({λi}) =
∑

i

1

|Ni|
∑

j∈Ni

(λ2
i − λ2

j )
2, (5.21)

Reg(T ) =
∑

i

1

|Ni|
∑

j∈Ni

(T (xi) − T (xj))
2. (5.22)

One possible reason for this lack of improvement is that the re-registration after every

few line searches helps to regularize against bad parameter values. In the experiments

that follow, we will discard the regularization term of the registration parameters (i.e., set

Reg(w) = 0), although designing a more useful regularization could potentially improve the

results.

5.2.4 Optimizing Task Performance G

To optimize the task performance G over the set of parameters w, we have to instantiate the

task-optimal gradient specified in Eq. (5.16). We first compute the derivative of the task-

specific cost function with respect to the optimal update ~v∗. Once again, we represent ~v∗

as the collection {~v∗i }, where ~v∗i is a velocity vector at vertex xi. Defining ∇Ln(Γ∗
n(xi))

T to

be the 1×3 spatial gradient of the warped distance transform of the n-th subject Ln(Γ∗
n(·))
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at xi, we get the 1 × 3 derivative

∂~v∗i
gn(Γ∗

n ◦ exp(~v∗))

∣∣∣∣
~v∗=0

= −2 [LT (xi) − Ln (Γ∗
n (xi))] [∇Ln (Γ∗

n (xi))] . (5.23)

Weight Update. To update the weights {λj} of the wSSD, we compute the derivative of

the registration local minimum update ~v∗ with respect to the weights. Using the approxi-

mation in Eq. (5.14), we obtain the 3 × 1 derivative of the velocity update ~v with respect

to the weights of the wSSD cost function:

∂λk
~v∗i ≈ −∂2

λk,~vi
fn({λj},Γ∗

n ◦ exp(~v))

∣∣∣∣
{λj},~v=0

(5.24)

= −∂~vi
∂λk

fn({λj},Γ∗
n ◦ exp(~v))

∣∣∣
{λj},~v=0

(5.25)

= −∂~vi
2λk [T (xk) − In(Γ∗

n ◦ exp(~v)(xk))]
2
∣∣∣
{λj},~v=0

(5.26)

= 4λk [T (xk) − In(Γ∗
n(xk))]∇In (Γ∗

n (xk)) δ(k, i). (5.27)

Here δ(k, i) = 1 if k = i and is zero otherwise. Since Eq. (5.27) is in the same direction

as the first term of the gradient descent direction of registration (negative of Eq. (5.19)),

increasing λ2
k will improve the intensity matching of vertex xk of the template. Substituting

Eq. (5.27) and Eq. (5.23) into Eq. (5.16) provides the gradient for updating the weights of

the wSSD cost function.

Template Update. To update the template T used for registration, we compute the

3 × 1 derivative of the velocity update ~v with respect to the template T :

∂T (xk)~v
∗
i ≈ −∂2

T (xk),~vi
fn(T,Γ∗

n ◦ exp(~v))

∣∣∣∣
T,~v=0

(5.28)

= −∂~vi
∂T (xk)fn(T,Γ∗

n ◦ exp(~v))
∣∣∣
T,~v=0

(5.29)

= −2∂~vi
λ2

k [T (xk) − In(Γ∗
n ◦ exp(~v)(xk))]

∣∣∣
T,~v=0

(5.30)

= 2λ2
k [T (xk) − In(Γ∗

n(xk))]∇In (Γ∗
n (xk)) δ(k, i). (5.31)

Since Eq. (5.31) is in the same direction as the first term of the gradient descent direction

of registration (negative of Eq. (5.19)), when T (xk) is larger than In(Γ∗
n(xk)), increasing the

value of T (xk) will warp vertex xk of the template further along the direction of increasing

intensity in the subject image. Conversly, if T (xk) is smaller than In(Γ∗
n(xk)), decreasing the

value of T (xk) will warp vertex xk of the template further along the direction of decreasing

intensity in the subject image. Substituting Eq. (5.31) and Eq. (5.23) into Eq. (5.16) pro-
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vides the gradient for updating the template used for registration.

We note that we can in principle optimize both the weights {λi} and the template T .

However, in practice, we find that this does not lead to better localization possibly because

of too many degrees of freedom, suggesting the need to design better regularization of the

parameters or better optimization.

5.3 Experiments

We now present experiments on localizing Brodmann Areas (BAs) and fMRI-defined MT+

(V5) using macro-anatomical cortical folding in two different data sets. For both experi-

ments, we compare the framework with using uniform weights [86, 168] and FreeSurfer [59].

5.3.1 Brodmann Area (BA) Localization

In this study, we consider the localization of Brodmann Areas (BAs) in the cortex of the 10

ex-vivo subjects described in Chapter 1.2.2. For an illustration of the BAs on the cortex,

we refer the readers to Fig. 1-2(c). Here, we do not consider BA4a, BA4p and BA6 because

they were only present in eight of the ten subjects.

As illustrated in Fig. 1-2(c) and discussed in multiple studies [4, 5, 56], we note that

V1, V2 and BA2 are well-predicted by local cortical geometry, while BA44, BA45 and

MT are not. For all the BAs however, a spherical morph of cortical folding was shown to

improve their localization compared with only Talairach or nonlinear spatial normalization

in the Euclidean 3D space [56]. Even though each subject has multiple BAs, we focus

on each structure independently. This allows for an easier interpretation of the estimated

parameters, such as the optimal template example we provide in Section 5.3.1.

We compare the following algorithms:

(a) Task-Optimal. We perform leave-two-out cross-validation to predict BA location.

For each test subject, we use one of the remaining 9 subjects as the template subject

and the remaining 8 subjects for training. When learning the weights of the wSSD, the

weights {λj} are globally initialized to 1 and the template T is fixed to the geometry

of the template subject. When learning the cortical folding template T , the template

is initialized to that of the template subject and the weights {λj} are globally set to 1.

Once the weights or template are learned, we use them to register the test subject and

predict the BA of the test subject by transferring the BA label from the template to the

subject. We compute the symmetric mean Hausdorff distance between the boundary

of the true BA and the predicted BA on the cortical surface of the test subject –

smaller Hausdorff distance corresponds to better localization [45]. We consider all 90
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possibilities of selecting the test subject and template, resulting in a total of 90 trials

and 90 mean Hausdorff distances for each BA and for each hemisphere.

(b) Uniform-Weights. We repeat the process for the uniform-weight method that fixes

the template T to the geometry of the template subject, and sets all the weights {λj}
to a global fixed value λ without training. We explore 14 different values of global

weight λ, chosen such that the deformations range from rigid to flexible warps. For

each BA and each hemisphere, we pick the best value of λ leading to the lowest mean

Hausdorff distances. Because there is no cross-validation in selecting the weights, the

uniform-weight method is using an unrealistic oracle-based version of the strategy

proposed in [180].

(c) FreeSurfer. Finally, we use FreeSurfer [59] to register the 10 ex-vivo subjects to

the FreeSurfer Buckner40 atlas, constructed from the MRI of 40 in-vivo subjects [62].

Once registered into this in-vivo atlas space, for the same 90 pairs of subjects, we can

use the BAs of one ex-vivo subject to predict another ex-vivo subject. We note that

FreeSurfer also uses the wSSD cost function, but a more sophisticated regularization

that penalizes both metric and areal distortion. For a particular tradeoff between

the similarity measure and regularization, the Buckner40 template consists of the

empirical mean and variance of the 40 in-vivo subjects registered to template space.

We use the reported FreeSurfer tradeoff parameters that were used to produce prior

state-of-the-art BA alignment [56].

We note that both the task-optimal and uniform-weights methods use a pairwise registration

framework, while FreeSurfer uses an atlas-based registration framework. Under the atlas-

based framework, all the ex-vivo subjects are registered to an atlas. Therefore to use the

BA of one subject to predict a second subject, we have to compose the deformations of the

second subject to the atlas with the inverse deformation of the first subject to the atlas.

Despite this additional source of error from composing two warps, it has been shown that

with carefully constructed atlases, using the atlas-based strategy leads to better registration

because of possible bias of the template in the pairwise registration framework [16, 65, 69,

86, 100].

We run the task-optimal and uniform-weights methods on a low-resolution subdivided

icosahedron mesh containing 2,562 vertices, whereas FreeSurfer results were computed on

high-resolution meshes of more than 100k vertices. In our implementation, training on

8 subjects takes on average 4hrs on a standard PC (AMD Opteron, 2GHz, 4GB RAM).

Despite the use of the low-resolution mesh, we achieve state-of-the-art localization accuracy.

We also emphasize that while training is computationally intensive, registration of a new

subject only requires one minute of processing time since we are working with low-resolution

meshes.
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Figure 5-1: Mean Hausdorff distances over an entire range of harmonic energy for BA44,
BA45 and MT. First row corresponds to left hemisphere. Second row corresponds to right
hemipshere.

Quantitative Results

Fig. 5-1 displays the mean and standard errors from the 90 trials of leave-two-out. On

average, task-optimal template performs the best, followed by task-optimal weights. The

best uniform-weights and FreeSurfer have about the same performance. For the Broca’s

areas (BA44 and BA45) and MT, this is not surprising. Since local geometry poorly predicts

these regions, by taking into account the final goal of aligning BAs instead of blindly aligning

the cortical folds, our method achieves better BA localization. FreeSurfer and the uniform-

weights method have similar performance because a better alignment of the cortical folds

on a finer resolution mesh does not necessary improve the alignment of these areas.

