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Abstract. Using image-based descriptors to investigate clinical
hypotheses and therapeutic implications is challenging due to the noto-
rious “curse of dimensionality” coupled with a small sample size. In
this paper, we present a low-dimensional analysis of anatomical shape
variability in the space of diffeomorphisms and demonstrate its benefits
for clinical studies. To combat the high dimensionality of the deforma-
tion descriptors, we develop a probabilistic model of principal geodesic
analysis in a bandlimited low-dimensional space that still captures the
underlying variability of image data. We demonstrate the performance
of our model on a set of 3D brain MRI scans from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database. Our model yields a more
compact representation of group variation at substantially lower compu-
tational cost than models based on the high-dimensional state-of-the-art
approaches such as tangent space PCA (TPCA) and probabilistic prin-
cipal geodesic analysis (PPGA).

1 Introduction

Shape analysis is critical for image-based studies of disease as it offers charac-
terizations of anatomical variability between different groups, or in the course
of a disease. Analysis of shape changes can provide new insights into the nature
of the disease and support treatment. For example, brain atrophy has been
identified in patients affected by neuro-degenerative diseases such as Parkin-
son’s, Huntington’s, and Alzheimer’s [5,10]. When combined with other clini-
cal information, characterization of shape differences between clinical cohorts
and a healthy population can be useful in predicting disease progression. Land-
marks [3], distance transforms [6,9], and medial cores [11] are examples of image-
based shape descriptors often used in medical image analysis. Most of these
descriptors require informative feature points or a segmented binary image as
input to the shape extraction procedure. In this paper, we focus on diffeomor-
phic transformations estimated from full images as a way to represent shape in
a group of images [12,14].

The high-dimensional nature of the data (e.g., a 1283 displacement grid as
a shape descriptor for a 3D brain MRI) presents significant challenges for the
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statistical methods when extracting relevant latent structure from image trans-
formations. The barriers for effective statistical analysis include (i) requiring
greater computational resources and special programming techniques for statis-
tical inference and (ii) numerous local minima. Two main ways of overcoming
this problem via data dimensionality reduction have been recently proposed in
the diffeomorphic setting. One is to perform statistical modeling of the transfor-
mations as a step that follows the estimation of deformations, for instance, by
carrying out principal component analysis (PCA) in the tangent space of diffeo-
morphisms (TPCA) [14]. An empirical shape distribution can be constructed by
using TPCA to estimate the intrinsic dimensionality of the diffeomorphic surface
variation [12]. Later, a Bayesian model of shape variability was demonstrated
to extract the principal modes after estimating a covariance matrix of transfor-
mations [7]. Alternatively, one could infer the principal modes of variation and
transformations simultaneously. Principal geodesic analysis (PGA) generalized
PCA to finite-dimensional manifolds and estimated the geodesic subspaces by
minimizing the sum-of-squared geodesic distances to the data [4]. This enabled
factor analysis of diffeomorphisms that treats data variability as a joint inference
problem in a probabilistic principal geodesic analysis (PPGA) [17]. While these
models were designed to find a concise low-dimensional space to represent the
data, the estimation must be performed numerically on dense image grids in a
high-dimensional space.

In contrast, we use the finite-dimensional representation of the tangent space
of diffeomorphisms [18] to investigate shape variability using bandlimited veloc-
ity fields as a representation. We call this approach low-dimensional probabilistic
principal geodesic analysis (LPPGA). We define a low-dimensional probabilis-
tic framework for factor analysis in the context of diffeomorphic atlas build-
ing. Our model dramatically reduces the computational cost by employing a
low-dimensional parametrization in the Fourier space. Furthermore, we enforce
the orthogonality constraints on the principal modes, which is computationally
intractable in high-dimensional models like PPGA [17]. We report estimated
principal modes in the ADNI brain MRI dataset [8] and compare them with the
results of TPCA and PPGA of diffeomorphisms in the full dimensional space.
The experimental results show that the low-dimensional statistics encode the
features of interest in the data, better capture the group variation and improve
data interpretability. Moreover, our model requires much less computational
resources.