Since local cortical geometry is predictive of V1, V2 and BA2, we expect the advan-

tages of our framework to vanish. Surprisingly, as shown in Fig. 5-2, task-optimal template

again achieve significant improvement in BAs alignment over the uniform-weights method

and FreeSurfer. Task-optimal weights is also significantly better than the uniform-weights

method, but only slightly better than FreeSurfer. This suggests that even when local geom-

etry is predictive of the hidden labels and anatomy-based registration achieves reasonable

localization of the labels, tuning the registration cost function can further improve the task

performance. We also note that in this case, FreeSurfer performs better than the uniform-

weights method on average. Since local cortical folds are predictive of these areas, aligning

cortical folds on a higher resolution mesh yields more precise alignment of the cortical

geometry and of the BAs.
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Figure 5-2: Mean Hausdorff distances over an entire range of harmonic energy for V1,
V2 and BA2. First row corresponds to left hemisphere. Second row corresponds to right
hemipshere.

Qualitative Results

Fig. 5-3 illustrates representative localization of the BAs for FreeSurfer and task-optimal

template. We note that the task-optimal boundaries (red) tend to be in better visual

agreement with the ground truth (yellow) boundaries, such as the right hemisphere BA44

and BA45.

Interpreting the Template

Fig. 5-4 illustrates an example of learning a task-optimal template for localizing BA2.

Fig. 5-4(a) shows the initial cortical geometry of a template subject with its corresponding

BA2 in black outline. In this particular subject, the postcentral sulcus is more prominent

than the central sulcus. Fig. 5-4(b) shows the cortical geometry of a test subject together

with its BA2. In this subject, the central sulcus is more prominent than the postcentral sul-

cus. Consequently, in the uniform-weights method, the central sulcus of the test subject is

incorrectly mapped to the postcentral sulcus of the template, so that BA2 is misregistered.

Fig. 5-4(a) shows the BA2 of the test subject (green) overlaid on the cortical geometry of the

template subject after registration to the initial template geometry. During task-optimal

training, our method interrupts the geometry of the postcentral sulcus in the template be-

cause the uninterrupted postcentral sulcus in the template is inconsistent with localizing

BA2 in the training subjects. The final template is shown in Fig. 5-4(c). We see that the

BA2 of the subject (green) and the task-optimal template (black) are well-aligned, although

there still exists localization error in the superior end of BA2.
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Figure 5-3: Representative BA localization in 90 trials of leave-two-out for FreeSurfer and
task-optimal template. Yellow indicates ground truth boundary. Green indicates FreeSurfer
prediction. Red indicates Task-Optimal prediction. The representative samples were se-
lected by finding subjects whose localization errors are close to the mean localization errors
for each BA. Furthermore, for a given BA, the same subject was selected for both methods
to simplify the comparison.

In the next section, we turn our attention to a functional Magnetic Resonance Imaging

(fMRI) data set. Since the task-optimal template performed better than the task-optimal

weights, we will focus on the comparison between the task-optimal template and FreeSurfer

henceforth.

5.3.2 fMRI-MT+ Localization

We now consider the localization of fMRI-defined MT+ in 42 in-vivo subjects described in

Chapter 1.2.2.

92



!"#$%&'"()*+(

,"-'.&%(/0%,0/(

$1/'2,"-'.&%(/0%,0/(

3045",'()*+(

!"#$%&'()*'!*)(

+,)$-!"#$%&'()*'!*)(

.*/0"!$(123(

!"#$%&'($)*+,#-+&-#,

&'($)*+,#-+&-#,

(a) Initial Template (b) Test Subject (c) Task-Optimal Template

Figure 5-4: Template estimation in the task-optimal framework improves localization of
BA2. (a) Initial cortical geometry of template subject with corresponding BA2 (in black).
(b) Cortical geometry of test subject with corresponding BA2 (in green). In (a), we also
show the BA2 of the test subject (in green) after registration to the intial template. (c)
Final cortical geometry of template subject after task-optimal training. BA2 of the test
subject (in green) after registration to the task-optimal template demonstrates significantly
better alignment with the BA2 of the template subject.
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Figure 5-5: Mean Hausdorff distances using ex-vivo MT to predict MT+ in in-vivo scans.

Ex-vivo MT Prediction of In-vivo MT+

In this experiment, we use each of the 10 ex-vivo subjects as a template and the remaining

9 subjects for training a task-optimal template for localizing MT. We then register each

task-optimal template to each of the 42 in-vivo subjects and use the template subject’s

MT to predict that of the test subjects’ MT+. The results are 420 Hausdorff distances for

each hemisphere. For FreeSurfer, we align the 42 in-vivo subjects to the Buckner40 atlas.

Once registered in this space, we can use MT of the ex-vivo subjects to predict MT+ of the

in-vivo subjects.

Fig. 5-5 reports the mean and standard errors of the Hausdorff distances for both meth-

ods on both hemispheres. Once again, we find that the task-optimal template signifi-

93



cantly outperforms the FreeSurfer template. We note that the errors in the in-vivo subjects

(Fig. 5-5) are significantly worse than those in the ex-vivo subjects (Fig. 5-1). This is not

surprising since functionally defined MT+ is slightly different from cytoarchitectonically de-

fined MT. Furthermore, the ex-vivo surfaces tend to be noisier and less smooth than those

acquired from in-vivo subjects [183]. Since our framework attempts to leverage domain

specific knowledge about MT from the ex-vivo data, one would expect these mismatches

between the data sets to be highly deterimental to our framework. Instead, FreeSurfer

appears to suffer more than our framework.

In-vivo MT Prediction of In-vivo MT+

To understand the effects of the training set size on localization accuracy, we perform

cross-validation within the fMRI data set. For each randomly selected template subject,

we consider 9, 19 or 29 training subjects. The resulting task-optimal template is used to

register and localize MT+ in the remaining 32, 22 or 12 test subjects respectively. The

cross-validation trials were repeated 100, 200 and 300 times respectively, resulting in a

total of 3,200, 4,400 and 3,600 Hausdorff distances. This constitutes thousands of hours

of computation time. For FreeSurfer, we perform a pairwise prediction of MT+ among

the in-vivo subjects after registration to the Buckner40 atlas, resulting in 1,722 Hausdorff

distances per hemisphere.

Fig. 5-6 reports the mean and standard errors of the Hausdorff distances for FreeSurfer

and task-optimal template on both hemispheres. We see that the FreeSurfer alignment

errors are now commensurate with the ex-vivo results (Fig. 5-1). However, the task-optimal

template still outperforms FreeSurfer. We also note that the accuracy of MT+ localization

improves with the size of the training set. The resulting localization error with a training

set of 29 subjects is less than 7mm for both hemispheres. For all training set sizes, the

localization errors are also better than the ex-vivo MT experiment (Fig. 5-1).

5.4 Discussion and Future Work

Since our measure of localization accuracy uses the mean Hausdorff distance, ideally we

should incorporate it into our task-specific objective function instead of the SSD on the

distance transform representing the BA. Unfortunately, the resulting derivative is difficult

to compute. Furthermore, the gradient will be zero everywhere except at the BA boundaries,

causing the optimization to proceed slowly. On the other hand, it is unclear how aligning

the distance transform values far from the boundary helps to align the boundary. Since

distance transform values far away from the boundary are larger, they can dominate the

task-specific objective function g. Consequently, we utilize the distance transform over the

entire surface to compute the gradient, but only consider the distance transform within the
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Figure 5-6: Plot of mean hausdorff errors for MT+ from cross-validation of the fMRI data
set using either FreeSurfer or in-vivo trained task-optimal template. For the task-optimal
framework, we tried different number of training subjects. Test errors decrease as we go
from 9 to 19 to 29 training subjects.

boundary of the template BA when evaluating the task performance criterion g.

The idea of using multiple atlases for segmentation has gained recent popularity [72, 131,

132, 136, 139]. While we have focused on building a single optimal template, our method

can complement the multi-atlas approach. For example, one could simply fuse the results

of multiple individually-optimal templates for image segmentation. A more ambitious task

would be to optimize for multiple jointly-optimal templates for segmentation.

In this work, we select one of the training subjects as the template subject and use the

remaining subjects for training. The task-specific cost function g evaluates the localiza-

tion of the hidden labels via the template subject. Appendix C.3 describes an alternative

groupwise formulation, where the task-specific cost function g is modified to minimize the

variance of the distance transforms across training subjects after registration. In this case,

a reasonable template initialization is the average geometry of the training subjects. How-

ever, our initial experiments in the ex-vivo data set do not seem to suggest an improvement

in task performance even in the training set beyond the initial average template.

There are two possible reasons for this. First, it may be that only stable cortical folds are

predictive of cytoarchitectonics. Therefore, a simple average template could be sufficiently

optimal for localizing Brodmann areas. If true, this is a non-trivial neuroscientific finding.

Furthermore, previous arguments for unbiased anatomical templates are based on the goal of

reducing anatomical bias towards any particular subject [16, 86, 180]. Our finding indicates

that anatomical bias leads to poor BA and functional overlap and could provide further

impetus for the use of unbiased anatomical templates. A second reason might come from

the fact that we are only using an approximate gradient rather than the true gradient for

gradient descent. Previous work [186] has shown that while using an approximate gradient
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can lead to reasonable solutions, using the exact gradient can lead to substantially better

local minima. Computing the exact gradient is a challenge in our framework. We leave

exploration of efficient means of computing better approximations of the gradient to future

work.

While this chapter focuses mostly on localization of hidden labels, different instantiations

of the task-specific cost function can lead to other applications. For example, in group

analysis, the task-specific cost function could maximize differences between diseased and

control groups, while minimizing intra-group differences, similar to a recent idea proposed

for discriminative Procrustes alignment [98].

5.5 Summary

In this chapter, we presented a framework for optimizing the parameters of any smooth

family of registration cost functions, such as the image dissimilarity-regularization tradeoff,

with respect to a specific task. The only requirement is that the task performance can

be evaluated by a smooth cost function. We demonstrated state-of-the-art localization

of Brodmann areas and fMRI-defined functional regions by optimizing the weights of the

wSSD image-similarity measure and estimating an optimal cortical folding template. We

believe this work presents an important step towards the automatic selection of parameters

in image registration. The generality of the framework also suggests potential applications

to other problems in science and engineering formulated as optimization problems.
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Chapter 6

Conclusions

In this thesis, we argued that the notion of “correct registration” makes sense only within

the context of an application. Furthermore, we demonstrated that by taking into account

the application when performing registration, we can improve the application performance.

In Chapter 3, we presented a generative model for joint registration and segmentation

images. The atlas construction process naturally arises as estimation of the model parame-

ters. The model allows for computation of unbiased atlases, as well as the joint registration

and segmentation of new images consistent with the atlas construction. We demonstrated

improvement in segmentation accuracy over the widely used FreeSurfer software that em-

ploys sequential registration and segmentation to parcellate the cerebral cortex into different

gyral units.

In Chapter 4, we developed the Spherical Demons algorithm for fast registration of

spherical images. By improving on warp parameterization and regularization, Spherical

Demons is easily an order of magnitude faster than FreeSurfer while being as accurate for

registering spherically parameterized cortical surfaces.

The fast nature of the Spherical Demons algorithm allows for its (partial) incorporation

into the meta-registration algorithm developed in Chapter 5. The task-optimal registration

framework learns the parameters of registration cost function specific to a particular appli-

cation. The algorithm allows for the optimization of registration parameters to improve the

alignment of a new image as measured by an application-specific performance measure.

Traditionally, registration has been considered a pre-processing step. Much work has

been devoted to developing generic registration algorithms, which are then specialized to

particular imaging modalities (e.g., MR, CT, histology, etc.), particular imaging targets

(e.g., cardiac, brain, etc.) and particular post-registration analysis (e.g., segmentation,

voxel-based morphometry, functional group analysis, etc.). The task-optimal framework

provides a principled method for adapting these generic algorithms to specific applications.

For example, we have demonstrated the estimation of weights or template of the generic

weighted Sum of Squared Differences (wSSD) dissimilarity measure that are optimal for
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localizing underlying cytoarchitecture and functional regions of the cerebral cortex.

6.1 Future Directions

Throughout the thesis, we discussed specific avenues of future research. We now sketch out

broad outlines of two future directions of research:

1. Generative Modeling. In the past five years, there has been a flurry of activities

in the development of generative models for medical image registration beyond the

simple deformable template with Gaussian noise model [2, 12, 136, 165, 195]. These

include our work on joint registration and segmentation using single [180] or multi-

ple templates [138, 139]. Compared with other models, generative models have the

advantages of explicit declaration of prior assumptions and beliefs.

While this thesis has focused on neuroanatomical registration, we would like to turn

our attention to the development of template construction algorithms in other “less

developed” imaging modalities (e.g., DTI or rest-state fMRI) and multimodal image

registration (e.g., jointly modeling both macro-anatomy and DTI, both fMRI and DTI,

both fMRI and genetics, etc.). Each of these areas have common and unique challenges

that we believe probabilistic modeling has a significant possibility of resolving.

2. Task-Optimal Applications. Two unresolved theoretical issues in the task-optimal

framework (Chapter 5) are the characterization of local minima and the generalization

properties of the training. As discussed in Chapter 5.1, local minima with singular

Hessian present a problem for our gradient descent algorithm. Perhaps a different

theoretical characterization of such local minima may result in a better algorithm.

Secondly, according to learning and regularization theory [52, 166], an important

condition for training to generalize to testing is the smoothness of the underlying

space. However, the space of local minima is only smooth at local minima with positive

definite Hessian. Therefore, although we do observe generalization in practice, it is

unclear theoretically why the parameters learned during training should generalize to

new images.

An important practical issue is the use of the approximate gradient for optimizing

the task-optimal learning algorithm. While the approximate gradient appears mostly

effective in optimizing the task-optimal cost function, experiments in Appendix C

suggest that the approximation might not be sufficiently accurate for certain instan-

tiations of the cost function. Furthermore, our previous work on DTI registration

suggests that in practice, using an exact gradient can lead to much better local mim-

ima than an approximate gradient [185, 186]. Therefore, there is a need to carefully

investigate the use of the actual gradient, despite its computational complexities. An
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alternative is to consider other practical optimization algorithms that do not require

the computation of a gradient.

Despite the need for further research, we believe that we have amply demonstrated the

promises of the task-optimal framework. We are interested in applying the algorithm

to application other than segmentations. For example, it might be useful to estimate

an optimal template to discriminate two population groups. The template can then

be applied to characterize group differences on a new data set. Because the framework

applies to generic nonlinear optimization problems, we are also interested in exploring

its applications in other engineering and scientific domains.
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Appendix A

Joint Registration-Segmentation

Appendix

A.1 Mean Field Derivation

The mean-field approximation uses a variational formulation [79], where we seek to minimize

the KL-divergence (denoted by D(·||·)) between q(L̂) =
∏

i bi(L̂i) and p(L̂|I(R(t)({xi}));Aα):

{b∗
i } = argmin

{bi}
D(q(L̂)||p(L̂|I(R(t)({xi}));Aα)) (A.1)

This results in a fixed-point iterative solution. Since this is a fairly standard derivation [79],

we only provide the final update:

bi(m) ∝ e
Ui(m)+log p(I(R(t)(xi))|bLi=m;Aα)+

P
j∈Ni

P
bLj

bj(bLj)[V (m,bLj)+V (bLj ,m)]
(A.2)

where bi is normalized to be a valid probability mass function.

A.2 Implementation Details

We now present some implementation details for completeness.

We first discuss the estimation of the atlas Aα defined by {Ui, V,Wi} in Eq. (3.20) and

Eq. (3.21) from the maximum likelihood function Eq. (3.7). In our model, estimating Ui and

V is hard in practice, since evaluating Eq. (3.7) requires computing the NP-hard partition

function. Instead, we use frequency counts to estimate the clique potentials, similar to

FreeSurfer [60].

• In our implementation, the singleton potential Ui is a row vector of length M and Ln
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is a column indicator vector. We set

Ui = log
1

N

∑

n

LT
n (Rn(xi)), (A.3)

where (·)T indicates transpose.

• The pairwise potential V is a M × M matrix. Following [60], we set

V = log
1

2NE

∑

n

∑

i

∑

j∈Ni

Ln(Rn(xi))L
T
n (Rn(xi)), (A.4)

where E is the number of edges in the atlas mesh. More rigorous methods of optimizing

the clique potentials through iterative proportional fitting [83] would further improve

the clique potential estimates.

• The likelihood potential Wi is a row vector of length M defined at each vertex. The m-

th entry of Wi corresponds to the likelihood of observing a particular image intensity

or vectors of intensity (in our case, the local surface geometries) at location R(xi) given

a particular label m. While we might be observing multiple geometric features at any

vertex, the likelihood of these features is combined into the row vector Wi. We use

maximum likelihood estimates of the mean and variance of the Gaussian distribution

of cortical geometries conditioned on the segmentation labels to parameterize this

distribution. In this work, we use the mean curvature of the original cortical surface

and average convexity, which is a measure of sulcal depth [59], as intensity features.

At spatial locations where there is no training data for a particular label, it is unclear

what the value of the entry in W should be since it is spatially varying. We simply

assume a mean of zero and a large variance, essentially being agnostic to the value of

intensity we observe. A more sophisticated method would involve the use of priors on

the atlas parameters, so that the atlas parameters become random. In that case, when

there are no observations, the maximum likelihood estimates of the atlas parameters

become the priors.

Secondly, we discuss the registration of a training image to an atlas (Eq. (3.22)) and the

new image registration (Eq. (3.24)).

• The registration warp R is a map from a 2-Sphere to a 2-Sphere. We represent R as a

dense displacement field. In particular, each point xi has an associated displacement

vector ui tangent to the point xi on the sphere. R(xi) maps xi to xi + ui normalized

to be a point on the sphere.

• To interpolate (for example the mean curvature of a cortical surface onto R(xi)),

we first find the intersection between the vector R(xi) and each planar triangle of
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the spherically mapped cortical surface. We then use barycentric interpolation to

interpolate the values at the vertices of the mesh onto R(xi).

• The above two bullets completely specify the computation of the atlas co-registration

objective function Eq. (3.22) and the new subject registration function Eq. (3.24). This

allows us to compute the gradients of the objective function via the chain rule.

• We use conjugate gradient ascent with parabolic line search [125] on a coarse-to-fine

grid. The coarse-to-fine grid comes from the representation of the atlas as a subdivided

icosahedron mesh.

• The final segmentation is obtained by selecting for each vertex the label with the

highest posterior probability.