2 Diffeomorphic Atlas Building with Geodesic Shooting

We first briefly review the mathematical background of diffeomorphic atlas
building in the setting of large deformation diffeomorphic metric mapping
(LDDMM) [1] with geodesic shooting [15,16].

We let J1, · · · , JN be the N input images that are assumed to be square
integrable functions defined on d-dimensional torus domain Ω = R

d/Zd (Jn ∈
L2(Ω,R), n ∈ {1, · · · , N}). We use I to denote the atlas template and φn to
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denote the deformation from template I to image Jn. The time-varying defor-
mation φn(t, x) : t ∈ [0, 1], x ∈ Ω is defined as the integral flow of time-varying
velocity field vn(t, x) in a reproducing kernel Hilbert space V :

d/dt φn(t, x) = vn(t, φn(t, x)).

The geodesic path of the deformation is uniquely determined by integrating
the Euler-Poincaré differential equation (EPDiff) [18] with an initial condition
of vn(t, x) at t = 0:

∂vn

∂t
= −K [

(Dvn)T mn + Dmn vn + mn div (vn)
]
, (1)

where D is the Jacobian matrix and ÷ is the divergence operator. The operator K
is the inverse of a symmetric, positive-definite differential operator L : V → V ∗

that maps a velocity field vn ∈ V to a momentum vector mn ∈ V ∗ such that
mn = Lvn and vn = Kmn. This process is known as geodesic shooting [15,16].

With a slight abuse of notation, we define φn = φn(1, ·), vn = vn(0, ·), allow-
ing us to drop the time index in the subsequent derivations. Geodesic shooting (1)
enables differentiation of the image differences with respect to the initial velocity
field, leading to a gradient decent minimization of the energy function

E(vn, I) =
N∑

n=1

1
2σ2

∥
∥Jn − I ◦ φ−1

n

∥
∥2

L2 + (Lvn, vn), (2)

where σ2 is the image noise variance. In this paper, we use L = (−αΔ + e)c,
where Δ is the discrete Laplacian operator, e is the identity matrix, c is a positive
scalar controlling smoothness, and α is a positive regularity parameter. The
notation (·, ·) denotes the pairing of a momentum vector with a tangent vector,
similar to an inner product.

It has been recently demonstrated that the initial velocity vn can be effi-
ciently captured via a discrete low-dimensional bandlimited representation in
the Fourier space [18]. We adopt this low-dimensional representation for statis-
tical shape analysis.

3 Generative Model

We build our generative model in the discrete finite-dimensional space Ṽ that
represents bandlimited velocity fields. Elements of this space ṽ ∈ Ṽ are complex-
valued vector fields in the Fourier domain that represent conjugate frequencies:
v = F ṽ, where F is the Fourier basis that maps from the frequency domain to
the image domain.

Let W̃ ∈ C
p×q be a matrix in the Fourier space whose q columns (q < N)

are orthonormal principal initial velocities in a low p-dimensional space (p � d),
Λ ∈ R

q×q be a diagonal matrix of scale factors for the columns of W̃ , and s ∈ R
q

be a vector that parameterizes the space of transformations. The initial velocity



Low-Dimensional Statistics of Anatomical Variability 169

is therefore represented as ṽ = W̃Λs in the low-dimensional space. Assuming
i.i.d. Gaussian noise on image intensities, we obtain

p(Jn | sn; W̃ , Λ, I, σ) = N (Jn ; I ◦ φ−1
n , σ2), (3)

where φn is a deformation that corresponds to the initial velocity vn = FW̃Λsn

in the image space, that is, d/dt φn = FW̃Λsn, and N (· ; μ, σ2) is a Gaussian
distribution with mean μ and variance σ2.