• To satisfy F (R), the regularization that induces invertibility, we ensure that no step

in the line search results in folded triangles. Unfortunately, in practice, this results

in many small steps. It is much more efficient to perform the line search without

considering F (R), and then unfold the triangles using F (R) after the line search. In

general, we find that after unfolding, the objective function is still better than the

previous iteration. This unfolding process can be expensive for small smoothness

parameter S (S ≤ 0.1), resulting in long run times of about 1.5 hours per subject per

atlas for S ≤ 0.1.
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Appendix B

Spherical Demons Appendix

B.1 Step 1 Gradient Derivation

In this appendix, we provide details on the computation of the spatial gradient of the

warped moving image M ◦Υ(t) and the Jacobian of the deformation Υ(t). We also compute

the gradients of the demons cost function using the derivatives computed in Eq. (4.20) and

Eq. (4.21), assuming the l2 inner product space for vector fields and the canonical metric.

B.1.1 Computing Spatial Gradient of M ◦ Υ(t)

In this appendix, we discuss the computation of mT
n , the spatial gradient of the warped

moving image M ◦Υ(t) at the point xn. We can think of M ◦Υ(·) as an image MΥ , M ◦Υ

defined on the mesh vertices {xn}. This image is made continuous by the choice of an

interpolation method. In this work, we assume that we are working with a triangular mesh.

To evaluate MΥ at a point x ∈ S2, we first find the triangle that contains the intersection

between the vector representing the point x (i.e., the vector between the center and the

point x of the sphere) and the mesh. The image value at x is then given by the barycentric

interpolation of the image values at the intersection point. Mathematically, we can write

MΥ(x) = I(p(x)), (B.1)

where p(x) is the intersection point and I(·) is the barycentric interpolation. Let p1, p2, p3

denote the vertices of the triangle containing p(x) and ~n denote the 3× 1 normal vector to

the triangle. Since p(x) = αx for some α and 〈p(x) − p1, ~n〉 = 0, we can write

p(x) =
〈p1, ~n〉
〈x, ~n〉 x (B.2)
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and

I(p) =
A1(p)MΥ(p1) + A2(p)MΥ(p2) + A3(p)MΥ(p3)

A
, (B.3)

where A1(p), A2(p) and A3(p) are the areas of the triangles △pp2p3, △pp1p3 and △pp1p2

respectively. Note that A = A1(p) + A2(p) + A3(p). MΥ(p1),MΥ(p2) and MΥ(p3) are the

image values at the mesh vertices p1, p2 and p3 respectively.

Computing the derivative of the image value at x follows easily from the chain rule:

∂p(x)

∂x
=

〈p1, ~n〉
〈x, ~n〉 I3×3 −

〈p1, ~n〉
〈x, ~n〉2 x~nT (B.4)

∂I(p)

∂p
=

∇pA1(p)MΥ(p1) + ∇pA2(p)MΥ(p2) + ∇pA3(p)MΥ(p3)

A
, (B.5)

where ∇pAi(p) is the derivative of the triangle area Ai. For example, ∇pA1(p) is a 1 × 3

vector in the plane of the triangle pp2p3, perpendicular and pointing to the edge p2p3, with

magnitude half the length of p2p3. Combining Eq. (B.4) and Eq. (B.5) gives the spatial

gradient of the warped moving image.

A complication arises when x corresponds to one of the mesh vertices, since the spatial

gradient is not defined in this case. The same problem arises in Euclidean space with linear

interpolation and the spatial gradient is typically defined via finite central difference. It is

unclear what the equivalent definition on a mesh is. Here, for a mesh vertex x, we compute

the spatial gradient for each of the surrounding triangles and linearly combine the spatial

gradients using weights corresponding to the areas of the triangles.

B.1.2 Computing the Jacobian of Deformation Υ(t)

In this appendix, we discuss the computation of ST
n , the Jacobian of the deformation Υ(t)

at xn. We can think of Υ(t) as a vector function on S2 that maps each mesh vertex {xn}
to a new point on the sphere. This vector image is made continuous by the choice of an

interpolation method. We use the same interpolation as in Appendix B.1.1, except we need

to normalize the barycentric interpolation so that the interpolated point is constrained to

be on the sphere:

Υ(t)(x) = I(p(x)) (B.6)

where p(x) is the same as in the previous section and

I(p) =
A1(p)Υ(t)(p1) + A2(p)Υ(t)(p2) + A3(p)Υ(t)(p3)

‖A1(p)Υ(t)(p1) + A2(p)Υ(t)(p2) + A3(p)Υ(t)(p3)‖
(B.7)

The Jacobian is computed via chain rule, just like in the previous section.
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B.1.3 Computing the Gradients from the Derivatives

In this appendix, we seek to compute the gradients of fn(~z) , F (xn) − M ◦ {Υ(t) ◦
exp({En~zn})}(xn) and gn(~z) , ~Υ

(t)
n + G2

n{Υ(t) ◦ exp({En~zn})}(xn), assuming a l2 inner

product for vector fields and the canonical metric R for S2. These assumptions imply that

the inner product of two vector fields ~z1 = {~z1
k} and ~z2 = {~z2

k} are given by

〈~z1, ~z2〉l2 = 〈{Ek~z
1
k}, {Ek~z

2
k}〉l2 (B.8)

=

N∑

k=1

〈Ek~z
1
k, Ek~z

2
k〉R (B.9)

=

N∑

k=1

〈~z1
k, ~z2

k〉R, (B.10)

where

• Eq. (B.8) follows from the equivalence of the tangent bundles TR
2 and TS2 induced

by the coordinate charts {Ψn}.

• Eq. (B.9) is the result of the l2 assumption that the inner product of vector fields is

given by the sum of the inner product of individual vectors.

• Because we assume the canonical metric, each term in the inner product in Eq. (B.9)

is simply the usual inner product between 3 × 1 vectors Ek~z
1
k and Ek~z

2
k. Since the

columns of Ek are orthonormal with respect to the usual inner product and using

linearity of the inner product, Eq. (B.9) implies Eq. (B.10), i.e., the inner product

〈~z1, ~z2〉l2 can be computed by the sum of the usual inner product between 2 × 1

tangent vectors ~z1
k and ~z2

k.

Let dfn(~z) be the directional derivative of fn for any ~z = {~zk}. The directional derivative

is independent of the choice of metric. Since the derivative of fn(~z) with respect to ~zk is a

1 × 2 vector −~mT
nEnδ(k, n) (Eq. (4.20)), we get

dfn(~z) = −~mT
nEn~zn. (B.11)

Recall that the gradient ∇l2fn of fn(~z) is defined to be a tangent vector field such that

dfn(~z) = 〈∇l2fn, ~z〉l2 for any ~z = {~zk}. The gradient is therefore dependent on the choice
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of the inner product. From Eq. (B.10) and Eq. (B.11), we can write

−~mT
nEn~zn = dfn(~z) (B.12)

= 〈∇l2fn, ~z〉l2 (B.13)

=
N∑

k=1

〈∇l2fn(xk), ~zk〉R . (B.14)

Therefore, the gradient ∇l2fn can be written as a 2N × 1 vector consisting of N blocks of

2 × 1 vectors, where all the blocks are zeros, except the n-th block is equal to −ET
n ~mn.

Similarly, we denote the gradient of gn(~z) as ∇l2gn(j) for j = 1, 2, 3 corresponding

to the 3 output components of gn(~z). The derivative of ∇gn with respect to ~zk is a 3 × 2

matrix G2
nST

n Enδ(k, n) , [~a1n ~a2n ~a3n]T δ(k, n) (Eq. (4.21)), where ~aT
jnδ(k, n) is a 1×2 vector

corresponding to the derivative of the j-th component of gn with respect to ~zk. Using the

same derivation as before, we can show that ∇l2gn(j) can be written as a 2N × 1 vector

consisting of N blocks of 2× 1 vectors, where all the blocks are zeros, except the n-th block

is equal to ~ajn.

B.2 Approximating Spline Interpolation with Iterative Smooth-

ing

In this appendix, we demonstrate empirically that iterative smoothing provides a good

approximation of spherical vector spline interpolation for a relatively uniform distribution

of points corresponding to those of the subdivided icosahedron meshes used in this work.

Once again, we work with spheres that are normalized to be of radius 100.

Recall that we seek {~Υn} = {EnΥn}, which is a smooth approximation of the input

vector field {~Γn} = {EnΓn}. The solution of the spherical vector spline interpolation

problem is given in Eq. (4.32) as

Υ̂ = K

(
σT

x

σ2
T

I2N×2N + K

)−1

Γ̂, (B.15)

where K is a 2N × 2N matrix consisting of N × N blocks of 2 × 2 matrices: the (i, j)

block corresponds to k(xi, xj)Txi,xj
. Txi,xj

is the parallel transport operator from xi to xj .

k(xi, xj) is a non-negative scalar function uniquely determined by the choice of the energetic

norm that monotonically decreases as a function of the distance between xi and xj.

In constrast, the iterative smoothing approximation we propose can be formalized as

follows:

Υ̂ = (K ′)mΓ̂ (B.16)
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where m is a positive integer and K ′ is a 2N ×2N matrix consisting of N ×N blocks of 2×2

matrices: the (i, j) block corresponds to λ(xi, xj)Txi,xj
if xi and xj are neighboring vertices

and is a zero matrix otherwise. λ(xi, xi) = 1
1+|Ni| exp(− 1

2γ
)

and λ(xi, xj) =
exp(− 1

2γ
)

1+|Ni| exp(− 1
2γ

)
for

i 6= j, where |Ni| is the number of neighboring vertices of xi.

B.2.1 Reverse Engineering the Kernel

We now demonstrate empirically that for a range of values of γ, iterations m and the rela-

tively uniform distribution of points corresponding to those of the subdivided icosahedron

mesh, there exist kernels k(xi, xj) that are well approximated by iterative smoothing. Tech-

nically, the resulting k(xi, xj) might not correspond to a true choice of the energetic norm.

However, in practice, this does not appear to be a problem.

More specifically, given a configuration of mesh points, iterations m and value of γ, we

seek k̃(xi, xj), such that K
(

σT
x

σ2
T

I2N×2N + K
)−1

is “close” to (K ′)m. We propose a two-stage

estimation of k̃(xi, xj):

1. In the first stage, we seek k∗(xi, xj) that is not constrained to be a function of the

distance between xi and xj, such that

K

(
σT

x

σ2
T

I2N×2N + K

)−1

− (K ′)m ≈ 0 (B.17)

Rearranging the terms, we get

(
I2N×2N − (K ′)m

)−1
(K ′)m

σ2
x

σ2
T

≈ K (B.18)

To make the “≈” concrete, we optimize for

k∗ = argmin
k

∥∥∥∥K −
(
I2N×2N − (K ′)m

)−1
(K ′)m

σ2
x

σ2
T

∥∥∥∥
2

F

(B.19)

where ‖ · ‖F is the Frobenius norm.

The cost function Eq. (B.19) can be optimized componentwise, i.e., we can solve for

k∗(xi, xj) for each pair xi, xj . For γ = 1, m = 10 and a subdivided icosahedron mesh

with 642 vertices, we plot the resulting k∗(xi, xj) as a function of the geodesic distance

between xi and xj in Fig. B-1.

2. In the second stage, we perform a least-squares fit of a b-spline function to the es-

timated k∗(xi, xj) to obtain the final estimate of k̃(xi, xj). Fig. B-1 illustrates an

example kernel k̃(xi, xj) we obtain (c.f., the kernel illustrated in [67]). We note that

an alternative to b-spline interpolation is to fit the coefficients of the general kernel
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Figure B-1: Approximating the kernel function k(xi, xj). The scattered points corresponds
to the estimation of k∗(xi, xj) via Eq. (B.19). The red curve corresponds to fitting the
scattered points so that k̃(xi, xj) is strictly a function of the geodesic distance between xi

and xj.

function suggested in Appendix A of [67]. This will guarantee that the estimated

kernel corresponds to an energetic norm. We leave exploring this direction to future

work.

B.2.2 Evaluating Approximation

We now investigate the quality of the estimate k̃(xi, xj) by computing:

∥∥∥∥∥K
(

σT
x

σ2
T

I2N×2N + K

)−1

− (K ′)m

∥∥∥∥∥

2

2

(B.20)

where ‖ · ‖2 is the l2 matrix operator norm. The difference metric Eq. (B.20) measures the

maximum l2 difference between smoothed vector fields obtained from iterative smoothing

and spherical vector spline interpolation for any possible input vector field {~Γn} of unit

l2 norm, i.e.,
∑

n ‖~Γn‖2 = 1. We note that k̃(xi, xj) can be in principle estimated by

minimizing Eq. (B.20) instead of the proposed 2-stage process. However, the optimization

is difficult since evaluating the cost function itself requires finding the largest singular value

of a large, non-sparse matrix.

Fig. B-2 displays the difference metric we obtained with different values of γ and iter-

ations m for meshes ic2, ic3, ic4 and ic5. Each of the meshes is obtained from recursively

subdividing a lower resolution mesh: ic2 indicates that the mesh was obtained from subdi-

viding an icosahedron mesh twice. The number of vertices quadruples with each subdivision,

so that ic5 corresponds to 10,242 vertices.
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Figure B-2: Difference metric as a function of the number of iterations m and value of γ.

We conclude from the figure that the differences between the two smoothing methods

are relatively small and increase with mesh resolution. As discussed in the next section, we

run Spherical Demons on different mesh resolutions, including ic7. Unfortunately, because

of the large non-sparse matrices we are dealing with, we were only able to compute the

differences up to ic5. Computing the difference metric for ic5 took an entire week on a

machine with 128GB of RAM. However, the plots in Fig. B-2 indicate that the differences

appear to have converged by ic5.

To better understand the incurred differences, Fig. B-3 illustrates the outputs and differ-

ences of the two smoothing methods for different inputs on ic4. The first row illustrates an

input vector field which is zero everywhere except for a single tangent vector of unit norm.

The results of spline interpolation and iterative smoothing correspond to our intuition that

smoothing a single tangent vector propagates tangent vectors of smaller magnitudes to the

surronding areas. The two methods also produce almost identical results as shown by the

clean difference image in the fourth column.

The second row of Fig. B-3 demonstrates the worst unit norm input vector field as

measured by the difference metric Eq. (B.20). This worst unit norm input vector field

corresponds to the largest eigenvector in Eq. (B.20). The pattern of large differences cor-

respond to the original 12 vertices of the uniform icosahedron mesh. These original 12

vertices are the only vertices in the subdivided icosahedron meshes with five, instead of six

neighbors, as shown by the pentagon pattern. The fact that these 12 vertices are local max-

ima of differences suggest that these vertices are treated differently by the two smoothing

techniques.

The last row of Fig. B-3 demonstrates an input vector field that represents the deforma-

tion of an actual registration performed in Section 4.3. The norm of the input vector field

is 700 times that in the first two rows, but the discrepancies between spline interpolation

and iterative smoothing are less than expected. The differences of 90% of the vectors are

less than 0.2mm, with larger differences in the neighborhoods of the 12 vertices identified
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(a) Input (b) Spline Interpolation (c) Iterative Smoothing (d) Difference (e) l2 norm

Figure B-3: Comparison of spline interpolation and iterative smoothing (m = 10, γ = 1).
(a) Input vector field (b) Spline Interpolation Output (c) Iterative Smoothing Output (d)
Difference between the second and third columns (e) l2 norm of the difference. The first
row uses an input vector field which is zero everywhere except for a single tangent vector of
unit norm. Second row illustrates the worst unit norm input as measured by the difference
metric Eq. (B.20). The third row uses a vector field from an actual warped image from the
experimental section. Note that the input vector field in the first two rows are scaled down
for the purpose of display. The vector fields in the entire third row are of the same scale,
but are scaled down relative to the first two rows, since the vector field from the warped
image is substantially larger in magnitude than the unit norm inputs of the first two rows.
This explains the substantially larger difference metric on the third row.

previously. Since we conclude previously that the difference metric appears to have con-

verged after ic4, the discrepancies are likely to be acceptable at ic7, whose mesh resultion

is 1mm.

We should emphasize that the discrepancies between spline interpolation and iterative

smoothing do not necessarily imply registration errors. The differences only indicate the

deviations of the deformations from true local optima of the Demons registration cost func-

tion Eq. (4.1) assuming the estimated kernel. Approximating smoothing kernels by iterative

smoothing is an active area of research in medical imaging [35, 70]. Future work would in-

volve understanding the interaction between the number of smoothing iterations m and the

choice of the weights exp(− 1
2γ

) on the quality of the spherical registration.
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B.3 Atlas-Based Spherical Demons

In this section, we demonstrate how an atlas consisting of a mean image and a standard

deviation image can be incorporated into the Spherical Demons algorithm. The standard

deviation image replaces Σ in Eq. (4.1). We first discuss a probabilistic interpretation of the

Demons objective function and its relationship to atlases. We then discuss the optimization

of the resulting probabilistic objective function.

B.3.1 Probabilistic Demons Objective Function

The Demons objective function reviewed in Section 4.1 is defined for the pairwise regis-

tration of images. To incorporate a probabilistic atlas, we now reformulate the objective

function. Consider the following Maximum-A-Posteriori objective function:

(Υ∗,Γ∗) = argmax
Υ,Γ

log p(Γ,Υ, F,M) (B.21)

= argmax
Υ,Γ

log p(F,M |Γ,Υ)p(Γ|Υ)p(Υ) (B.22)

= argmax
Υ,Γ

log p(F,M ◦ Γ|Γ) + log p(Γ|Υ) + log p(Υ). (B.23)

Assuming a Gaussian noise model, we define

p(F,M ◦ Γ) =

N∏

n=1

1√
2π(σ(Γ, xn))

exp

(
−(F (xn) − M ◦ Γ(xn))2

(
√

2σ(Γ, xn))2

)
, (B.24)

log p(Γ|Υ) =
1

Z(σ2
x)

exp

(
− 1

σ2
x

N∑

n=1

‖~Υn − ~Γn‖2

)
, (B.25)

p(Υ) =
1

Z(σ2
T )

exp

(
− 1

σ2
T

Reg(Υ)

)
, (B.26)

where Reg(Υ) is defined via the energetic norm as discussed in Section 4.2.3 and for reasons

that will soon be clear, we are being purposefully agnostic about the form of σ(Γ, xn). The

objective function in Eq. (B.23) becomes

(Υ∗,Γ∗) = argmin
Υ,Γ

N∑

n=1

(F (xn) − M ◦ Γ(xn))2

(
√

2σ(Γ, xn))2
+

1

σ2
x

N∑

n=1

‖~Υn − ~Γn‖2 +
1

σ2
T

Reg(Υ) +
N∑

n=1

log σ(Γ, xn) ,

(B.27)

which is the instantiation of the Demons objective function Eq. (4.1), except for the extra

term
∑N

n=1 log σ(Γ, xn). Note that we have omitted the partition functions Z(σ2
x) and

Z(σ2
T ) because σx and σT are constant with respect to the deformations Γ and Υ. In

this probabilistic interpretation, the two regularization terms p(Γ|Υ) and p(Υ) act as a
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hierarchical prior on Γ, with the hidden transformation Υ as a hyperparameter.