The prior on the loading coefficients sn is the combination of a Gaussian dis-
tribution N (0, e) (e is the identity matrix) with a complex multivariate Gaussian
distribution N (0, (L̃W̃T Λ2W̃ )−1) that ensures the smoothness of the geodesic
path. Similar to the L operator, L̃ : Ṽ → Ṽ ∗ is also a symmetric, positive definite
operator that maps a complex tangent vector ṽ ∈ Ṽ in the Fourier domain to
its dual momentum vector m̃ ∈ Ṽ ∗. For a D1 ×D2 ×D3 grid, the operator value
L̃d1d2d3 at location (d1, d2, d3) is given by

L̃d1d2d3 =
[
−2α

(
cos

2πd1
D1

+ cos
2πd2
D2

+ cos
2πd3
D3

− 3
)

+ 1
]c

,

and its inverse is L̃−1
d1d2d3

= K̃d1d2d3 . Finally, we formulate the prior as

p(sn | W̃ , Λ) = N (sn ; 0, (L̃W̃T Λ2W̃ )−1 + e). (4)

We now arrive at the posterior distribution of s1, · · · , sN

Q � log p(s1, · · · , sN |J1, · · · , JN ; W̃ , Λ, I, σ2)

=
N∑

n=1

log p(Jn | sn; W̃ , Λ, I, σ) + log p(sn | W̃ , Λ) + const.

=
N∑

n=1

−‖Jn − I ◦ φ−1
n ‖2L2

2σ2
− sT

n (L̃W̃T Λ2W̃ + e)sn

2
− dN

2
log σ + const. (5)

4 Inference

We use alternating gradient accent to maximize the posterior probability (5)
with respect to the model parameters θ = {W̃ , Λ, I, σ2} and latent variables
{s1, · · · , sN}.

By setting the derivative of Q with respect to I and σ to zero, we obtain
closed-form updates for the atlas template I and noise variance σ2:

I =
∑N

n=1 Jn ◦ φn|Dφn|
∑N

n=1 |Dφn|
, σ2 =

1
dN

N∑

n=1

‖Jn − I ◦ φ−1
n ‖2L2 .

To estimate the principal initial velocity basis W̃ , the scaling factor Λ, and
the loading coefficients {sn}, we follow the derivations in [18] and first obtain
the gradient of Q w.r.t. the initial velocity ṽn as follows:
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(i) Forward integrate the geodesic evolution equation (1) to generate time-
dependent diffeomorphic deformation φn(t, x).

(ii) Compute the gradient ∇ṽn
Q at time point t = 1 as

[∇ṽn
Q]t=1 = −K̃

[
1
σ2

(Jn − I ◦ φ−1
n ) · ∇(I ◦ φ−1

n ) + L̃ṽn

]
. (6)

(iii) Backward integrate the gradient (6) to t = 0 to obtain [∇ṽn
Q]t=0.

After applying the chain rule, we have the gradient of Q for updating the
loading factor sn:

∇sn
Q = −ΛW̃T [∇ṽn

Q]t=0 − sn.

The gradients of Q w.r.t. W̃ , Λ are given as follows:

∇W̃ Q = −
N∑

n=1

[∇ṽn
Q]t=0s

T
nΛ, ∇ΛQ = −

N∑

n=1

W̃sT
n [∇ṽn

Q]t=0.

Unlike the PPGA model [17], we can readily enforce the mutual orthogonality
constraint on the columns of W̃ . Here, we choose to employ Gram-Schmidt
orthogonalization [2] on the column vectors of W̃ in a complex inner product
space.

5 Results

Data. To evaluate the effectiveness of the proposed low-dimensional principal
geodesic analysis (LPPGA), we applied the algorithm to brain MRI scans of 90
subjects from the ADNI [8] study, aged 60 to 90. Fifty subjects have Alzheimer’s
disease and the remaining 40 subjects are healthy controls. All MRIs have the
same resolution 128×128×128 with the voxel size of 1.25×1.25×1.25mm3. All
images underwent skull-stripping, downsampling, intensity normalization, bias
field correction, and co-registration with affine transformations.