As before, σ(Γ, xn) is the standard deviation of the intensity at vertex n. Given a set of

co-registered images, we can create an atlas by computing the mean intensity and standard

deviation at each vertex. To incorporate the atlas, we need to make the choice of treating

the atlas as the fixed or moving image. If we treat the atlas as the fixed image, then we set

F to be the mean image and σ to be the standard deviation. In this case, we do not need

to interpolate the mean or standard deviation image. Consequently, σ(Γ, xn) = σ(xn) and

log σ(Γ, xn) can be omitted from the optimization. The registration becomes identical to

the Spherical Demons algorithm for two images.

However, recent work [2, 140] suggests that treating the atlas as a moving image might be

more correct theoretically. This involves setting the moving image M to be the mean image.

In this case, σ(Γ, xn) = σ(Γ(xn)) is a function of Γ and we must include log(σ(Γ(xn))) in

the optimization. We performed experiments for both choices and found the results from

interpolating the atlas, i.e., treating it as a moving image, to be only slightly better than

interpolating the subject. However, interpolating the subject results in a faster algorithm,

whose computational time is less than 3 minutes. We report the results of interpolating the

atlas in the experimental section.

B.3.2 Optimization of Atlas-Based Spherical Demons

We now discuss the optimization in Eq. (B.27). Note that the introduction of the new term
∑N

n=1 log σ(Γ, xn) only affects Step 1 of the Spherical Demons algorithm. By parameterizing

Γ(t) = Υ(t) ◦ exp({En~zn}), we get

{~z(t)
n } = argmin

~zn

N∑

n=1

(F (xn) − M ◦ {Υ(t) ◦ exp({En~zn})}(xn))2
(√

2σ ◦ {Υ(t) ◦ exp({En~zn})}(xn)
)2

+
1

σ2
x

N∑

n=1

∥∥∥~Υ(t)
n + G2

n{Υ(t) ◦ exp({En~zn})}(xn)
∥∥∥

2

+

N∑

n=1

log σ ◦ {Υ(t) ◦ exp({En~zn})}(xn) (B.28)

, argmin
~zn

N∑

n=1

f2
n1(~z) + f2

n2(~z) + log fn3(~z). (B.29)

The second term is the same as before, while the first term has become more complicated.

Using the product rule and the techniques described in Appendix B.1, we can find the first

derivatives of the first and second terms and estimate their second derivatives using the

Gauss-Newton method. The difficulty lies in the third term, which is not quadratic and is

even strictly concave, so we have to make further approximations.

Consider the problem of optimizing a one-dimensional function f(x). Let the current
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estimate of x be x0. Newton’s optimization [125] involves the following update:

△x = −(f ′′)−1(x0)f
′(x0), (B.30)

where f ′(x0) and f ′′(x0) are the gradient and the Hessian of f evaluated at x0 respectively.

When f ′′ is negative (positive), the update △x increases (decreases) the objective function,

regardless of whether one is attempting to increase or decrease the objective function! The

Gauss-Newton approximation of the Hessian for minimizing non-linear quadratic functions

actually stabilizes the Newton’s method by ensuring the estimated Hessian is positive.

To optimize Eq. (B.29) with Newton’s method, we need to compute the gradient and

the Hessian. Because we are using the l2 inner product and the canonical metric (see

Appendix B.1.3), the gradient and the Hessian correspond to the first and second derivatives.

The first derivative or gradient corresponds to

∂f

∂~zk

= 2fn1(~z)
∂fn1

∂~zk

+ 2fn2(~z)
∂fn2

∂~zk

+
1

fn3

∂fn3

∂~zk

(B.31)

and the second derivative corresponds to

∂2f

∂~v
′2
k

= 2

(
∂fn1

∂~zk

)2

+ 2fn1(~z)
∂2fn1

∂~v
′2
k

+ 2

(
∂fn2

∂~zk

)2

+ 2fn2(~z)
∂2fn2

∂~v
′2
k

−
(

∂fn3

∂~zk

)2

+
1

fn3

∂2fn3

∂~v
′2
k

(B.32)

≈ 2

(
∂fn1

∂~zk

)2

+ 2

(
∂fn2

∂~zk

)2

−
(

∂fn3

∂~zk

)2

. (B.33)

where the last approximation was made using the Gauss-Newton method. Not surprisingly,

the third term corresponding to log is negative, which can introduce instability in the

Gauss-Newton update. Consequently, we drop the last term, resulting in:

∂2f

∂~v
′2
k

≈ 2

(
∂fn1

∂~zk

)2

+ 2

(
∂fn2

∂~zk

)2

. (B.34)

Note that the resulting update Eq. (B.30) is always in the direction of descent since the

estimated second derivative is always positive. Theoretically, it is necessary to do a line

search along the Gauss-Newton update direction to ensure convergence. In practice, we

find that the objective function decreases reliably for each full Newton’s step.

B.4 Numerics of Diffeomorphism

While v and Φv(x) = exp(v)(x) are technically defined on the entire continuous image

domain, in practice, v and u are represented by vector fields defined on a discrete set of

points in the image, such as at each pixel [152, 168] or control points [9, 21] or in our
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case, vertices of a spherical mesh. From the theories of ODEs [26], we know that the

integral curves or trajectories u(t) = Φtv(·) of a velocity field v(x, t) exist and are unique

if v(x, t) is Lipschitz continuous in x and continuous in t. This is true in both Euclidean

spaces and on manifolds. Uniqueness means that the trajectories do not cross, implying

that the deformation is invertible. Furthermore, we know from the theories of ODEs that

a Cr continuous velocity field v produces a Cr continuous deformation field. Therefore, a

sufficiently smooth velocity field results in a diffeomorphic transformation.

Since the velocity field v is stationary in the case of the one parameter subgroup of

diffeomorphisms, v is clearly continuous (and in fact C∞) in t. A smooth interpolation of

v is continuous in the spatial domain and is Lipschitz continuous if we consider a compact

domain, which holds since we only consider images that are closed and bounded.

To compute the final deformation of an image, we have to estimate exp(v) at least at the

set of image grid points. We can compute exp(v) by numerically integrating the smoothly

interpolated velocity field v with Euler integration. In this case, the estimate becomes

arbitrarily close to the true exp(v) as the number of integration time steps increases. With

a sufficiently large number of integration steps, we expect the estimate to be invertible and

the resulting transformation to be diffeomorphic.

The parameterization of diffeomorphisms by a stationary velocity field is popular due to

the “scaling and squaring” approach [8] for computing exp(v). Instead of Euler integration,

the “scaling and squaring” approach iteratively composes displacement fields. Because we

are working on the sphere S2, the “scaling and squaring” procedure discussed in [8] has to

be slightly modified:

Φ 1

2K v(x) =

{
Ψn

(
En

1

2K
v (xn)

)}

n=1,··· ,N

(B.35)

Φ 1

2K−1 v(x) = Φ 1

2K v

(
Φ 1

2K v (x)
)

...

Φv(x) = Φ 1
2
v

(
Φ 1

2
v (x)

)
, (B.36)

where Ψn is the local coordinate chart defined in Eq. (4.10), such that Ψn(0) = xn. Eq. (B.35)

differs from “scaling and squaring” in Euclidean space. En
1

2K v (xn) is the velocity vector

at the origin of R
2 corresponding to the velocity vector 1

2K v (xn) at xn. For large enough

K, we can approximate a particle at the origin to move to position En
1

2K v (xn) via the flow

of En
1

2K v (xn). Finally, the coordinate chart Ψn maps the point En
1

2K v (xn) back to the

sphere. The correctness of this process follows from the fact that the solution trajectories

of the ODEs of a vector field can be consistently transformed via the coordinate charts.

While “scaling and squaring” converges to the true answer as K approaches ∞ in the

continuous case, in the discrete case, composition of the displacement fields requires inter-
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polation of displacement fields, introducing errors in the process. In particular, suppose

Φt0v(x) and Φ2t0v(x) are the true trajectories found by performing an accurate Euler inte-

gration up to time t0 and 2t0 respectively. Then, there does not exist a trivial interpolation

scheme, so that Φ2t0v(x) = Φt0v(Φt0v(x)). In practice however, it is widely reported that

in R
2 and R

3, “scaling and squaring” tends to preserve invertibility even with rather large

deformations [9, 168].

As discussed in Appendix B.1.2, we employ barycentric interpolation, followed by nor-

malization to ensure the warp stays on the unit sphere. In practice, we find that the

resulting transformation is indeed diffeomorphic. Technically speaking, since we use linear

interpolation for the displacement field, the transformation is only homeomorphic rather

than diffeomorphic. This is because the transformation is continuous, but not differen-

tiable across mesh edges. However, we follow the convention of [8, 9, 168] who call their

transformation diffeomorphic even though they are homeomorphic.

117



118



Appendix C

Task-Optimal Appendix

C.1 Proof of Proposition 2

In this appendix, we prove Proposition 2 in Chapter 5. In the next section, we first

prove that the Hessian ∂2
v1

f(w0,Γ
∗(w0) ◦ δΓ(v1))

∣∣∣
v1=0

is equal to the mix-derivatives ma-

trix ∂2
v1,v2

f(w0,Γ
∗(w0) ◦ δΓ(v1) ◦ δΓ(v2))

∣∣∣
v1=v2=0

under the composition of diffeomorphisms

model [168, 183, 186]. We then complete the proof of Proposition 2.

C.1.1 Proof of the Equivalence between the Hessian and Mix-Derivatives

Matrix for the Composition of Diffeomorphisms Model

We will only provide the proof for when the image is defined in R
3 so as not to obscur the

main ideas behind the proof. To extend the proof to a manifold (e.g., S2), one simply need

to extend the notations and bookkeeping by the local parameterizing the velocity fields v1

and v2 using coordinate charts. The same proof follows.

Let us define some notations. Suppose the image and there are M voxels. Let ~x be

the R
3M rasterized coordinates of the M voxels. For conciseness, we define for the fixed

parameters w0,

p(~x) , f(w0,Γ
∗(w0)(~x)) (C.1)

Therefore p is a function from R
3M to R. Under the composition of diffeomorphisms model,

δΓ(v) is the diffeomorphism parameterized by the stationary velocity field v defined on the

M voxels, so that δΓ(v)(·) is a function from R
3M to R. To make the dependence of δΓ(v)

on v explicit, we define

Υ(v, ~x) , δΓ(v)(~x), (C.2)
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and so Υ is a function from R
3M × R

3M to R
3M . In other words, we can rewrite

∂2
v1

f(w0,Γ
∗(w0) ◦ δΓ(v1)) = ∂2

v1
p(Υ(v1, ~x)) (C.3)

and

∂2
v1,v2

f(w0,Γ
∗(w0) ◦ δΓ(v1) ◦ δΓ(v2)) = ∂2

v1,v2
p(Υ1(v1,Υ2(v2, ~x))). (C.4)

Now that we have gotten the notations out of the way, we will now show that

∂2
v1

p(Υ(v1, ~x))
∣∣∣
v1=0

= ∂2
v1,v2

p(Υ1(v1,Υ2(v2, ~x)))
∣∣∣
v1=v2=0

= ∂2
~xp(~x) (C.5)

Hessian. We first compute the 1 × 3M Jacobian via the chain rule

∂v1p(Υ(v1, ~x)) = (∂Υp) (∂v1Υ) . (C.6)

From the above equation, we can equivalently write down the j-th component of the 1×3M

Jacobian:

∂v1p(Υ(v1, ~x)) (j) =
∑

n

(∂Υnp)
(
∂

v
j
1
Υn
)

, (C.7)

where Υn and vj
1 denote the n-th and j-th components of Υ and v1 respectively. Now, we

compute the (i, j)-th component of the 3M × 3M Hessian using the product rule

∂2
v1

p(Υ(v1, ~x))
∣∣∣
v1=0

(i, j)

= ∂vi
1

∑

n

(∂Υnp)
(
∂

v
j
1
Υn
) ∣∣∣

v1=0
(C.8)

=
∑

n

[(
∂2

vi
1,Υnp

) (
∂

v
j
1
Υn
)

+ (∂Υnp)
(
∂2

vi
1v

j
1

Υn
)] ∣∣∣

v1=0
(C.9)

=
∑

n,k

(
∂2

ΥkΥnp
) (

∂vi
1
Υk
) (

∂
v

j
1
Υn
) ∣∣∣

v1=0
+
∑

n

(∂Υnp)
(
∂2

vi
1v

j
1

Υn
) ∣∣∣

v1=0
(C.10)

Because ∂v1Υ
∣∣∣
v1=0

is the identity matrix and the 1 × 3M Jacobian ∂v1p(Υ(v1, ~x))
∣∣∣
v1=0

=

(∂Υp) (∂v1Υ)
∣∣∣
v1=0

= 0 (because derivative is zero at local minimum), we get ∂Υp
∣∣∣
v1=0

= 0,

and so the second term in Eq. (C.10) is zero.

To simplify the first term of Eq. (C.10), we once again use the fact that ∂v1Υ
∣∣∣
v1=0

is

the identity matrix, and so the summand is zero unless k = i and n = j. Consequently,
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Eq. (C.10) simplifies to

∂2
v1

p(Υ(v1, ~x))
∣∣∣
v1=0

(i, j) = ∂2
ΥiΥjp (C.11)

or equivalently,

∂2
v1

p(Υ(v1, ~x))
∣∣∣
v1=0

= ∂2
~xp(~x) (C.12)

Mix-Derivatives Matrix. We first compute the 1 × 3M Jacobian via the chain rule

∂v2p(Υ1(v1,Υ2(v2, ~x)))
∣∣∣
v2=0

= (∂Υ1p) (∂Υ2Υ1) (∂v2Υ2)
∣∣∣
v2=0

(C.13)

= (∂Υ1p) (∂~xΥ1(v1, ~x)) . (C.14)

From the above equation, we can equivalently write down the j-th component of the 1×3M

Jacobian:

∂v2p(Υ1(v1,Υ2(v2, ~x)))
∣∣∣
v2=0

(j) =
∑

n

(
∂Υn

1
p
)

(∂~xjΥn
1 ) , (C.15)

Now, we compute the (i, j)-th component of the 3M ×3M mix-derivatives matrix using the

product rule

∂2
v1,v2

p(Υ1(v1,Υ2(v2, ~x)))
∣∣∣
v1=v2=0

(i, j)

= ∂vi
1

∑

n

(
∂Υn

1
p
)

(∂~xjΥn
1 )
∣∣∣
v1=v2=0

=
∑

n

[(
∂2

vi
1,Υn

1
p
)

(∂~xjΥn
1 ) +

(
∂Υn

1
p
) (

∂2
vi
1,~xjΥ

n
1

)] ∣∣∣
v1=v2=0
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=
∑

n,k

(
∂2

Υk
1 ,Υn

1
p
)(

∂vi
1
Υk

1

)
(∂~xjΥn

1 ) +
∑

n

(
∂Υn

1
p
) (

∂2
vi
1,~xjΥ

n
1

) ∣∣∣
v1=v2=0
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Like before, we have ∂Υp
∣∣∣
v1=v2=0

= 0, and so the second term is zero. Because ∂v1Υ
∣∣∣
v1=0

is the identity, ∂vi
1
Υn

1 is zero unless k = i. Since Υn
1 (v1 = 0, ~x) = ~x, ∂~xjΥn

1 is also equal to

zero unless n = j. Therefore, we get

∂2
v1,v2

p(Υ1(v1,Υ2(v2, ~x)))
∣∣∣
v1=v2=0

(i, j) = ∂2
Υi

1,Υj
1

p (C.18)

or equivalently,

∂2
v1,v2

p(Υ1(v1,Υ2(v2, ~x)))
∣∣∣
v1=v2=0

= ∂2
~xp(~x) (C.19)
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C.1.2 Completing the Proof of Proposition 2

We now complete the proof of Proposition2. Let h(w, v1) , ∂v2f(w,Γ∗(w0) ◦ δΓ(v1) ◦
δΓ(v2))

∣∣∣
v2=0

. Since δΓ(0) = Id, we have

h(w, v1)
∣∣∣
w0,0

= ∂v2f(w,Γ∗(w0) ◦ δΓ(0) ◦ δΓ(v2))
∣∣∣
v2=0

(C.20)

= ∂v2f(w,Γ∗(w0) ◦ δΓ(v2))
∣∣∣
v2=0

(C.21)

= 0 (C.22)

where the last equality comes from the definition of Γ∗(w0) being a local minimum for the

composition model.

Since the mix-derivatives matrix ∂v1h(w, v1)
∣∣
v1=0

is invertible by the positive-definite

assumption of this proposition, by the Implicit Function Theorem, there exists an ǫ > 0,

such that for all δw, ‖δw‖ < ǫ, there is a unique continuous function v∗(w0, δw), such that

h(w0 + δw, v∗(w0, δw)) = 0 and v∗(w0, 0) = 0. Furthermore, v∗(w0, δw) has the same order

of smoothness as f .

Let k(w, v1) = ∂2
v2

f(w,Γ∗(w0) ◦ δΓ(v1) ◦ δΓ(v2))
∣∣∣
v2=0

. Then k(w0, 0) is positive definite

at v1 = 0 by the assumption of the proposition. By the smoothness of derivatives and

continuity of eigenvalues, there exists a small neighborhood around (w0, v1 = 0) in which

the eigenvalues of k(w, v1) are all greater than zero. Therefore Γ∗(w0)◦δΓ(v∗(w0, δw)) does

indeed define a new local minimum close to Γ∗(w0).