Experiments. We first estimate a full collection of principal modes q = 89 for
our model, using α = 3.0, c = 3.0 for the operator L̃ with p = 163 dimensions
of initial velocity ṽ, similar to the settings used in pairwise diffeomorphic image
registration [18]. The number of time steps for integration in geodesic shooting
is set to 10. We initialize the atlas I to be the average of image intensities, Λ
to be the identity matrix, sn to be the all-ones vector, and the initial velocity
matrix W̃ to be the principal components estimated by TPCA [14]. We then
compare the results with PPGA [17] and TPCA on the same dataset. In order
to conduct a fair comparison, we keep all the parameters including regularization
and time steps for numerical integration fixed across the three algorithms. To
evaluate the model stability, we randomly select 50 images out of 90 and rerun
the entire experiment 50 times.

To investigate the ability of our model to capture anatomical variability,
we use the loading coefficients s = {s1, · · · , sN} as a shape descriptor in a
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Fig. 1. Top to bottom: first, second and third principal modes of brain shape variation
evaluated for varying amounts of the corresponding principal mode, and log determi-
nant of Jacobians at 2Λi. Coronal views are shown.

statistical study. The idea is to test the hypothesis that the principal modes
estimated by our method are correlated significantly with clinical information
such as mini-mental state examination (MMSE), Alzheimer’s Disease Assess-
ment Scale (ADAS), and Clinical Dementia Rating (CDR). We focus on MMSE
and fit it to a linear regression model using the loadings for all 90 subjects in
the training dataset as predictors. Similar analysis is performed on the results
of PPGA and TPCA.

Experimental Results. Figure 1 visualizes the first three modes of variation
in this cohort by shooting the estimated atlas I along the initial velocities
ṽ = aiW̃iΛi (ai = {−2,−1, 0, 1, 2}, i = 1, 2, 3). We also show the log deter-
minant of Jacobians at ai = 2 (regions of expansion in red and contraction in
blue). The first mode of variation clearly shows that changes in ventricle size is
the dominant source of variability in the brain shape. The algorithm estimates
standard deviation of the image noise to be σ = 0.02.

Figure 2 reports the cumulative variance explained by the model as a function
of the model size. Our approach achieves higher representation accuracy than the
two state-of-the-art baseline algorithms across the entire range of model sizes.

Table 1 compares the regression results of our model and the two baseline
algorithms using the first principal mode. The higher F and R2 statistics indicate
that our approach captures more variation of the MMSE score than the other
models. Table 1 also reports run time and memory consumption for building the
full model of anatomical variability. It demonstrates that our approach offers an
order of magnitude improvement in both the run time and memory requirements
while providing a more powerful model of variability.
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Fig. 2. Left: cumulative variance explained by principal modes estimated through our
method (LPPGA) and baseline algorithms (PPGA and TPCA). Right: number of
principal modes that explain 90 % and 95 % of total variance respectively.

Table 1. Left: Comparison of linear regression models on the first principal mode for
our model (LPPGA) and the baseline algorithms (PPGA and TPCA) on 90 brain
MRIs from ADNI. Right: Comparison of run time and memory consumption. The
implementation employed a message passing interface (MPI) parallel programming for
all methods and distributed 90 subjects to 10 processors.

6 Conclusion

We presented a low-dimensional probabilistic framework for factor analysis in
the space of diffeomorphisms. Our model reduces the computational cost and
amplifies the statistical power of shape analysis by using a low-dimensional para-
metrization. This work represents the first step towards efficient probabilistic
models of shape variability based on high-dimensional diffeomorphisms. Future
work will explore Bayesian variants of shape analysis. A multiscale strategy
like [13] can be added to our model to make the inference even faster.

Acknowledgments. This work was supported by NIH NIBIB NAC P41EB015902,
NIH NINDS R01NS086905, NIH NICHD U01HD087211, and Wistron Corporation.

References
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