C.2 Computing the derivative ∂wv∗

To compute ∂wv∗, we perform a Taylor expansion:

∂v2f(w,Γ∗ ◦ δΓ(v1) ◦ δΓ(v2))

∣∣∣∣
w0+δw,v1,v2=0

=
[
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1)
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=
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and rearranging the terms for v1 = v∗, we get

∂wv∗ = −
(
∂2

v1,v2
f(w,Γ∗ ◦ δΓ(v1) ◦ δΓ(v2))

)−1
∂2

w,v2
f(w,Γ∗ ◦ δΓ(v2))
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w0,v1=0,v2=0

(C.25)
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C.3 Groupwise Formulation of Task Performance G

In this appendix, we present an alternative groupwise formulation of the task performance G

and experiments on localizing Brodmann Areas (BAs). Here, our task is to define a common

coordinate system, such that the hidden labels of subjects aligned to this coordinate system

are tightly aligned. Consequently, we define the following task-performance that minimizes

the variance of the distance transforms across training subjects after registration:

G({Γ∗
k(w)}) =

∑

n

gn(Γ∗
k(w)) =

1

N − 1

∑

n

∑

k 6=n

∑

i

[Ln (Γ∗
n(xi)) − Lk (Γ∗

k (xi))]
2 . (C.26)

Given a test subject, we expect the test subject’s hidden label to be well-predicted by those

of the training subjects.

C.3.1 Optimizing Groupwise Task Performance G

Notice that in this case, the registration outputs {Γ∗
k} of the different subjects are coupled

across the different task-specific cost functions gn. Consequently, we have to modify the

gradient of the task-performance cost function presented in Eq. (5.16). To compute the

derivative of the task performance with respect to the parameters w, we apply the chain

rule to get

∂wG = −
∑

n

∂~v∗G(Γ∗
n ◦ δΓ(~v∗))∂2

w,~vfn(w,Γ∗
n ◦ δΓ(~v))

∣∣∣
w,~v=~v∗=0

. (C.27)

Since the registration cost function is the same as the pairwise formulation in Chapter 5.2,

the approximate derivative of the registration local minimum with respect to the parameters

−∂2
w,~vfn(w,Γ∗

n ◦ δΓ(~v))
∣∣∣
w,~v=0

is the same as before. We only need to concern ourselves with

∂~v∗G(Γ∗
n ◦ δΓ(~v∗))

∣∣∣
w,~v∗=0

:

∂~v∗G(Γ∗
n ◦ δΓ(~v∗))

∣∣∣
w,~v∗=0

=
2

N − 1
∂~v∗
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k 6=n

∑

i

[Ln (Γ∗
n ◦ δΓ(~v∗)(xi)) − Lk (Γ∗

k (xi))]
2
∣∣∣
w,~v∗=0

(C.28)

Once again, we represent ~v∗ as the collection {~v∗i }, where ~v∗i is a velocity vector at vertex xi.

Defining ∇Ln(Γ∗
n(xi))

T to be the 1 × 3 spatial gradient of the warped distance transform
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of the n-th subject Ln(Γ∗
n(·)) at xi, we get the 1 × 3 derivative

∂~v∗i
G(Γ∗

n ◦ δΓ(~v∗))
∣∣∣
w,~v∗=0

=
4

N − 1

∑

k 6=n

[Ln (Γ∗
n(xi)) − Lk (Γ∗

k (xi))]∇Ln(Γ∗
n(xi))

T (C.29)

= 4



Ln (Γ∗
n(xi)) −

1

N − 1

∑

k 6=n

Lk (Γ∗
k (xi))



∇Ln(Γ∗
n(xi))

T

(C.30)

Observe that Eq. (C.30) is the same (up to a factor of 2) as its pairwise counterpart Eq. (5.23)

by replacing the distance transform of the template subject with the average distance trans-

form of the other training subjects (k 6= n).

Therefore the derivative of the groupwise task performance G in Eq. (C.26) with respect

to the weights {λj} of the wSSD is given by substituting Eq. (C.30) and Eq. (5.27) into

Eq. (C.27). The derivative of the groupwise task performance G in Eq. (C.26) with respect

to the template T is given by substituting Eq. (C.30) and Eq. (5.31) into Eq. (C.27).

C.3.2 Brodmann Area (BA) Localization

We perform leave-one-out on the ten ex-vivo brains (from Chapter 5.3) to predict BA

localization. For each BA and each test subject, we use the remaining 9 subjects for

learning either the weights λj ’s or the template image T . Once the weights or template is

estimated, all the 10 subjects are registered to the learned template space and each of the

9 training subjects is used to predict the BA of the leave-one-out subject. This results in

a total of 90 Hausdorff distance per BA, per hemisphere for the entire experiment. Just

like in Chapter 5.3, the weights are initialized to 1 and the initial template image is that of

average of the 40 in-vivo subjects constituting the FreeSurfer Buckner40 atlas.

Fig. C-1 reports the resulting mean and standard errors of the Hausdorff distances of

V1, V2, BA2, BA44, BA45 and MT. The magenta and blue correspond to task-optimal

groupwise template and weights respectively. Baseline 1 corresponds to the use of global

weights of 1 and FreeSurfer Buckner40 template. We see that the task-optimal cost functions

are generally better than the baseline.

A second observation is that the optimal groupwise weights performs slightly better than

the optimal groupwise template. This is in contrast with the pairwise experiments in Chap-

ter 5.3, where the optimal pairwise template performs better than optimal pairwise weights.

Because baseline 1 is in general better than the uniform weights baseline in Chapter 5.3,

one might speculate that there is simply not much room for improvements with regards to

the template. Indeed, we find that training for the optimal groupwise template tends to

terminate more quickly than the training of the optimal groupwise weights. However, when

we plot the results of the optimal pairwise template from Chapter 5.3 in red in Fig. C-1, we
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Figure C-1: Mean Hausdorff distances for V1, V2, BA2, BA44, BA45 and MT.

find that the optimal pairwise template performs the best. This suggests that the average

template is a poor local minimum which our gradient descent algorithm is unable to escape

from, possibly because the approximation of the actual derivative in Eq. (5.13) leads to

premature termination of the gradient descent algorithm.
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[37] D. Collins, W. Baaré A. Zijdenbos, and A. Evans. Animal+insect: Improved cortical
structure segmentation. In Proceedings of the International Conference on Informa-
tion Processing in Medical Imaging, volume 1613 of LNCS, pages 210–223, 1999. 28

[38] D. Collins, AC. Evans, C. Holmes, and T. Peters. Automatic 3D segmentation of
neuro-anatomical structures from MRI. In Proceedings of the International Conference
on Information Processing in Medical Imaging, LNCS, pages 135–152, 1995. 28

[39] O. Commowick, R. Stefanescu, P. Fillard, V. Arsigny, N. Ayache, X. Pennec, and
G. Malandain. Incorporating statistical measures of anatomical variability in atlas-
to-subject registration for conformal brain radiotherapy. In Proceedings of the Interna-
tional Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI), volume 3750 of LNCS, pages 927–934, 2005. 32, 34

129



[40] M. De Craene, A. du Bois d’Aische, B. Macq, and S. Warfield. Multi-subject regis-
tration for unbiased statistical atlas construction. In Proceedings of the International
Conference on Medical Image Computing and Computer Assisted Intervention (MIC-
CAI), volume 3216 of LNCS, pages 655–662, 2004. 29

[41] D. Cremers, M. Rousson, and R. Deriche. A Review of Statistical Approaches to
Level Set Segmentation: Integrating Color, Texture, Motion and Shape. International
Journal on Computer Vision, 72(2):195–215, 2007. 25

[42] A. Dale, B. Fischl, and M. Sereno. Cortical Surface-Based Analysis I: Segmentation
and Surface Reconstruction. NeuroImage, 9(2):179–194, 1999. 18, 21, 22

[43] R. Desikan, F. Segonne, B. Fischl, B. Quinn, B. Dickerson, D. Blacker, R. Buckner,
A. Dale, R. Maguire, B. Hyman, M. Albert, and R. Killiany. An Automated Labeling
System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based
Regions of Interest. NeuroImage, 31(3):968–980, 2006. 19, 28, 37, 43, 51, 54, 68

[44] S. Dinggang and C. Davatzikos. HAMMER: Hierarchical Attribute Matching Mech-
anism for Elastic Registration. IEEE Transactions on Medical Imaging, 21(11):1421–
1439, 2002. 29

[45] M. Dubuisson and A. Jain. A Modified Hausdorff Distance for Object Matching.
In Proceedings of the 12th IAPR International Conference on Pattern Recognition,
volume 1, pages 566–568, 1994. 72, 88
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[158] A. Trouvé. Diffeomorphisms, Groups and Pattern Matching in Image Analysis. In-
ternational Journal on Computer Vision, 28(3):213–221, 1998. 64, 65

[159] Z. Tu, S. Zheng, A. Yuille, A. Reiss, R. Dutton, A. Lee, A. Galaburda, I. Dinov,
P. Thompson, and A. Toga. Automated Extraction of the Cortical Sulci Based on a
Supervised Learning Approach. IEEE Transactions on Medical Imaging, 26(4):541–
552, 2007. 19

[160] C. Twining, T. Cootes, S. Marsland, V. Petrovic, R. Schestowitz, and C. Taylor.
A Unified Information-Theoretic Approach to Groupwise Non-rigid Registration and

138



Model Building. In Proceedings of the International Conference on Information Pro-
cessing in Medical Imaging, volume 3565 of LNCS, pages 1611–3349, 2005. 29, 33

[161] C. Twining, R. Davies, and C. Taylor. Non-Parametric Surface-Based Regularisation
for Building Statistical Shape Models. In Proceedings of the International Conference
on Information Processing in Medical Imaging, volume 4584 of LNCS, pages 738–750,
2007. 32

[162] E. Tyrtyshnikov. A Brief Introduction to Numerical Analysis. Birkhäuser Boston,
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